Computational contact mechanics

C. Hesch and P. Betsch

Introduction
Large deformation contact problems [1]
- Geometrical and material nonlinearities
- Inequality contact constraints
- Active set strategy to resolve the Karush-Kuhn-Tucker conditions
- Consistent formulation [2]
- Non-penetration condition
- Decomposition of boundaries
- Assembly of the segment contributions
- Segement contribution of the contact constraints
- Weak formulation of the contact virtual work
- Equations of motion
- Discretization in space
- Geometrical and material nonlinearities

Consistent formulation
\[
\Phi_n^0; \cup \sigma_i^h \leq 0; \quad J = \int \sum_{i \in e} \left[\dot{\Phi}^{(1)} - \dot{\Phi}^{(2)} \right] \cdot \gamma \, d\gamma
\]

Dual field
\[
\dot{\Phi}^{(1)}(X, t) = \sum_{i \in e} N_i(X) \Phi_i^{(1)}(t)
\]

Segment contribution of the contact constraints
\[
\Phi_{c,seg}(q_{seg}) = n \cdot \left(\tilde{r}_{e,seg}^0 q_{e,seg}^{(1)} - \tilde{r}_{e,seg}^1 q_{e,seg}^{(2)} \right)
\]

Assembly of the segment contributions
\[
\Phi_{mixture}(q) = \bigcup_{e \in e} \Phi_{c,seg}(q_{seg}) = \bigcup_{e \in e} \left[\Phi_{c,seg}^{(1)}(q_{seg}) \bigcup \Phi_{c,seg}^{(2)}(q_{seg}) \right]
\]

Problem setting
- Decomposition of boundaries
- Non-penetration condition
- Karush-Kuhn-Tucker inequality conditions
- Discretization in space
- Augmented Hamiltonian
- Equations of motion
- Weak formulation of the contact virtual work
- Dual field
- Segment contribution of the contact constraints
- Assembly of the segment contributions

Numerical example
Impact problem of two hollow tori. The inner and the outer radius of the tori is 52 and 100, respectively. The wall thickness of each hollow torus is 4.5. Both tori are subdivided into 3120 elements, using a Neo-Hookean hyperelastic material with \(E = 2250\) and \(\nu = 0.3\). The initial densities are \(\rho = 0.1\) and the homogeneous, initial velocity of the left torus is given by \(v = [30, 0, 23]\).

Several configurations and the stress distributions are displayed. The segmentation after 2s as well as the three components of the angular momentum are shown below.

References
- P. Betsch and C. Hesch.
- C. Hesch and P. Betsch.
 A mortar method for energy-momentum conserving schemes in frictionless dynamic contact problems.