Fluid structure interaction problems

C. Hesch, A.J. Gil, A. Arranz Carreño, J. Bonet and P. Betsch

Introduction

Applications and modeling [1]
- Essential strategy for biomechanical problems
- Structures undergo large deformations within an incompressible fluid
- Simultaneously embedding of deformable and rigid bodies immersed techniques
- Overlapping domain decomposition method
- Subsequent application of Null-Space reduction scheme
- Collocation and Mortar type interface

FSI – Formulation of the problem

Weak form

- Fluids
 \[F_{\text{B1}}^0(u', \delta u') + F_{\text{B2}}^0(u', p; \delta u') + F_{\text{B2}}^{\text{int}}(u', p; \delta u') \]

- Deformable solids
 \[S_{\text{B1}}^\alpha (\phi^\alpha, \delta \phi^\alpha) + S_{\text{B2}}^\alpha (\phi^\alpha, \delta \phi^\alpha) \]

- Rigid bodies
 \[R_{\text{B1}}^\alpha (\phi^\alpha, \delta \phi^\alpha) + R_{\text{B2}}^\alpha (\phi^\alpha, \delta \phi^\alpha) \]

Interface conditions

- Lagrange multiplier field
 \[\mathcal{M} = \{ \delta \lambda^f_{\text{int}} \in L^2 ((B_1 \cap B_2) \cup (B_2 \cap B_1)) \} \]

- Non-holonomic FSI constraints for deformable bodies
 \[\Phi^f : = \phi^f(X, t) - v^f(x, t) \] in \(B_1 \cap B_2 \)

- Non-holonomic FSI constraints for rigid bodies
 \[\Phi^f : = \phi^f(X, t) - v^f(x, t) \] in \(B_2 \cap B_1 \)

Spatial discretisation

Interface – Mortar approach

- Deformable solids
 \[\delta \lambda^f_{\text{int}} \cdot \sum_{B \in \mathcal{B}} n_{B}^\alpha q_B - \sum_{C \in \mathcal{C}} n_{C}^\alpha v_C = 0, \forall A \in \omega^f_{\mathcal{M}} \]

- Rigid bodies
 \[\delta \lambda^f_{\text{int}} \cdot \sum_{B \in \mathcal{B}} n_{B}^\alpha (\phi + \sum_{i} \theta^i d_i) - \sum_{C \in \mathcal{C}} n_{C}^\alpha v_C = 0, \forall A \in \omega^f_{\mathcal{M}} \]

- Mortar integrals
 \[n_{\mathcal{M}}^{\alpha B} = \int_{B_1 \cap B_2} N_i^\alpha(X) N_j^B(X) \, dV, \quad n_{\mathcal{M}}^{\alpha C} = \int_{B_1 \cap B_2} N_i^\alpha(X) N_j^C(X) \, dV \]

Null-Space projection

Reduction of redundant coordinates in FSI problems [2]

- Monolithic Newton-Raphson algorithm
 \[K(u_k) \Delta u = -R(u_k); \quad u_{k+1} = u_k + \Delta u \]

- Analytical solution w.r.t. \(\Delta \lambda^f_{\text{int}} \) and \(\Delta q^f \) leads to
 \[P = \begin{bmatrix} R_{f_1} & R_{f_2} \end{bmatrix} \]

using the rectangular Null-Space matrix

Numerical example

Flow-induced vibration of a flexible beam

References

A. J. Gil, A. Arranz Carreño, J. Bonet and O. Hassan
The Immersed Structural Potential Method for haemodynamic applications.

C. Hesch, A.J. Gil, A. Arranz Carreño, J. Bonet and P. Betsch