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Historical Milestones

• From 3000 B.C. first descriptions of length and 

weight measures have been found.

• During the medieval, trade and jurisdiction 

concentrated on the environment around churches. 

First accepted standards have been established 

like the Freiburger “Elle”.

• Each trade center defined individual standards. At the 

end of the 18th century 118 different definitions of an 

“Elle” and 80 different definitions of a “Pound” have 

been common.

• 1791 world-wide valid and accepted standards and 

1875 the metric system was established in Paris. But in 

some countries it is not used until today (e.g. USA). 

• Since 1889 measurement standards made from platinum 

and iridium for the original “m” and “kg” are displayed in Paris.

1. Introduction to Measurement Techniques

1.1 Historical Issues

In the tower of the Freiburger Münster a 

stainless metal bar is built in. Its length is 

one “Elle“ (54 cm), a 1/20 of an “Elle“ 

equals one inch.
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MKS System

• 1791 the units Meter, Kilogram and Second were established world-wide for the next

200 years in Paris, the so-called MKS system. From this system many important units 

could be derived. 

• The Meter was defined as the 40 millionth fraction of the circumference of earth 

(orthogonal to the equator).

• The Kilogram was defined as the mass of 10 cubic centimeter (cm3) of water with 

maximal density (at 4°C). 

To complete the MKS system and to improve the accuracy and generality of the units by the 

help of modern physics, 1960 the SI system (Système International d'Unités) consisting of 

7 units was founded. 

• All units can be derived from the basic 7 SI units.

• The definition are mainly based on physical constants.

• In principle, these units could be understood by aliens!

1. Introduction to Measurement Techniques

1.2 SI: International System of Units
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1. Introduction to Measurement Techniques

1.2 SI: International System of Units
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SI System

From the 7 basic SI units for example the following important units can be derived:

Speed: 

Acceleration:

Force: 

Torque: 

Energy: 

Power: 

Magnetic Field: 

Electric Voltage: 

1. Introduction to Measurement Techniques

1.2 SI: International System of Units

Torque and Energy have identical units!

Does this mean they are the same?

Torque throughout this script is named 

with M, not T as usual in English, 

because this is the common German 

abbreviation for “Moment”.
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1. Introduction to Measurement Techniques

1.3 Relevance of Measurements 

Measurement Techniques are the Foundation of Science

• The foundation of science are observations. Science comes up with theories that aim to 

explain existing observations and predict future ones. If theory and observations 

contradict each other, either the observations are flawed or the theory is wrong 

(falsification). The more independent observations support a theory, the more likely it 

is true. But, in principle, it can never be proven (verification)!

• Very concrete and quantitative observations are measurements. Mainly with their help 

sciences progresses, in particular natural sciences.

• Discovered patterns within the measurements often lead towards a theory that is 

coherent with them.

• New technological possibilities often have supported or refuted theories. Example: 

The measured spectrum of black body radiation was in contradiction to the classical 

theory. The introduction of quantization of the emitted frequencies by Planck in 1900 

could align theory and observations. This was the birth of quantum mechanics (which

ironically Planck never accepted). 
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1. Introduction to Measurement Techniques

1.3 Relevance of Measurements 

Example: Interferometer Experiment by Michelson-Morley

The experiment by Michelson in 1881 and a refined version by 

Morley in 1887 tried to prove that some “stuff” in vacuum exist 

(German: “Äther”) that transmits light waves. The theory at this 

time stated that any wave needs a medium for its transportation 

in order to propagate the energy. Examples are water waves or 

sounds with air as the medium. That vacuum is simply empty was 

unimaginable because light can travel through space. So what is 

the medium that light needs?

This obscure stuff was not found and called “Äther”. The inter-

ferometer experiment was designed to find out whether it exists.

If the earth travels through “Äther” then turning the interferometer 

changes the speed direction and should lead to a phase shift because

light should be faster or slower depending on the relative “Äther” 

speed. But nothing happened! Light speed always is c in vacuum. 

No “Äther” exists. This was explained by Einstein’s theory of 

special relativity in 1905.  



Prof. Dr.-Ing. 

Oliver Nelles

Page 12

University

of Siegen

1. Introduction to Measurement Techniques

1.3 Relevance of Measurements 

Measurement for Feedback Control

Control is based on measuring the quantity that shall be controlled. Without the measure-

ment there is no feedback possible, no comparison between desired and actual value.

In many applications in signal processing a delay is not very tragic. If you see a football goal 

100 ms delayed because of computations in your digital TV this is no significant drawback. 

This is different in feedback control! The controlled variable must be fed back to the 

comparison of desired with actual value immediately. Any delay due to a slow sensor 

or filtering or other signal processing techniques deteriorates the control performance.

You can never make up for a delay in a subsequent step! 

controller plant
controlled valuedesired value manipulated

variable

sensor
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Measuring

Definition: Measuring means comparing with an agreed unit.

A measurement consists of a number and a unit. The number describes which multiple of the 

unit is assigned:

measurement = number · unit 

Examples: Speed = 3 m/s = 3 m·s−1,    Mass = 4 kg,    Force = 5 kg·m/s2 = 5 N

Requirements:

1. The quantity to be measured must be qualitatively uniquely determined. 

2. The standard unit must be defined by a convention. 

These requirements are not met by many quantities in our everyday lives, like 

wellness, beauty, intelligence.

1. Introduction to Measurement Techniques

1.4 Basics



Prof. Dr.-Ing. 

Oliver Nelles

Page 14

University

of Siegen

Measurement Setup

A measurement setup typically consists of 3 blocks: 

1. The quantity to be measured by a sensor is converted into an electrical signal. Recently 

the term smart sensor has become popular. This means sensors that incorporate an

intelligent signal processing that carries out tasks inside the sensor like filtering, data 

reduction, extraction of features, combining different physical principles, …

2. The electrical signal is converted into another electrical signal which is e.g. of 

higher power and/or digital, etc. 

3. The amplified and possibly digitized signal is outputted to a display, printer, plotter or 

only saved. 

1. Introduction to Measurement Techniques

1.4 Basics

Process Sensor

converter, 

amplifier, ... output device

Probe
Trans-

ducer

measurement

non-electrical electrical e.g. digital

support energy



Prof. Dr.-Ing. 

Oliver Nelles

Page 15

University

of Siegen

Measurement Method [1]

• Deflection Method: The measured quantity is directly converted into the output, e.g. a 

display. No support energy is needed from outside. The required energy for the 

conversion is taken from the medium or the environment (e.g. gravitation). 

Examples: spring balance, expansion thermometer.

• Difference Method: The measured quantity is compared with a quantity from outside. 

This quantity for comparison stays constant during the measurement. The difference 

between both is the output. Example: volume measurement (displaced liquid).

• Compensation Method: A quantity opposed to the measured quantity is applied. A zero

indicator determines whether both quantities are equal. If so the compensation quantity is

a measure for the original one. The compensation quantity 

can be of other kind than the original one. 

Examples: Equal-armed balance with weights as 

compensation quantity (same kind) 

or with an electro-magnet induced force (different kind)

1. Introduction to Measurement Techniques

1.4 Basics

http://en.wikipedia.org/wiki/File:Balance_scale_IMGP9755.jpg
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Measuring Technique [1]

• Direct Measurement: Comparison with a gauge. The most fundamental technique. 

Example: Length measurement with a ruler. 

• Indirect Measurement: The quantity to be measured is determined by other relevant 

quantities. Examples: Determination of pressure by measuring force and dividing by the 

area. Determination of power by measuring voltage and current and multiplying them. 

Determination of speed by measuring distance and time and dividing them. 

Determination of acceleration by measuring speed and differentiating.  

• Incremental Measurement: From a reference point, increments (= smallest change) are 

added or subtracted to determine the actual value. Typically, equidistant markings are 

scanned (optically or magnetically or otherwise). Examples: Measuring angles or 

displacements. 

1. Introduction to Measurement Techniques

1.4 Basics
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Analog and Digital Measurement Processing

1. Introduction to Measurement Techniques

1.4 Basics
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These books are the main basis for these lecture notes:

1. J. Hoffmann: “Taschenbuch der Messtechnik“, 4. Aufl., Hanser, 2004

2. J. Niebuhr, G. Lindner: “Physikalische Messtechnik mit Sensoren“, 5. Aufl., 

Oldenbourg, 2005. 

3. E. Schrüfer: “Elektrische Messtechnik: Messung elektrischer und nichtelektrischer

Größen“, 7. Aufl., Hanser, 2001

4. U. Kiencke, R. Eger: “Messtechnik“, 6. Aufl., Springer, 2005.

A reference:

Mayer, J.R. Rene: “Measurement, Instrumentation and Sensors Handbook“, CRC 

Press, 1999

A good book in English:

Morris A.S., Langari, R.: “Measurement and Instrumentation: Theory and 

Application”, Academic Press, 2012

1. Introduction to Measurement Techniques

1.5 Literature
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4. Digital Measurement 

Techniques
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4. Digital Measurement Techniques

4.1 Discretisation of Amplitude and Time

4.2 Sampling Theorem

4.3 Quantization

4.4 A/D and D/A Converters

4.5 Measurement of Frequency

4. Digital Measurement Techniques

Contents of Chapter 4
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Advantages of Digital Measurement Techniques

• Digital electronics is insensitive with respect to environmental influences (temperature). 

• Digital electronics becomes more powerful, cheaper, smaller, more robust. It can be 

integrated together with the sensor (smart sensor). 

• Documentation and archiving purposes require or favor a digital form. 

• Digital signal processing is much more powerful and flexible than analogue electronic 

circuits: 

– Digital and adaptive filtering.

– Nonlinear transformation/inversion.

– Transformation of signals into the frequency domain (fast Fourier transform, FFT). 

– Parameter estimation, supervision, diagnosis. 

– Sensor fusion. 

– Storage of data on a digital storage medium (hard disk, flash). 

– Transmission of data without any information loss.

– Powerful display technologies.

4. Digital Measurement Techniques

4.1 Discretization of Amplitude and Time
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Here: Focus on digital signals

• Difference equation and sums are simpler to manage and understand than 

differential equations and integrals. 

• Digital realizations replace analogue circuits because it is

- cheaper in most cases (especially for high quantities),

- easy to implement,

- more flexible: faster and cheaper to change (even afterwards with updates),

- more robust and durable with respect to environmental influences 

(wear, temperature, humidity). 

Focus of this lecture

• Development of an understanding for the methods and their potential applications. 

• No implementation details and tricks.

• No programing of digital signal processors (DSPs).

• More width than depth. 

4.1 Discretization of Amplitude and Time

digital = time-discrete & quantized

sampled

amplitude in 

e.g., 8 or 16 bits 

4. Digital Measurement Techniques



Prof. Dr.-Ing. 

Oliver Nelles

Page 23

University

of Siegen

4.1 Discretization of Amplitude and Time

Analog/Digital and Digital/Analog Conversion

A/D Convertor

• Sampling time T0 can be bet-

ween 𝜇sec (signal proc.) 

and hours (thermal, 

biological processes)

• Amplitude resolution 

of 8, 12 or 16 bit.

D/A Convertor

• Computer handles 

time-discrete series. 

• Hold of 0. order 

generates piece-wise 

constant signals.

A/D Computer

D/A Hold

t

us(t)

k

u(k)

u(k)

y(k)
Computer

Sensor

y*(t) y(t)

uc(t) us(t)

t

uc(t)

T0

t

y*(t)

t

yc(t)

k

y(k)

Abbreviation: u(k) = uc(kT0)

y(k) = yc(kT0)

4. Digital Measurement Techniques
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Analog and Digital Measurement Processing

4. Digital Measurement Techniques

4.1 Discretization of Amplitude and Time
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4.2 Sampling Theorem

Sampling of a Continuous-Time Signal

Everybody has seen spoke wheels of a starting carriage or car − at least in the movies. First 

the accelerating wheel can be observed. With a certain speed or angular velocity of the 

wheel, it suddenly changes direction and seams turn the other way round although the 

carriage further accelerates. Further on the wheel slows down before it finally stands still. 

That in obvious contradiction to the faster and faster carriage. 

This strange effect can be explained by the so-called Aliasing. It exists for all time-discrete 

and therefore sampled systems. Obviously problems occur, if the signal is sampled too 

slowly for its velocity (or more precisely frequency). This effect becomes prominent, if we 

approach half of the sampling frequency. The movie plays the role of the sampler with a 

sampling frequency of f0 = 24 Hz or 25 Hz, i.e., the refresh rate. 

What happens if we sample a signal of frequency f = 1 Hz with f0 = 1 Hz?

0 1 2 3 4 5 6

-1

0

1

0 1 2 3 4 5 6

-1

0

1

Wheel seams

to freeze!

4. Digital Measurement Techniques
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4.2 Sampling Theorem

Aliasing

Obviously the oscillation is completely gone! We get a signal of frequency zero (a dc value). 

This happens independently of the phase orientation of the sampler (only the value of the dc 

value depends on it). For illustration some further examples with f = 0.9 Hz, 0.7 Hz, 0.5 Hz 

and 0.3 Hz sampled with f0 = 1 Hz. 

0 1 2 3 4 5 6
-1

0

1

0 1 2 3 4 5 6
-1

0

1

0 1 2 3 4 5 6
-1

0

1

0 1 2 3 4 5 6
-1

0

1

f = 0.9 Hz

f = 0.5 Hz

f = 0.7 Hz

f = 0.3 Hz

4. Digital Measurement Techniques
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4.2 Sampling Theorem

Sampling Theorem

From the examples on the previous slide we see, that at least the double of the

sampling frequency is required to reconstruct the original signal from its sampled 

version (f = 0.5 Hz sampled with f0 = 1 Hz). Real signals consist of many (typically infinite 

many) frequencies. Then, this requirement relates to the highest contained frequency fmax.

Shannon‘s Sampling Theorem

The signal x(t) shall be sampled. The highest significant frequency component of x(t) is at

fmax. Then the sampling frequency has to be at least twice this highest frequency component 

of x(t): 

If this theorem is violated, aliasing occurs, i.e., frequency components above the half 

sampling frequency (f > ½ f0) are mirrored into a lower frequency range. By this effect high 

frequency noise can disturb the signal in any frequency range. Thus aliasing should be 

avoided or at least kept to a minimum.

It is practice to choose ~ f0 = 5…10 fmax

Claude Elwood Shannon, 1916-2001
(www.wikepedia.org)

4. Digital Measurement Techniques

Very entertaining podcast: 

Fritterin’ Away Genius

Cautionary Tales with Tim Harford
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4.2 Sampling Theorem

Illustration of the Sampling Theorem and the Aliasing Effect

If the sampling theorem is met, it is possible to reconstruct the original signal from its 

sampled version, i.e., no information loss takes place. However, in reality most signals are 

not  bandlimited. This means they have frequency components up to infinity, i.e., no upper 

bound exists (fmax = ∞). Typical signals like steps, ramps, rectangular shapes stretch their 

spectrum between zero and infinity. Such signals cannot be reconstructed perfectly. 

4. Digital Measurement Techniques

Signal Spectrum
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4.2 Sampling Theorem

Illustration of the Sampling Theorem and the Aliasing Effect

Spectrum of the continuous signal Spectrum of the sampled signal

Spectrum of the sampled signal Spectrum of the sampled signal

bandlimited

signal

4. Digital Measurement Techniques



Prof. Dr.-Ing. 

Oliver Nelles

Page 30

University

of Siegen

4.2 Sampling Theorem

Aliasing for Sampling a Sin-Signals With Angular Frequency 𝜔1

Each signal component of frequency 𝜔1 is mirrored through the sampling process to: 

As long as 𝜔1 lies inside the red area (solid), i.e., the sampling theorem is not violated, the 

mirrored components (dashed) keep lying outside the red area (left figure). 

As soon as 𝜔1 lies outside the red area (solid), i.e., the sampling theorem is violated, the 

mirrored components (dashed) lie inside the red area (right figure). Aliasing occurs! 

If a component changes from 𝜔1 to 𝜔0, a mirrored alias component at 𝜔 = 0 is created. 

4. Digital Measurement Techniques
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Aliasing in Image Processing

Signal processing is relevant not only for signals over time. It is also important for signals 

over space like pictures/photos(2-D: columns & rows) or a combination of both in videos (3-

D). For such spatial signal the same laws and relationships hold. Signals over time can be 

filtered, so can signals over space. 

Image processing therefore also has to deal with the aliasing effect. A high spatial frequency 

corresponds to alternating points of black and white (or differently colored).Without a special 

so called anti-aliasing filter, such

components of high frequency can

significantly disturb the picture. It is

particularly prominent for tiny

checkered patterns and known as the

Moiré effect. A low-pass anti-

aliasing filter prevents such 

destructive effects. Every digital 

photo and video camera has build 

in such a filter. 

4.2 Sampling Theorem

Without Anti-Aliasing With Anti-Aliasing

4. Digital Measurement Techniques
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Quantization Error

Any digital value is quantized in its amplitude. A continuous value has to be mapped to a 

discrete value via the A/D converter. This means that each interval in the continuous range 

corresponds to some integer number. All values inside of such an interval are 

indistinguishable after the A/D conversion.  

If we quantize a continuous value in the range from xmin to xmax into n bits, 2n intervals or 

quantization levels exist. In such a quantization the maximum error can be calculated as

because this is the interval width. The quantization

error with this approach is always positive because 

the green line (dashed) always is above the blue one 

(solid).

Example: xmin = 0,  xmax = 10,  n = 3 Bits

eQ max = 10 / 8 = 1.25 

In practice 8, 12, 16 bit A/D converters are standard.

xQ

x0 101.25 2.5 53.75 6.25 7.5 8.75
0
1
2
3
4
5
6
7

eQ max

4.3 Quantization

4. Digital Measurement Techniques
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It is possible to improve this quantization error by almost

a factor of 2. Instead of always rounding down, we can 

draw the green (dashed) line through the average by 

shifting it eQ/2 to the right.  Now xmin and xmax are in the 

medium values of the intervals, not their limits. This 

sacrifices one interval. The maximum quantization error is:

Quantization Noise

Although the quantization error is caused systematically, it appears

to be of random nature. Thus, one speaks of quantization noise that

any A/D conversion creates in principle. Since all values are of equal

probability, it can be modeled by an equal probability distribution. 

In old synthesizers or CD players quantization noise could be heard 

for low volume sounds.

xQ

x101.43
2.86 5.71

4.29 7.14
8.57

1
2
3
4
5
6
7

0
0

eQ max

4.4 A/D and D/A Converters

4. Digital Measurement Techniques
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A/D Converters: Fundamentals

The three main characteristics of A/D converters are:

• Resolution

• Speed

• Realization effort / price

These characteristics are in conflict with each other. E.g. a high resolution implies a low 

speed or high effort/price (or both). 

With resolution we mean the number of bits n which results in 2n quantization levels. It is 

not reasonable to request a much higher resolution from the A/D converter than the 

measurement noise or other disturbances have as mean amplitude since the accuracy of the 

signal then is limited to this value anyway. Otherwise the lowest significant bits are 

determined by noise and carry no information.

The speed (bandwidth) determines how fast the A/D conversion is performed and therefore 

how fast the sampling is possible (maximum sampling frequency). The effort typically 

shows directly in the price. 

A low sensitivity with respect to environment conditions is also an important criterion. 

4.4 A/D and D/A Converters

4. Digital Measurement Techniques
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4.4 A/D and D/A Converters

A/D Converter: Parallel Principle or Flash Converter [1]

The voltage which shall be converted UE is directly compared with n different reference 

values. For any of the existing 2n–1 quantization levels one comparator is required. 

Properties: Very fast 

(10 MHz), low resolution (8 bit).

Application Field: Video.

4. Digital Measurement Techniques
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A/D Converter: Successive Approximation or Weighting Method [1]

The procedure is identical to the weighting with a beam balance where the available weights 

are 1, ½, ¼, …, 1/2n. A combination of these weight represents the quantization levels. One 

starts with the highest weight and adds or removes weights in descending order to balance 

the beam. At the end we have n steps (n times a weight is added and possibly removed). The 

remaining weight represent “1”, the removed “0” in the converted value. Weights are 

realized by voltages, the beam balance is realized by comparators. 

Properties: Medium speed (1 MHz), medium-high resolution: 12, 16, even 24 bit.

Application Field: Computer plug-in A/D converter cards for measuring signals.

4.4 A/D and D/A Converters

4. Digital Measurement Techniques
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A/D Converter: Servo Principle [1]

Constantly the difference of the voltage UE to be converted and the output of the A/D 

converter which is converted back into an analogue signal is compared like in a control 

system. If this difference I equal to zero, then the A/D conversion is correct. A positive or 

negative difference triggers a count which is counted up or down (feedback!). Because the 

has a certain speed, the conversion needs a lot of time that depends on the size of the 

difference; this it similar to an integrative controller. However, if the difference is small 

because the signal hardly changes (no steps or 

impulses) the converted voltage follows closely. 

Properties: Speed depends on the size of steps.

Application Field: continuous conversion, 

slowly changing signals.

4.4 A/D and D/A Converters

4. Digital Measurement Techniques
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A/D Converter: Dual Slope Principle [1]

The dual slope converter uses an extended ramp method. The input voltage UE is integrated 

over a fixed period of time t by an integrator circuit. Subsequently, the integrated voltage is 

integrated down again until zero by some reference voltage Uref of opposite sign. During the 

latter time period a counter runs whose counting then is proportional to the original input 

voltage UE. 

Properties: Excellent quality and suppression of unwanted influences. Is is almost 

independent of material properties, temperature changes, etc. because those effects cancel 

each other during up- and down-integration. Slow speed since integration takes a lot of time. 

Application Field: Digital volt meter. 

4.4 A/D and D/A Converters

4. Digital Measurement Techniques
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A/D Converter: Sigma-Delta- or Charge-Balance- or 1-Bit-Method [1]

In the first part of a sigma-delta-converter a

bit stream is generated whose average value 

is proportional to the input voltage UE that 

shall be converted. This is achieved through a 

control loop in which the difference between

UE and a positive and negative reference 

voltage is fed to a comparator. For UE = 0V 

the up- and down-integration phases are 

equally long. 

In the second part the bit series in the bit

stream is counted and converted into a 

digital value. 

Properties: very high resolution (24 bit), 

medium speed.

Application Field: audio, instrumentation.

4.4 A/D and D/A Converters

4. Digital Measurement Techniques
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D/A Converter: Current Weighted Principle [1]

In comparison to A/D conversion is the way back quite simple. 

One possibility is to drive a 

constant current through a 

number of resistors with 

geometrically ordered resistances,

i.e., R, 2R, 4R, 8R, … The voltage

drop over each resistor corresponds 

to a bit in the digital value 

(“1” for “on” and “0” for “off”). 

The sum of these voltages then 

corresponds to overall value, 

e.g., the bit series 

00011010 

gives the analogue voltage 

U = (16R + 8R + 2R)I = 26RI

4.4 A/D and D/A Converters

4. Digital Measurement Techniques
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D/A Converter: R-2R Principle [1]

The R-2R converter divides a current in each knot into 2 halves (factor 2). One half drives a 

resistor with resistance 2R and thereby creates a proportional voltage drop. The other half is 

again divided into 2 halves etc. The main advantage compared to the method explained on 

the last slide is that only two kinds of resistors R and 2R are required. They are much easier 

and cheaper to manufacture in high quality (low temperature dependence) than all the 

different kinds for the current weighted principle R, 2R, …, 1024R (for a 10 bit converter). 

4.4 A/D and D/A Converters

… 

4. Digital Measurement Techniques
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Fundamentals of Frequency Measurement

In the discussion of velocity and angular velocity measurements in Chapter 3.3 it is explained 

how such a measurement can be transformed into a voltage signal of same frequency. The 

last step that still is open, is to determine this frequency! The reason for this is that frequency 

measurement is typically done digitally − thus it has been postponed up to here. 

The task here is therefore to determine the 

frequency f of a given voltage signal u(t).

Two alternative approaches are presented: 

• Measurement of the cycle duration (period): For signals of 

low frequency it makes sense to measure the time for one (or even half of an) oscillation 

TP and calculate the frequency from f = 1/TP.

• Counting the number of cycles within one time interval: For signals of high frequency it 

makes sense to measure the number of oscillations within a given time interval and to 

count them. The frequency can be determined by f = number of oscillations / time 

interval. 

4. Digital Measurement Techniques

4.5 Measurement of Frequency

frequency 

measurement

ft

u(t)
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Measurement of a Period [4]

4. Digital Measurement Techniques

4.5 Measurement of Frequency

Well-suited for

low-frequency signals

Reference frequency 

is artificially generated.

Gate time is one or

one half of an oscillation

of the original signal.
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Counting of Many Periods [4]

4. Digital Measurement Techniques

4.5 Measurement of Frequency

Well-suited for

high-frequency signals.

Frequency come from 

the original signal.

Gate time is generated

arbitrarily (the long the 

more accurate but slower).
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B: Signal Processing
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7. Introduction to Signal Processing 
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7. Introduction to Signal Processing

7.1  What for?

7.2  Deterministic and Stochastic Signals

7.3  Application Examples

7.4  Literature

7. Introduction to Signal Processing 

Contents of Chapter 7
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What are Signals?

• Signals transfer information.

• Signals are functions, typically of time. 

• Signals are measured with sensors and can be available in every physical form like 

pressure, temperature, voltage, …

Some Typical Signals

• Speech, music

• Pictures, videos

• EKG, EEG, signals of CT, MRT or PET → image processing, conversion in pictures, ...

• Distance measurement with laser, ultrasound or radar, echo lot, GPS, seismic signals, …

• Data streams via telephone lines, cable TV, satellite, cell phone, bluetooth, internet, …

• All kinds of measurements at machines, machines in factories, …

• Pressure in cylinders of a combustion engine

• Stock prices, number of unemployed people, development of populations, …

7. Introduction to Signal Processing 

7.1 What For? 

t
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What is signal processing?

The analysis, manipulation and integration of signals

Application areas of signal processing?

• Storage, reconstruction

• Separation of desired signal and disturbance (signal-to-noise ratio)

• Compression

• Feature extraction (pre-stage of every classification)

Method/Tools of signal processing

• Transformation, correlation

• Filtering, disturbance suppression

• Detection, classification, pattern recognition

• Identification, estimation

• Compression, integration, fusion

7. Introduction to Signal Processing 

7.1 What For? 
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Applications

7. Introduction to Signal Processing 

7.1 What For? 

MRT

Radar

Internet GPSNight VisionIntegration Sensorics/Control Units

MesstechnikDriver Assistance

Camera Video Cell Phone
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Deterministic Signals Do Not Depend on Randomness: 

• Dirac impulse

• Step

• Ramp

• Periodic signals: sine, rectangular, ...

Stochastic Signals Depend on Randomness: 

• Noise

• Distribution of amplitudes:

- Gaussian,

- uniform, ...

• Frequency characteristics:

- white: all frequencies have the same power, 

- band limited: only a certain frequency range is present, ... 

7.2 Deterministic and Stochastic Signals

7. Introduction to Signal Processing 
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Motivation for Using Stochastic Signals

• Physical effects are truly random (e.g. radioactive decay).

• Many tiny disturbances appear like random, but are of deterministic nature each if we 

look in close detail (what needs time and dedication). 

→ In both cases: Modeling of the effects as stochastic signal makes sense!

7.2 Deterministic and Stochastic Signals
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7. Introduction to Signal Processing 
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Acoustic Echo Compensation (Hands-Free Talking)

• Adaptive (automatically self-adjusting) filters eliminate disturbing and annoying 

feedbacks by modeling the transfer characteristics between speaker and microphone and 

subtracts this signal part from the overall signal. 

7. Introduction to Signal Processing 

7.3 Application Examples

min. power of e!

adaptive

filter
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Active Noise Cancelation

• By direct measurement of the noise and generation of a

opposite phase signal (180° phase shift) destructive

interference annihilates the noise or at least parts of it. 

• Works well in the low-frequency range up to 1000 Hz. 

• Damping (active + passive) up to –30 dB possible!

7. Introduction to Signal Processing 

7.3 Application Examples
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7.3 Application Examples

Active Noise Cancellation with Sony Xperia Z2

• Works via cell phone, not with headphones alone.

• Use processor and battery of cell phone.

Source: https://www.theguardian.com/technology/2014/apr/17/sony-xperia-z2-review-phone-android: 

Source: http://www.techradar.com/news/phone-and-

communications/mobile-phones/background-noise-reduction-one-

of-your-smartphone-s-greatest-tools-1228924

7. Introduction to Signal Processing 
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Face Detection

• By calculating the gradients in x- and y-direction, a vertical

and horizontal edge-image can be generated.

• From these edge-image the features can be extracted more easily.

• This software extracts 22 features per face:

- vertical position of nose and its width,

- vertical position of mouth, its width, and its height,

- vertical position and heights of eyebrows over eye center,

- 11 radii that describe the form of the chin,

- width of face at nose bottom edge,

- width of face at center of eyes and nose.

Quelle: www.markus-hofmann.de

7. Introduction to Signal Processing 

7.3 Application Examples

22 features used 

for face detection.

Vertical and horizontal 

edge-image
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Industrial Image Processing

7. Introduction to Signal Processing 

7.3 Application Examples

Supervision of quality welding line

Component measurement 

to supervise tolerances

Camera

Camera
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Image Compression Image 279 x 356 pixel: as *.tif (without loss): 394 kB

*.jpg (100%): 119 kB *.jpg (60%): 22 kB

7. Introduction to Signal Processing 

7.3 Application Examples
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Image Compression Image 279 x 356 pixel: as *.tif (without loss): 394 kB

*.jpg (100%): 119 kB *.jpg (20%): 10 kB

7. Introduction to Signal Processing 

7.3 Application Examples
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Image Compression Image 279 x 356 pixel: as *.tif (without loss): 394 kB

*.jpg (100%): 119 kB *.jpg (10%): 5,4 kB

7. Introduction to Signal Processing 

7.3 Application Examples
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Image Compression Image 279 x 356 pixel: as *.tif (without loss): 394 kB

*.jpg (100%): 119 kB *.jpg (2%): 2,1 kB

7. Introduction to Signal Processing 

7.3 Application Examples
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Process Automat. for Waste Water Plants

• Graphic description of the plant

• Measurement of many process quantities

- temperatures

- flow rates

- concentrations

• Measurement of disturbances

• Logging of all value for measurements, 

manipulated and control variables

• Control of many quantities

• Supervision of limits

• Sensor fault diagnosis

• Optimizat. of profiles for desired values

• Manual fine tuning via control system

7. Introduction to Signal Processing 

7.3 Application Examples
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Suppression of Disturbances

Example:

How to design a filter that fulfills its task (disturbance suppression) well? 

• What does “well” mean? → Criterion needed!

• Structure of the filters: linear/nonlinear, FIR/IIR, order, ... to be determined.

• Parameters of the filter to be determined. 

• Prior knowledge about the disturbance is required:

- kind: stochastic or deterministic 

- frequency range: single frequencies, certain frequency bands, ...

7. Introduction to Signal Processing 

7.3 Application Examples

Speed
Filter

Engine

test stand

50 Hz disturbance

through power line

Measurement as close as possible 

to „speed“

Goal: Desired signal „speed“ 

can pass (almost) unchanged 

but disturbance is suppressed.
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Detection of Damages in Bearings by Analysis of Structure-Borne Sound

• Humans/experts often are able to detect faults in machines by their sound. Even emerging 

faults can be detected early.

• Characteristic features can be found in the spectrum of the sound signal. 

• Automatic methods for calculating and analyzing the sound spectrum are required!

7. Introduction to Signal Processing 

7.3 Application Examples

Sound
Frequency

analysis

no

damage

emerging

damage

advanced

damage

Sound spectrum
Bearing damage?
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Notch Filter in Position Control in Aeronautics

Notch filter band-stop filter that address a very small frequency range. They are often used to 

remove frequencies that otherwise would harm the system., e.g.:

• Ship control: Elimination of disturbances caused by periodic waves. 

• Control of  planes, solar panels, and other weakly damped structures (light construction 

becomes more important in almost every application). 

• TV- and radio receiver: Interfering and disturbing frequencies are filtered.

Control System With Incorporated Notch Filter for Damping of Ressonances

7. Introduction to Signal Processing 

7.3 Application Examples

Controller
Notch

Filter
Plant
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Example: Control of a Read/ 

Write Head of a Hard Disk

• Improvement of the

frequency characteristics 

of the open loop.

• Notch filter at 4 kHz

7. Introduction to Signal Processing 

7.3 Application Examples

+ Notch

filter

Strong damping at

4 kHz pushes 

amplitude response 

down and increases 

the amplitude margin!

4 kHz 4 kHz

4 kHz

339 Hz 628 Hz
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Example:

Control of Space Shuttle

Source: „Flight Control Overview of STS-88, 

the First Space Station Assembly Flight“ 

by R. Hall, K. Kirchwey, M. Martin, G. Rosch, 

D. Zimpfer, AAS-99-371

7. Introduction to Signal Processing 

7.3 Application Examples

Resonances in the

dynamics of the shuttle

Notch filter suppresses 

these frequencies
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In German

Wendemuth A.: „Grundlagen der digitalen Signalverarbeitung“, Springer, 2004, 268 S. 

Werner M.; „Digitale Signalverarbeitung mit MATLAB: Grundkurs mit 16 ausführlichen 

Versuchen“, 10. Ed., Vieweg + Teubner, 2008, 294 S. 

Oppenheim A.V., Schafer R.W., Buck J.R.: „timeDiscrete Signalverarbeitung“, Pearson,

8. Ed., 2004, 1040 S. 

In English

Oppenheim A.V., Schafer R.W., Buck J.R.: „Discrete-Time Signal Processing“, Prentice-

Hall, 9. Ed., 2008, 950 p. 

Ifeachor E., Jervis B.: „Digital Signal Processing: A Practical Approach“, Prentice-Hall, 

8. Ed., 2001, 960 p. 
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8. Time-Discrete Systems and Signals
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8. Time-Discrete Systems and Signals (Fundamentals: Mainly Home Study)

8.1  Time-Discrete Signals

8.2  Difference Equations

8.3  Z-Transform

8.4  Transfer Functions

8. Time-Discrete Systems and Signals

Contents of Chapter 8
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Equidistant Sampling of a Time-Continuous Signal With Sampling Time T0

8. Time-Discrete Systems and Signals

8.1 Time-Discrete Signals
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continuous time t [sec]

discrete time k

Sampling at the time steps 

t = kT0

T0 = 3 sec

u(t)

u(k) u(1)
u(0)

u(2)

u(–1)

Sequence: {u(k)} = {..., 0, 0, 0, 0.26, 0.45, 0.59, ...}

k =  ..., -2, -1, 0,    1,      2,       3, ... 

T0
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Unit Impulse and Unit Step

The unit impulse in discrete time is called Kronecker delta and has height 1. This is in 

contrast to the continuous-time Dirac impulse which has infinite height. Therefore the 

Kronecker delta can indeed be realized in practice, while the Dirac impulse is only a 

theoretical idealization (or limit). If a Kronecker delta is fed to a D/A converter the output’s 

length is 1 sampling interval and its energy is proportional to T0. 

The discrete-time unit step simply corresponds to the continuous-time unit step sampled 

with T0. During the 1. sample the unit step          and the delta impulse  are identical!

Connection:

This corresponds to

8. Time-Discrete Systems and Signals

8.1 Time-Discrete Signals

k1 2 3 4 50–1–2

1

k1 2 3 4 50–1–2

1 D/A converter

with hold

t0–2T0

1

3T0 5T0T0

area = energy = T0

Paul Dirac, 1902-1984 
(www.wikepedia.org)

Leopold Kronecker, 1823-1891
(www.wikepedia.org)
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time shift operator

8. Time-Discrete Systems and Signals

8.1 Time-Discrete Signals
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Up-Sampling and Down-Sampling

If the sampling rate of an already time-discrete sampled signal shall be changed the 

following operations are required:

• Down-Sampling: Increase of sampling time by a factor of M.

• Up-Sampling: Decrease of sampling time by a factor of M. 

These operations are needed to work with differently sampled signals (multi-rate systems) in 

order to synchronize them compress the data. Commonly the sampling time is chosen very 

small to make sure that the sampling theorem is not violated. However such an approach 

creates huge amounts of data and causes problems with numerical accuracy, particularly in 

control. Therefore, in a second step, 

these signals can be down-sampled. 

8. Time-Discrete Systems and Signals

8.1 Time-Discrete Signals

↓M

↑M

M = 2

k1 2 3 4 50 6

k1 2 30

k1 2 3 4 50 6 8 9 10 11 127 13

y(k) =
u(k / M )

0

ì
í
ï

îï

k = 0,±M ,±2M ,…

otherwise

y(k) = u(kM)
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Aliasing With Down-Sampling

During sampling of a continuous-time signal aliasing arises if the sampling theorem is 

violated, i.e., the sampling frequency f0 is not larger the maximal signal frequency fmax. The 

same is true for sampling an already sampled signal, i.e., down-sampling. Thus, before

down-sampling it is important to run an anti-aliasing filter that ensures no frequency 

component above f0/2 (new f0) is inside the signal. In this case, the anti-aliasing filter needs 

to be a digital filter (see Chapter 10)!

8. Time-Discrete Systems and Signals

8.1 Time-Discrete Signals
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Differential Equations → Difference Equations

For small sampling times T0 → 0 a differential equation can be approximated by a difference 

equation (discretization) by approximating a differential quotient by a difference quotient: 

This approximation has significant drawbacks for T0 ≫ 0. A differential equation of 

order n (m ≤ n)

corresponds to a difference equation of order n: 

While the simulation of continuous-time systems requires integrations, a discrete-time 

system “only” needs the solution of algebraic equations, i.e., simply the isolation of y(k): 

Knowledge about the previous time steps k−1, k−2, ..., k−n is required. 

8. Time-Discrete Systems and Signals

8.2 Difference Equations
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Moving Average (MA) System

The output is a weighted average of the previous input signal:

Such a system is also called FIR (finite impulse response) because its output to an impulse 

inputs decays to zero after m steps.

Autoregressive (AR) System

The output is a weighted average the previous output signal

Such a system also called IIR (infinite impulse response) because its output to an impulse 

inputs never decays to zero.

Moving Average Autoregressive (ARMA) System

A combination of a MA and an AR system. This corresponds to the general linear form. 

Because it includes AR terms it possesses an IIR.  

8. Time-Discrete Systems and Signals

8.2 Difference Equations
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Homogeneous Solution: Simulation for u(k) = 0

If the input is u(k) = 0 then the output depends only on the initial values. The most simple 

example is the following difference equation of first order with b1 = 0:

If the initial condition y(–1) is known the output y(k) can be calculated for all times k:

For difference equations of order n with n > 1 it can be calculated correspondingly. However, 

in the general case n initial values y(–1), y(–2), ..., y(–n) are required because y(k) depends on 

y(k–1), y(k–2), ..., y(k–n). 

8. Time-Discrete Systems and Signals

8.2 Difference Equations

Stable:    |a1| < 1

Unstable: |a1| > 1

Marg. stable: |a1| = 1
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Stability of a Difference Equation of 1. Order

We can distinguish between three cases:

If a1 > 0 we obtain alternating (in turn positive and negative) solutions. It does not exist any 

analogue correspondence for time-continuous systems:

8. Time-Discrete Systems and Signals

8.2 Difference Equations
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Impulse Response

For u(k) = 𝛿K(k) the generated output y(k) is called the impulse response. Like for time-

continuous systems the impulse response characterizes completely the dynamic behavior of 

any linear system because the impulse contains all frequencies with equal power. In contrast 

to the continuous time case, it is a sequence not a continuous function. For simplicity, we 

assume all initial condition are = 0, thus the homogenous solution part is zero. For a first 

order difference equation with b1 = 0 we get:

In the homogenous case we have y(–1) = 0 and thus the output y(k) for all times k becomes: 

We obtain the same power law as in the homogenous case. 

8. Time-Discrete Systems and Signals

8.2 Difference Equations
otherwise
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Step Response

For u(k) = 𝜎(k) the generated output y(k) is called the step response. Like for time-

continuous systems the step response is the most intuitive way to find the picture the 

dynamics. For simplicity, we assume all initial conditions are = 0, thus the homogenous 

solution part is zero. For a first order difference equation with b1 = 0 we get:

In the homogenous case we have y(–1) = 0 and thus the output y(k) for all times k becomes: 

(identical with the impulse response)

8. Time-Discrete Systems and Signals

8.2 Difference Equations
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Relationship Between Impulse and Step Responses

Remember: In continuous time the following relationship holds between the impulse 

response g(t) and the step response h(t): 

In discrete time the relationships are correspondingly: 

Difference replace differentials, sums replace integrals. In discrete time the handling is much 

simpler with the help of a computer. However, in this form, the number of sum terms 

(summands) increases with k! Therefore we look for some other way to calculate the output 

of a discrete-time system. 

8. Time-Discrete Systems and Signals

8.2 Difference Equations
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Convolution Sum

The impulse response sequence contains all properties of a linear dynamic system in discrete 

time. For the time-continuous case the output in response to an arbitrary input signal u(t) can 

be calculated by the convolution integral:

In discrete time the corresponding expression is the convolution sum. With it the output y(k) 

to every input signal u(k) can be calculated: 

Usually we assume that for negative times the input is equal to zero, i.e., u(k) = 0 for k < 0. 

This means that the first sum must be calculated only up to i = k or alternatively the second 

sum has to start at i = 0. Additionally, if the system is causal, i.e., g(k) = 0 for k < 0, then the 

first sum can start at i = 0 and the second sum run up to i = k.

8. Time-Discrete Systems and Signals

8.2 Difference Equations

u(k) y(k)
g(k)

u(t) y(t)
g(t)
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Convolution Sum (simplified)

With these simplifications the first sum can be written as:

In the second sum the order is reverse:

Obviously, both sums are identical! With the help of a computer the sums are very fast and 

easy to calculate. It is much easier than the convolution integral in the continuous-time case.

WARNING: With increasing simulation times k → ∞ the number of terms in the sum 

increases linearly. If the impulse response g(k) is of infinite length (IIR) then the 

computational and storage demand increases without limits! This means that we have to find 

out a way how to calculate the output of IIR systems in a more practical and efficient 

manner. For systems with finite impulse responses of length L (FIR)  the number of terms in 

the sum is limited to L. 

8. Time-Discrete Systems and Signals

8.2 Difference Equations
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Convolution with an Impulse

In continuous time the impulse 𝛿 (t) has the sifting property, i.e., a convolution with a Dirac 

impulse yields the signal itself. The Dirac impulse is the neutral element in a convolution like 

“0” in addition or “1” in multiplication. For the calculation of the impulse response we 

choose u(t) = 𝛿 (t) and this yields:

In discrete time we choose u(k) = 𝛿K(k) and calculate with the convolution sum: 

This is exactly the corresponding result as in the time-

continuous case. 

8. Time-Discrete Systems and Signals

8.2 Difference Equations

= 1 for k = i



Prof. Dr.-Ing. 

Oliver Nelles

Page 86

University

of Siegen

Hilbert‘s Hotel

This hotel has and infinite number of rooms. It illustrates the understanding of infinite sets.  

If all rooms are taken, is a room available for additional guests or for 2 of for ∞?

Source: http://www.mathcs.org/analysis/reals/infinity/graphics/hilberts_hotel.jpg

8. Time-Discrete Systems and Signals

8.2 Difference Equations
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Exponential Relationships: Not intuitive!

Q: If we fold a piece of paper (thickness = 0.1 mm) 

50 times, doubling the thickness with each fold:

How high is the stack?

A: From Earth to Mars = 100 mio. meter. 

Q: If we stack coins, 

one stack on each field of a chess board: 

1 coin on chess field 1, 

2 coin on chess field 2, 

4 coin on chess field 3,

8 coin on chess field 4, ...

How high is the stack on chess field 64?

A: Up to α-Centauri = 4 light years.

A human can calculate these numbers but cannot guess them! Human intuition fails with 

exponential relationships. That make them potentially dangerous (extinction of species).

8. Time-Discrete Systems and Signals

8.2 Difference Equations

Source: 

http://www.wdr.de/tv/kopfball/sendungsbeitrae

ge/2011/1120/papier-falten.jsp

Source: https://www.youtube.com/watch?v=0mOZZLJZwpw
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Geometric Series

In the previous slides geometric sequences or series play an important role. A geometric 

series is a sum of exponentially staged numbers:

The following trick allows to calculate this infinite sum exactly: 

Thus, for |x| < 1 (for |x| ≥ 1 the series diverges to infinity):

An extended formula can be derived for finite sums:

8. Time-Discrete Systems and Signals

8.2 Difference Equations
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Description of Sampled Signals

An A/D converter samples a continuous-time signal uc(t) and thereby creates a time-discrete 

signal u(k) = uc(kT0). The sampling is performed at time T1. It can be mathematically 

modeled as a multiplication of uc(t) with Dirac impulses at times T1, i.e., 𝛿 (t–T1): 

If this sampling is performed periodically at the time steps kT0

then the continuous signal uc(t) must be multiplied (modulated) 

with a train of impulses: 

8. Time-Discrete Systems and Signals

8.3 Z-Transform

A/D Computer

t

us(t)

k

u(k)

u(k)
Sensor

uc(t) us(t)

t

T0

uc(t)

Abbreviation: u(k) = uc(kT0)
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Interpretation of the Train of Dirac Impulses

The continuous-time description of a sampled signal as modulated impulse train is given by:

or ,  if u(k) = 0 for k < 0

These formulas represent only a idealized model because in reality the impulses are not of 

infinite height, of course. These Dirac impulses do not exist in reality. But they associate a 

finite energy to each sampled signal point. Thus, also the multiplication with u(k) makes sense. 

Mathematical Model of the Sampling: 

8. Time-Discrete Systems and Signals

8.3 Z-Transform

uc(t) us(t)

𝛿 (t–3T0)𝛿 (t+2T0)
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Laplace Transform of the Sampled Signal

If we apply the Laplace transform to a sampled signal the so-called z-transform originates. 

The Laplace transform of a continuous-time signal u(t) is defined as: 

Laplace-Transformation: 

If we choose for u(t) a sampled signal, i.e., u(t) = us(t) then we obtain:

This gives us: 

8. Time-Discrete Systems and Signals

8.3 Z-Transform

Remember: 
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Laplace Transform → z-Transform

With the abbreviation 

the Laplace transform of a sampled system is called the z-transform (the index “s“ can be 

skipped because it is clear by the variable denotation “z” that we deal with discrete time): 

z-Transform: 

Frequency Response

To calculate the frequency response of a continuous-time system the Laplace variable s is 

evaluated on the imaginary axis in the s-plane by setting s = i𝜔 for 𝜔 = 0 ... ∞. The frequency 

response for a discrete-time system can be calculated in the same way. Correspondingly, the 

z-variable becomes                 . For 𝜔 = 0 ... ∞ we run along the unit circle in the z-plane. It 

would be circled infinite many times. Thus the frequency response is periodic which is caused 

by the sampling! But according to the sampling theorem the frequency has to be limited to 

𝜔T0= 𝜋. So we circle only once! (Symmetry with respect to ±𝜔!)

8. Time-Discrete Systems and Signals

8.3 Z-Transform
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Derivation of Periodicity of the Frequency Response

We want to consider the periodicity of the frequency response in more detail. The frequency 

response of a discrete time system                  is:

With the facts                  for n = 0, ±1, ± 2, ... and                    we can show

that the frequency response repeats all multiples of 𝜔0 (each time we circle around the unit 

circle in the z-plane). This means the frequency response is a periodic function. It is identical 

for: 𝜔 , 𝜔 ± 𝜔0 , 𝜔 ± 2𝜔0 , 𝜔 ± 3𝜔0 , ...

8. Time-Discrete Systems and Signals

8.3 Z-Transform
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Illustration of the Periodicity of the Frequency Response

• The shadows spectra around the multiples of 𝜔0

are created by the sampling with frequency 𝜔0. 

• The Im-axis between –i𝜔0/2 and i𝜔0/2 in the s-plane

is mapped into the unit circle in the z-plane. 

• The whole information in a time-discrete 

system is contained in the frequency 

response along the unit circle between 

the frequencies 𝜔 = 0 and 𝜔 = 𝜔0/2; 

in the part of the unit circle 𝜔 = –𝜔0/2 ... 0 it is symmetrical!

8. Time-Discrete Systems and Signals

8.3 Z-Transform

Main Spectrum Shadow Spectra

......

z-Plane

Unit Circle

s-Plane
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Sampling Theorem and Aliasing

• If the maximal signal frequency

𝜔max is smaller than the half 

sampling frequency 𝜔0/2, the 

continuous-time signal can be

reconstructed perfectly from the

sampled one. No information is

lost because main and shadow

spectra do not overlap. We have

no aliasing. 

• If 𝜔max > 𝜔0/2 the main and shadow

spectra overlap. We consequently

have aliasing which deteriorates 

the original signal. A perfect 

reconstruction is impossible. 

8. Time-Discrete Systems and Signals

8.3 Z-Transform

......

......

......

𝜔max

𝜔max

𝜔max

Sampling fast enough: no aliasing!

Sampling too slow: Aliasing!

Limit case
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Z-Transform of Impulse and Step

The impulse u(k) = 𝛿K(k) has the following z-transform: 

u(0) = 1, u(1) = 0, u(2) = 0, ...  → 

An impulse delayed by one time step u(k) = 𝛿K(k–1) has the following z-transform: 

u(0) = 0, u(1) = 1, u(2) = 0, ...  → 

An impulse delayed by d time steps u(k) = 𝛿K(k–d) has the following z-transform: 

u(0) = 0, ..., u(d–1) = 0, u(d) = 1, u(d+1) = 0, ...  → 

The unit step u(k) = 𝜎 (k) has the following z-transform: 

u(0) = 1, u(1) = 1, u(2) = 1, ...  → 

An unit step delayed by d time steps u(k) = 𝜎 (k–d) has the following z-transform: 

u(0) = 0, ..., u(d–1) = 0, u(d) = 1, u(d+1) = 1, ...  → 

The following expressions are identical: 

8. Time-Discrete Systems and Signals

8.3 Z-Transform
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Z-Transform of Geometric Sequences

The geometric sequence u(k) = ak with any number a commonly occurs because it describes 

an exponential behavior. This sequence has the following z-transform: 

u(0) = a0, u(1) = a1, u(2) = a2, u(3) = a3, ...  → 

Further conversions lead to the standard form of a geometric series: 

This infinite geometric series can be expressed simply by:

This allows to formulate infinite series as one 

simple expression. The way back can be carried

out by long division.

8. Time-Discrete Systems and Signals

8.3 Z-Transform

Long Division:

z : (z–a) =  1 + az–1 + a2z–2 + ... 

z–a

a

a–a2z–1

a2z–1

a2z–1–a3z–2

a3z–2
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Important Properties of the z-Transform

For limit considerations the cases t → 0 (k → 0) or 

t → ∞ (k → ∞) are evaluated. In the frequency range (s or z) this means: 

t → 0:  s → ∞ t → ∞:  s → 0

k → 0:  z → ∞ k → ∞:  z → 1

Start Value

The start value of a sequence can be calculated from its z-transform by:

End Value

The end value (if it exists!) of a sequence can be calculated from its z-transform by:

8. Time-Discrete Systems and Signals

8.3 Z-Transform
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Backward Shift (To the Right)

A dead time Tt = dT0 is equivalent to a backward shift (shift to the right) by d samples. This 

operation corresponds to the Laplace transform          . In the z-domain this means: 

Forward Shift (To the Left)

A prediction of time Tp = dT0 is equivalent to a forward shift (shift to the left) by d samples. 

This operation corresponds to the Laplace transform         . In the z-domain this means:  

8. Time-Discrete Systems and Signals

8.3 Z-Transform

1 k0 2

u(k)

43 5 6 1 k0 2 43 5 6

u(k+1)

1 k0 2

u(k)

43 5 6

u(k–1)

1 k0 2 43 5 6 7

–1
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Difference / Differentiation

The difference of two subsequently sampled values divided by the sampling time (that passed 

between their measurement) is called the difference of first order and corresponds approxi–

mately to a differentiation. In the s-domain it is realized by 

a multiplication with s. In the z-domain this is given by:

Summation / Integration

The sum of all sampled values starting from time 0 multiplied by the sampling time is equal 

to  the lower sum approximation of the area below the samples. That approximately equals the 

integration. In the s-domain this is realized by a division by s. In the z-domain this 

corresponds to: 

8. Time-Discrete Systems and Signals

8.3 Z-Transform

kT0(k–1)T0

u(k)

t

T0

u(k–1)
u(k) – u(k–1)

kT0T0
t0 2T0

u(i)

u(i)
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Transfer Function and Impulse Response

The same relationship exists for discrete-time systems between a transfer function in the z-

domain and the impulse response sequence as for continuous-time systems between a 

transfer function in the s-domain and the impulse response function:

In G(z) as in g(k) all properties of a linear dynamic system are contained. For calculation of 

the system output over time only the system input over time and either G(z) or g(k) are 

required. 

The multiplication in the z-domain corresponds to the convolution sum in the discrete time 

domain as the convolution integral in the continuous time domain.

8. Time-Discrete Systems and Signals

8.4 Transfer Functions

Multiplication

Convolution
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Transfer Function and Impulse Response

We choose a Kronecker-delta impulse as input u(k) = 𝛿K(k) or U(z) = 1, respectively. This 

yields the impulse response as output: 

or

For a general impulse response sequence

the corresponding transfer function is: 

If the impulse response sequence g(k) is of finite length the same is true for the number of 

terms in G(z). If g(k) is of infinite length, however, the same is also true for G(z) and an 

easier-to-handle alternative has to be found to avoid an infinite sum.

8. Time-Discrete Systems and Signals

8.4 Transfer Functions
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Example: Transformation Via Impulse Response Invariance 

A common method for the transformation from the continuous to the discrete world is to 

demand identical impulse responses. This is popular for digital filter design. We demand that 

the discrete impulse response sequence is identical to the sampled continuous impulse 

response function. 

continuous time:

discrete time: 

For a first order system this requires a impulse response of: 

8. Time-Discrete Systems and Signals

8.4 Transfer Functions
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For K = 5 and T = 5 sec this results in:                      . If the sampling time is chosen to 

T0 = 1 sec then the demand for an impulse response invariance yields:

Note that this is a geometric sequence!

This can also be written with the help of delayed delta impulses:

We can easily obtain the corresponding transfer function in the z-domain:

Because this infinite series is difficult to handle we compute the explicit sum with the formula 

for infinite geometric series with x = 0.82z–1:

Gain: 

Therefore this G(z) corresponds to the G(s) in the sense of impulse response invariance.

8. Time-Discrete Systems and Signals

8.4 Transfer Functions
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Example: Transformation Via Step Response Invariance

Another popular method for transformation from continuous to discrete time is the step 

response invariance. It yields a different result than impulse response invariance. The  

denominators (and thus poles) are identical but the numerators (and thus zeros) and the gains 

are different:

Gain:

The choice of the criterion distinguishes all type of such transformations. An invariance of 

the impulse responses accounts for all frequencies in the same way because all frequencies 

are weighted equally (constant spectrum of an impulse). Therefore it is commonly applied 

for filter design. 

An invariance of the step response, however, weights lower frequencies stronger and is the 

appropriate choice for control applications where the manipulated variable typically is of 

stepwise character. It also ensures a correct transformation of the gain. 

8. Time-Discrete Systems and Signals

8.4 Transfer Functions
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Transfer Function→ Difference Equation

Consider a general transfer function of numerator degree m and denominator degree n:

The coefficient a0 can set to 1 through cancelation. This yields the following difference 

equation in the time-domain:

A dead time of Tt = dT0 causes a backward shift by d steps:

In contrast to the s-domain, a dead time in the z-domain still keeps the transfer function of 

rational type (numerator / denominator)!

8. Time-Discrete Systems and Signals

8.4 Transfer Functions
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If the transfer function is written in form of positive powers in z first can be converted in a 

form with negative powers, i.e.,  z–1, and afterwards it can be transformed into the time 

domain.

WARNING: These are different n and m values compared to the previous slide. 

For n = m this transfer function is identical to the one on the previous slide. For n > m a dead 

time can be factored out in the numerator:

with d = n – m. The case m > n does not occur (negative dead time → non-causal)!

8. Time-Discrete Systems and Signals

8.4 Transfer Functions
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Causality and Properness

A transfer function of the form 

has numerator degree m and denominator degree n which are positive integers. G(z) is causal. 

A transfer function of the form 

requires: denominator degree ≥ numerator degree or n ≥ m. If this requirement is met then 

G(z) is causal. However, if m > n, then G(z) is non-causal negative dead times arise, i.e., 

values in the future have to be predicted.

The condition denominator degree ≥ numerator degree is known from the s-domain. There it is 

a condition for properness or realizability, i.e., avoiding pure differentiators! For time-

discrete systems such limitations do not exist. Every causal system can be realized.

8. Time-Discrete Systems and Signals

8.4 Transfer Functions
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Proper / Strictly Proper

For continuous-time systems the difference between a proper and strictly proper system can 

be directly seen in the transfer function. 

• Proper: numerator degree ≤ denominator degree: m ≤ n

• Strictly proper: numerator degree < denominator degree: m < n

In discrete time a system is proper but not strictly proper (= “sprungfähig”) 

• for transfer functions in z-form (only positive powers of z): 

numerator degree m = denominator degree n

• for transfer functions in z–1-form (only negative powers of z): b0 ≠ 0

Only if b0 exists the input u(k) directly influences the output y(k). If b0 = 0 then a change in 

the input is delayed by one or more steps until u(k–1) or later until it affects the output y(k). 

Terminology: A system follows the difference equation:

This can be interpreted either a dead time of 1 or as a not strictly proper system:

8. Time-Discrete Systems and Signals

8.4 Transfer Functions
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Difference Equation → Transfer Function

In order to transform a difference equation into the z-domain, first the equation is rewritten 

such that y(k) is the newest output value. Then the transformation into the z-domain requires 

only operators with negative powers like  z–i:

Example: 

1.)  New starting time step:  

2.)  Time transformation such that this value is mapped to y(k): k := k–3

3.)  Transformation into the z-domain, separation of Y(z) and U(z), division to obtain 

transfer function: 

8. Time-Discrete Systems and Signals

8.4 Transfer Functions
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IIR (Infinite Impulse Response) 

All impulse response functions g(t) in continuous time are of infinite length. Typically they 

decay to zero with exponential behavior. By sampling a sequence g(k) of infinite length 

results. Such systems are named IIR (infinite impulse response).

IIR systems have a transfer function with non-trivial denominator, i.e., the denominator is 

more complex than zn. This yields at least two different delayed versions of y(k) in the 

corresponding difference equation. A consequence is that this difference equation can only 

be calculated recursively!

Examples: 

8. Time-Discrete Systems and Signals

8.4 Transfer Functions

non-causal! non-causal!
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FIR (Finite Impulse Response)

Systems with impulse sequences g(k) of finite length are called FIR systems (finite impulse 

response). They only exist in discrete time! They have no (exact) equivalent in continuous 

time. However, if the length of an FIR system is allowed to be very long it might be possible 

to approximate a stable IIR system by a long FIR system. Marginally stable or unstable IIR 

systems, in principle, cannot be approximated by an FIR system because their impulse 

response does not converge to 0. 

FIR systems have a transfer function without denominator or with a denominator of type zm. 

A consequence is only one y-term in the difference equation (feedforward). 

Examples: 

8. Time-Discrete Systems and Signals

8.4 Transfer Functions

non-causal!

non-causal!
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Pole-Zero-Form of a Transfer Function

Up to here we have considered transfer functions in explicit polynomial form. However, a 

factorized form is often useful because the poles and zeros directly appear in the denominator 

and numerator. It is simpler to write it in positive powers of z: 

The gain of G(z) can be calculated according to the final value limit theorem of the  

z-transform by letting z = 1: 

Gain: 

The poles pi and zeros ni can be transformed into the s-domain via                     and can be 

interpreted accordingly. 

Immediately conditions for stability and phase minimality for poles and zeros result in the z-

domain.

8. Time-Discrete Systems and Signals

8.4 Transfer Functions
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Relation Between s-Plane and z-Plane

• The stability region “left half s-plane” is mapped to the inner region inside the unit circle 

in the z-plane.

• The imaginary axis of the s-plane is mapped to the unit circle in the z-plane.

• The unstable region “right half s-plane“ is mapped to the outer region around the unit 

circle in the z-plane.

8. Time-Discrete Systems and Signals

8.4 Transfer Functions

s-Plane z-Plane

Re Re

Im Im

max. possible frequency

before aliasing occurs!
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Stability

• A transfer function in the z-domain is stable if all poles are inside the unit circle. 

• If one or more poles are on the unit circle (no multiple poles!) and all 

other poles are inside the unit circle, the system is marginally stable. 

• If at least one pole exists outside the unit circle or a multiple pole is on the unit 

circle, then the system is unstable.

• The stability properties of a transfer function in the s-domain keep valid for 

transformation in the z-domain because the poles transform according to               .

Phase Minimality

• A system has minimum phase if it has only stable and marginally stable poles and zeros. 

The location of the zeros typically changes during the transformation from the s-domain into 

the z-domain. Therefore the property “minimum phase” generally is not preserved during the 

transformation.

8. Time-Discrete Systems and Signals

8.4 Transfer Functions
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Example: All-Pass in z-Domain

An all-pass is characterized by an amplitude response equal to 1 for all frequencies. Because 

poles and zeros have the same absolute values, just opposite signs, they cancel in the 

magnitude. Of course the phase is affected. A simple first order all-pass in the s-domain is:

Pole: (stable)

Zero: (unstable)

The corresponding all-pass in the z-domain has a stable pole and the inverse zero mirrored at 

the unit circle. It is not the direct transformation form s to z!

Pole: (stable)

Zero: (unstable)

The amplitude response is given by                 : 

8. Time-Discrete Systems and Signals

8.4 Transfer Functions
s-Plane z-Plane

with

with
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8. Time-Discrete Systems and Signals

Chapter 8: Relevant MATLAB Commands MATLAB

Change of Sampling Rate:

decimate(x,r);1 % Reduces the sampling rate of signals x

% by a factor of r with help of a low-pass 

% filter.

upsample(x,n);1 % Increases the sampling rate by a factor of n,  

% by inserting zeros in between the sample 

% points

% E.g.:  x = [1 2 3];

% Z.B.:  y = upsample(x,3);

% y = [1 0 0 2 0 0 3 0 0]

downsample(x,n);1 % Reduction of sampling rate. Only every n-th

% sample is carried over.

% E.g.:  x = [1 2 3 4 5 6 7 8 9 10];

%        y = downsample(x,3);

%        y = [1  4  7  10]
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8. Time-Discrete Systems and Signals

Chapter 8: Relevant MATLAB Commands MATLAB

resample(x,p,q);1 % Changes the sampling rate of signal vector x 

% by the rational factor p/q

Impulse Response and Step Response:

impulse;2 % Calculates the impulse response of a linear 

% system

step;2 % Calculates the step response of a linear 

% system

Partial Fraction Expansion:

[r,p,k] = residuez(b,a);1 % Performs a partial fraction expansion

% with the ratio of numerator b(z) 

% and denominator a(z). 

% The inverse operation is also 

% possible. 

1 : Signal Processing Toolbox

2 : Control System Toolbox
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9. Transformation into the 

Frequency Domain
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9. Transformation of Signals in the Frequency Domain

9.1  Discrete Fourier Transform (DFT)

9.2  Extension: Fast Fourier Transform (FFT)

9.3  Frequency Analysis Via DFT

9.4  Leakage Effect and Windowing

9.5  Non-Stationary Signals und Short-Time-DFT

9.6  Outlook: Time-Frequency-Analysis

9.7  Outlook: Parametric Frequency Analysis

9. Transformation into the Frequency Domain

Contents of Chapter 9

Joseph Fourier, 1768-1830 
(www.wikepedia.org)C
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Fourier Series

9. Transformation into the Frequency Domain

9.1 Discrete Fourier Transform (DFT)

Source: ftp://ftp.ifn-

magdeburg.de/pub/MBLehre/sv06_13
0509-ftp.pdf
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9.1 Discrete Fourier Transform (DFT)

Standard concert pitch A4:  f0 = 440 Hz on different music instruments

9. Transformation into the Frequency Domain

Source: http://eitidaten.fh-

pforzheim.de/daten/mitarbeiter/blankenbach/vorlesungen/mathe_2/Fourier_Trafo_kurz_Folien.pdf
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9.1 Discrete Fourier Transform (DFT)

Fourier Series

• Decomposition of a periodic signal in its frequency components.

• Signal can be decomposed into an infinite sum of sine and cosine terms.

• Amplitude for each frequency 

indicates how strong this frequency 

is contained in the signal. 

• If non-periodic signals shall be dealt 

with: period length → ∞, 

basic oscillation → 0.

9. Transformation into the Frequency Domain
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9.1 Discrete Fourier Transform (DFT)

Fourier Transform

• Extension of the Fourier series for non-periodic signals

• Period length T → ∞, basic oscillation 𝜔 → 0.

• The spectrum is not composed of discrete frequencies n∙𝜔0 (i.e., multiples of the 

basic oscillation). Rather it consists of arbitrary many frequencies (i.e., a real number) − 

the so-called amplitude density spectrum (similar for the phase).

9. Transformation into the Frequency Domain
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Signals contain many different frequencies.

A transformation from the time domain to 

the frequency domain allows to examine 

how strong which frequencies are contained 

in the signal.  

This is a powerful tool for the analysis 

further processing of signals. 

9. Transformation into the Frequency Domain
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9.1 Discrete Fourier Transform (DFT)
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Fourier Transform

• Time continuous

• Frequency continuous

Time-Discrete Fourier Transform 

• Time discrete: t = kT0

• Frequency continuous

Discrete Fourier Transform

• Time discrete N samples:

• Frequency discrete in N samples:

or

9. Transformation into the Frequency Domain

9.1 Discrete Fourier Transform (DFT)
Remember::

sampling frequency

sampling time

Für
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Properties

• Periodicity in the frequency range (see sampling theorem). 

Because the exp-function is periodic with i2𝜋:  

9. Transformation into the Frequency Domain

9.1 Discrete Fourier Transform (DFT)

N = 9
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N = 9

Interpretation of 

time and frequency axes:

E.g. for f0 = 50 Hz → T0 = 0.02 s

k = 4  →  t = 4∙0.02 s = 0.08 s

n = 4  →  f = 4/N∙50 Hz = 28.2 Hz
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Properties

• Periodicity in the time range. 

Because the 2𝜋-periodic exp-function also occurs in the backward transformation, in 

contrast to the continuous-time transform, for the DFT the time signal appears to be 

periodic. The discretization of the frequency axis causes this effect. 

9. Transformation into the Frequency Domain

9.1 Discrete Fourier Transform (DFT)

Discrete frequency n Discrete time k
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Properties

• If x(k) is real (normal case) then the amplitude response is an even function and the 

phase response is an odd function, i.e., both are determined completely by half of the 

points; the other half can be generated by mirroring: 

- N is even: N/2+1 points are required.

- N is odd: (N+1)/2 points are required.

Reason: The time signal x(k) contains only frequencies up to f0/2 (sampling theorem!) 

otherwise we would get aliasing. Therefore it only makes sense to display the frequency 

plot in the range                          or                    .  The part                           or

respectively                             or                        is redundant!

9. Transformation into the Frequency Domain

9.1 Discrete Fourier Transform (DFT)

Discrete frequency n
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N = 9(N+1)/2 = 5

This range contains no new 

information and can be 

generated by mirroring. 

Commonly therefore only the 

left range is displayed!
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Further properties of the DFT are already known from the continuous 

Fourier Transform:

• Linearity:

• Time shift:

• Frequency shift:

• Convolution:

• Multiplication:

Inverse DFT

For completeness, here the formula for the transformation back into the time-domain:

9. Transformation into the Frequency Domain

9.1 Discrete Fourier Transform (DFT)
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Implementation of the DFT

with

This can be written for n = 0, 1, 2, ... N–1 as the following equation system:

To carry out this matrix-vector multiplication, the following amount of computation is 

necessary:

• N 2 complex multiplications

• N 2 complex additions

9. Transformation into the Frequency Domain

9.1 Discrete Fourier Transform (DFT)

Abbreviation:
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Idea for the Fast Fourier Transform (FFT)

• Efficient implementation of the DFT with identical result.

• Split of an DFT of size N (number of data points) in 2 DFTs of size N/2 by a trick. 

• Further split of 2 DFTs of size N/2 in 4 DFTs of size N/4, etc.

• These splits are continued up to N/2s = 1; s represent the number of splits necessary.

• Works only if N = 2s, i.e., a power of 2. If this is not the case, the signal x(k) is filled with 

zeros such that the number of points is equal to 2s (zero padding). 

Complexity of the FFT

• Only N ld(N) complex multiplications and addition are required. 

• Example: N = 1.024

- computational demand DFT ~ N 2 ≈ 1.000.000

- computational demand FFT ~ N ld(N) = 1024∙10 ≈ 10.000  → Factor 100 savings!

9. Transformation into the Frequency Domain

9.2 Extension: Fast Fourier Transform (FFT)

Info: ld() is the logarithm to base 2



Prof. Dr.-Ing. 

Oliver Nelles

Page 133

University

of Siegen

0 5 10 15 20 25 30 35

0

1

2

3

4

5

6

7

8

9

10

Choice for the amount of data N 

9. Transformation into the Frequency Domain

9.3 Frequency Analysis Via DFT

0 2 4 6 8 10 12 14 16 18

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14 16 18

0

1

2

3

4

5

6

7

8

9

10

0 5 10 15 20 25 30

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

0

1

2

3

4

5

6

7

8

9

10

0 5 10 15 20 25 30 35

0

0.2

0.4

0.6

0.8

1

Discrete frequency n

A
m

p
li

tu
d

e 
o

f
X

(n
)

Discrete frequency n

A
m

p
li

tu
d

e 
o

f
X

(n
)

Discrete frequency n
A

m
p

li
tu

d
e 

o
f

X
(n

)

Discrete time k

T
im

e 
si

g
n

al
x(

k)

Discrete time k

ti
m

es
ig

n
al

x(
k)

Discrete time k

ti
m

es
ig

n
al

x(
k)

N = 20 N = 32 N = 40

A
m

p
li

tu
d

e 
o

f
X

(n
)

A
m

p
li

tu
d

e 
o

f
X

(n
)

T
im

e 
si

g
n

al
x(

k)

T
im

e 
si

g
n

al
x(

k)



Prof. Dr.-Ing. 

Oliver Nelles

Page 134

University

of Siegen

Observations:

• All time signals are chosen identically, only the number of zeros filled in vary, so that the 

total number of points are N = 20, 32, 40. 

• The resolution in the frequency domain depends on N. The frequency axes are scaled as 

follows:

- N = 20:

- N = 32: 

- N = 40:  

• A clever choice for N by zero padding can achieve frequency intervals         of desired 

size even if the original signal is shorter than N values. 

If a certain frequency       is interesting and the amplitude for this frequency is important 

to know with high accuracy, it should be exactly contained in the frequency discretization 

by an appropriate choice of N (see picket fence effect)!

9. Transformation into the Frequency Domain

9.3 Frequency Analysis Via DFT
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Observation:

• Doubling the number of points 

N = 20 → 40 doubles frequency resolution.

The DFT for N = 20 yields identical values

(for every second point) as the DFT for 

N = 40. 

Remark:

• The phase of X(n) sometimes is interesting,

as well. We focus on the amplitudes but an 

analysis of the phase can also be important. 

• MATLAB creates the plots shown in these lecture notes. 

fft() yields X(n) in the frequency range 0 to f0. 

• Commonly the upper half of the spectrum is omitted because it does not carry any 

additional information. Also a symmetric plot around the origin from –f0 /2 to +f0 /2 is 

popular.

9. Transformation into the Frequency Domain

9.3 Frequency Analysis Via DFT

Discrete frequency n (N = 40)
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Equivalent Types of Plots for the Spectrum

9. Transformation into the Frequency Domain

9.3 Frequency Analysis Via DFT
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Choice of Sampling Time T0 / Sampling Frequency f0

• The faster the signal is

sampled, the wider is its 

frequency range.

• In practice, the amplitudes

typically become smaller 

at higher frequencies. 

• As the sampling theorem 

tells us, the sampling

frequency should be 

chosen such that the 

highest significant signal

frequency lies below f0/2.

Otherwise we get aliasing!
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9. Transformation into the Frequency Domain

9.3 Frequency Analysis Via DFT
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DFT of Sin- or Cos-Type Signals (Complete Periods)

9. Transformation into the Frequency Domain

9.3 Frequency Analysis Via DFT
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Example:

Cos-type signals with 1, 2, 

5 complete periods! 
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Observations:

• The amplitude obtained from the DFT for the signal frequency is N/2 if the original 

signal had amplitude 1. It is clear that this number is proportional to the number of data 

points N because so many points have to be summed up. 

• Thus, the amplitude axes of the frequency response are commonly scaled with a 

factor 2/N to make the axes in the plot independent of N. 

9. Transformation into the Frequency Domain

9.3 Frequency Analysis Via DFT
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Observations:

• If the length N of the time signal is an exact multiple of the period length of an oscillation 

then the DFT reveals the amplitude of this oscillation exactly in the spectrum:

- The complete energy is concentrated on one peak (if we have just one oscillation).

- This peaks lies exactly at the correct frequency.

• Due to the linearity property of the DFT these facts are valid for an additive mixture of 

oscillations, as well. 

Example: Superposition of two oscillations at f2 = 2/32 f0 and f3 = 5/32 f0 :  

9. Transformation into the Frequency Domain

9.3 Frequency Analysis Via DFT
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Reason for the Exact Frequency Representation

1. If a time signal x(k) with k = 0, 1, ... N–1 

contains exactly M periods of a sin- or cos-

signal of duration T1 this holds: 

Thus the frequency f1 automatically is exactly

equal to one of the discrete frequencies of the DFT:

2. Due to periodicity of the complex exp-function the DFT “thinks” the signal repeats itself 

infinitely often, i.e., the original signal for k = 0, 1, ... N–1 is repeated for

k = N, N+1, ... 2N–1 and 

k = 2N, 2N+1, ... 3N–1, etc. Because the 

oscillation are full periods, they fit together

exactly at the points N, 2N, etc. (continuity).

9. Transformation into the Frequency Domain

9.3 Frequency Analysis Via DFT
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Lies between

n = 2 and n = 3.

DFT of incomplete sinus-type signals

• Typically it is not possible to choose N such that all included oscillations exhibit an 

integer multiple of periods. Reasons: 

- The period length of the interesting oscillation is not known.

- Many oscillations of various period lengths are interesting and it is impossible to find a

reasonable value for N fulfills all conditions concurrently. 

What happens if an oscillation is not present for an integer number of periods?

9. Transformation into the Frequency Domain

9.3 Frequency Analysis Via DFT
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Observations:

• The frequency f1 of a periodic signal does not exactly exist in the frequency 

discretization! Therefore the amplitude belonging to 2.5/32 f0 splits between 2/32 f0 and 

3/32 f0. 

→ Picket Fence Effect

• Additionally the spectrum “smears” (leaks) across the whole frequency range. This is a 

direct consequence of the discontinuity of the time signals that induces disturbing “steps” 

in the (thought) periodic signal. 

→ Leakage Effect

9. Transformation into the Frequency Domain

9.3 Frequency Analysis Via DFT
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Identical Example for Different Resolutions, i.e., of Different Lengths N

9. Transformation into the Frequency Domain

9.4 Leakage Effect and Windowing
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Observations:

• For N → ∞ the DFT result converges to the amplitude and phase response. 

• We have to distinguish two negative effects that can occur: (i) The maximum amplitude 

is split into its neighbors due to discretization (picket fence effect) and (ii) the spectrum is 

smeared across (leakage effect). 

• A rectangular window has a 

sinc-function as Fourier Transform.

The original signal can be thought

of as a multiplication with the

rectangle or convolution with sinc(). 

9. Transformation into the Frequency Domain

9.4 Leakage Effect and Windowing
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Explanation of the Leakage Effect

• A band-limited time signal x(k) of length L can be 

created from a signal of length infinity or large N

by multiplication with a rectangular window w(k) 

of length L:

• This multiplication in the time-domain corresponds 

to a convolution in the frequency-domain: 

Here W(n) is the Fourier transform and DFT of the 

rectangular window w(k): 

9. Transformation into the Frequency Domain

9.4 Leakage Effect and Windowing
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The DFT of a rectangular window of length L looks like the sinc-function. In practice, 

usually L = N. Zero-padding is equivalent with L < N since anyway w(k) = x(k) = 0 for k > L:

The zeros of the DFT of the rectangular window of length N lie at multiples of f0/N. If the 

time signal is an oscillation of frequency Mf0/N, then the zeros are at integer values of n. 

This means that in this case a convolution with such a signal is trivial and no leakage effect 

results.

9. Transformation into the Frequency Domain

9.4 Leakage Effect and Windowing
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Summary: Rectangular Window

• Every finite real signal of length N thus can be thought of being constructed by a 

multiplication of an infinite length signal with period length N by a rectangular signal of 

length N.

• The rectangular window leads to discontinuities, i.e., abrupt changes. This means high 

frequencies are induced. 

• The errors caused by windowing with a rectangle or not windowing at all (which is the 

same thing!) thus are extremely large (picket fence and leakage effects) 

Room for Improvement

• A smoother shape of the window would help to induce not so high frequencies.

• Many alternative windows are commonly used, see next slide.

• All these windows are similar. They reduce the leakage effect. However, they necessarily 

distort the signal by their smooth transition at the beginning and end. 

9. Transformation into the Frequency Domain

9.4 Leakage Effect and Windowing
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9. Transformation into the Frequency Domain

9.4 Leakage Effect and Windowing

Uniform /

Rectangular

Source: en.wikipedia.org

Hann

Hamming Gauss

Bartlett

Blackman
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Example: Windowing with Uniform/Rectangular and Hann Window

• Using the uniform/rectangular window is like using no window at all. 

• The Hann window (and similar alternatives) reduce the leakage effect significantly. By 

the smoother transitions at the window edges less disturbing high frequencies are 

induced. 

• Hann window of length L (usually L = N): 

9. Transformation into the Frequency Domain

9.4 Leakage Effect and Windowing
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Zoom:

Observations:

• Hann window reduces leakage effect significantly.

• Since the Hann window has a smaller area than the rectangular window signal energy is 

lost and the amplitudes in the spectrum are smaller. It makes sense to normalize with 

respect to the window area in order to compensate for this influence. 

9. Transformation into the Frequency Domain

9.4 Leakage Effect and Windowing
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Correction of Signal Damping with Windowing

Windowing distorts the original signal in 2 ways:

- Amplitude: The signal amplitude is reduced

- Energy: The signal energy (effective value RMS, “area under the signal“) is reduced

One of these effects can be corrected by multiplying the DFT with a correction factor (> 1):

Window Type Correction Amplitude Correction Energy

Uniform/Rectangular 1 1

Hann 2 1,63

Hamming 1,85 1,59

Blackman 2,8 1,97

Source: https://community.plm.automation.siemens.com/t5/Testing-Knowledge-Base/Window-Correction-Factors/ta-p/431775

3. Transformation von Signalen in den Frequenzbereich

9.4 Leakage Effect and Windowing
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Stationary Signals:

• Signals that do not change their characteristics / properties over time.

• Up to this point we implicitly assumed that all signals are stationary.

Non-stationary Signals:

• Signals that do change their characteristics / properties over time.

• In practice most signals are non-stationary. However, for a short time interval they can be 

considered, at least approximately, stationary. Examples: 

o Signals with trends, i.e., with slowly changing mean. This is typical for larger time 

scales. If we look at stock indices over years (not days!). A varying mean changes the 

d.c. value of the spectrum for n = 0 or f = 0 Hz

o By wear the properties of construction elements change over time. Certain signals of 

machines (rotation speed, sound, ...) might change their characteristics like the 

frequency of their peak value.

o Instead of wear also a failure can be the cause for such changes. However, this happens 

much faster!

9. Transformation into the Frequency Domain

9.5 Non-Stationary Signals and Short-Term-DFT
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Problem by Applying a Fourier Transform or DFT to Non-Stationary Signals:

• It is averaged by integration or summation over the complete signal. If the spectrum 

changes over time its frequency components are weight with their relevance. 

• The transform reveals no information about when which frequency occurs how strongly 

in the signal! 

Solving this Problem

1. Transform only short intervals of the signal into the frequency-domain. Within the short 

intervals the signal can be assumed to be approximately stationary:

→ Short-time Fourier transform or short-time DFT.

2. Modification of the Fourier Transform such that it does not look for oscillations of 

infinite length (like the original transform) but rather for wave packages that are active 

only in certain time intervals:

→ Wavelet transform.

9. Transformation into the Frequency Domain

9.5 Non-Stationary Signals and Short-Term-DFT
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Illustration of the Difficulties by Applying a DFT to Non-Stationary Signals 

• Order in which frequencies occur is irrelevant.

• The result (spectrum) is affected by the frequencies according to their time dominance. 

• DFT is not meaningful!

9. Transformation into the Frequency Domain

9.5 Non-Stationary Signals and Short-Term-DFT

0 50 100 150 200 250 300 350 400 450 500

-1

-0.5

0

0.5

1

0 50 100 150 200 250 300 350 400 450 500

0

20

40

60

80

0 50 100 150 200 250 300 350 400 450 500

-1

-0.5

0

0.5

1

0 50 100 150 200 250 300 350 400 450 500

0

20

40

60

80

Chirp-Signal 0 ... 20 Hz Chirp-Signal 60 ... 0 Hz

n

|X
(n

)|

n

|X
(n

)|

x(
k)

k

x(
k)

k

Frequencies of

0 Hz to 20 Hz

Frequencies of

0 Hz to 60 Hz



Prof. Dr.-Ing. 

Oliver Nelles

Page 156

University

of Siegen

Short-Time Discrete Fourier Transform (STDFT)

• Windowed DFT

• Width of the window determines the time resolution and also the frequency resolution. 

The width is a parameter defined by the user. It should be guided by the expected rate of 

change in the spectrum: 

- Signal changes its frequency properties quickly → narrow window. 

- Signal changes its frequency properties slowly→ wide window. 

• The DFT does not only depend on the frequency f or n but also on a second variable: the 

time shift of the window t0. It indicates the time t0 around which the DFT is valid

. 

Windowed Fourier Transform with Window w(t): 

Windowed DFT with Window w(k): 

9. Transformation into the Frequency Domain

9.5 Non-Stationary Signals and Short-Term-DFT
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Gaussian as Window 

• Strongly decreasing form center towards outer regions.

• Symmetrical.

• Fourier transform of a Gaussian is again a Gaussian, i.e., it is symmetrical in its time-

frequency properties.

9. Transformation into the Frequency Domain

9.5 Non-Stationary Signals and Short-Term-DFT
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9. Transformation into the Frequency Domain

9.5 Non-Stationary Signals and Short-Term-DFT
Short-time DFTs of the 1. chirp-signal with a Gauss-window
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9. Transformation into the Frequency Domain

9.5 Non-Stationary Signals and Short-Term-DFT
Short-time DFTs of the 2. chirp-signal with a Gauss-window
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Observations: 

• By shifting the window via k0 the time range that shall be analyzed can be selected. 

• Because the window is not infinitesimally narrow all signal properties inside mix.

• A too wide window with respect to the signal spectrum change rate (𝜎 = 1/3) yield an 

unnecessarily large averaging effect over time. 

• At k0 = 500 the leakage effect is easy to see. The reason for this is as follows: The Gauss-

window is close to the end of the data at 511 and it has significant values where the data 

stops. This induces similar high frequencies like a uniform/rectangular window. 

• For the 2. chirp-signal even the width 𝜎 = 1/6 is a bit too wide. That can be seen in the 

low quality of the bottom plot. That is because the 2. chirp-signal changes its frequency

3 times as fast as the 1. 

• The window should not be chosen too narrow to ensure a certain robustness, see next 

slides. 

9. Transformation into the Frequency Domain

9.5 Non-Stationary Signals and Short-Term-DFT
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Effect of window width in a short-time DFTs of noisy signals

9. Transformation into the Frequency Domain

9.5 Non-Stationary Signals and Short-Term-DFT
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9. Transformation into the Frequency Domain

9.5 Non-Stationary Signals and Short-Term-DFT
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Observations:

• The window width determines theoretically the maximal possible resolution. The wider a 

window is the more accurate the frequencies can be determined.

• The window width determines the robustness with respect to the noise in the original 

signal. The wider a window is the less significant the noise deteriorates the result. 

Wider windows mean more data is utilized!  

• The optimal window width is a compromise between both goals: 

9. Transformation into the Frequency Domain

9.5 Non-Stationary Signals and Short-Term-DFT
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Goals of Time-Frequency Analysis

• Good overview on which frequencies are present at what times.

• Illustration: Strength of frequency component by grey tones:

white = frequency does not exist / black = frequency is strongly present

• Best possible resolution in time 𝛥t and frequency (or energy) 𝛥f are coupled by 

Heisenberg’s uncertainty principle and thus relate anti-proportionally: 

or

• With the width of the window in the short-time DFT not only the time resolution 𝛥t

but implicitly also the frequency resolution 𝛥f is fixed.

9. Transformation into the Frequency Domain

9.6 Outlook: Time-Frequency-Analysis
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Example 1: Analysis of a periodic signal 

with varying frequency over time

Goal of a short-time DFT:

Frequency analysis of the signal in 

dependency of time. We want to know

when which frequency occurs.

Choice for window width: 

• Determines the time resolution 𝛥t.

• Implicitly also determines the 

frequency resolution 𝛥f  because both are

anti-proportional:

9. Transformation into the Frequency Domain

9.6 Outlook: Time-Frequency-Analysis
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1

9. Transformation into the Frequency Domain

9.6 Outlook: Time-Frequency-Analysis

Quelle:

Wikipedia
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Example 2: Detection and sensitivity with respect to a short peak disturbance

Quelle: Skript „time-frequency-Analyse und Wavelettransformationen“ of M. Clausen und M. Müller, Universität Bonn

9. Transformation into the Frequency Domain

9.6 Outlook: Time-Frequency-Analysis

𝛥t = 0.02 𝛥t = 0.10
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Fourier Transform

• Looks for periodic signals of infinite length but of all frequencies.

• Ad-hoc fix: focus on a certain time range by windowing.

• Window possesses a certain width → Determination of time and frequency resolution.

Wavelet Transform

• Looks for wave packages of different lengths and frequency.

• Long wave packages are of low frequency → high frequency res. but low time res. 

• Short wave packages are of high frequency → low frequency res. but high time res. 

• Idea: High frequencies commonly occur briefly and thus should be resolved more 

accurately than low frequencies that typically are present for long time intervals.

9. Transformation into the Frequency Domain

9.6 Outlook: Time-Frequency-Analysis
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Construction of Wavelets

• Basis wavelet (mother wavelet) as master copy. 

• All wavelets are derived from the mother wavelet by 

time shifts and time scalings (typically with factors 2−n). 

• Time shift t0 for localization of a certain part of the signal.

• Time scaling by a factor 𝜈 for a certain frequency component. 

Properties of Wavelets

• Through the time shift the signal can be analyzed around t = t0.

• Through the time scaling 𝜈 various frequency components 

can be analyzed.

• In contrast to the Fourier transform where sin-signals 

of infinite length are analyzed, the length of a wavelet 

is coupled to its frequency (scaling)! 

9. Transformation into the Frequency Domain

9.6 Outlook: Time-Frequency-Analysis
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Fourier Transform Wavelet Transform

Windowed Fourier Transform Windowing is not necessary since 

wavelets are local themselves!

9. Transformation into the Frequency Domain

9.6 Outlook: Time-Frequency-Analysis
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Parametric Methods

• A large number of data samples N is modeled by estimating a small number of 

n parameters (n≪N).

• These parameters typically results from structural considerations and not only as a means 

for model accuracy. 

• These parameters are physically or with other first principles interpretable or easy to 

convert in interpretable quantities.

• Examples: IIR or transfer function models, AR or ARMA models, ...

Non-parametric Methods

• A large number of data samples N is described with a large number of n parameters. 

Often n = N, i.e., no averaging or noise suppression in the statistical sense takes place. 

• The parameters themself and their number has no direct physical motivation. It just 

reflects such issues as accuracy, resolution, variance, etc.

• The parameter have no direct physical meaning or interpretation.

• Examples: FIR models (= impulse response models), DFT, ...

9. Transformation into the Frequency Domain

9.7 Outlook: Parametric Frequency Analysis
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Idea of a Parametric Frequency Analysis

• Signal model: Impulse response of a parametric transfer function.

• Estimation of the parameters of this transfer function.

Example: Autoregressive model of 2. order (AR(2)): 

• Modeling of one

damped oscillation.

• Pole locations determine 

frequency and damping.

• 2 parameters are required

for each oscillation and can 

be estimated by least squares.

9. Transformation into the Frequency Domain

9.7 Outlook: Parametric Frequency Analysis
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DFT

• From 256 samples of the time

signal 256 frequency values are 

computed. → High sensitivity

with respect to noise!

• Leakage and picket fence effect 

distort the spectrum from a peak at

f1 = 5.5 Hz to a broader bump.

Parametric AR(2) Estimation

• From 256 samples of the time

signal 2 parameters of the AR 

model are estimated. → Very 

insensitive with respect to noise!

• An exact frequency (a real number,

not discretized!) is computed. 

9. Transformation into the Frequency Domain

9.7 Outlook: Parametric Frequency Analysis
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9. Transformation into the Frequency Domain

DFT vs. Z-Transform MATLAB

Differences between DFT and Z-Transform

DTF Z-Transform

Operates with Numbers Variables (symbolic)

Time Discrete: 0 … Tmax Discrete: 0 … ∞

Frequency Discrete Continuous

Use Signals Signals & Systems
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9. Transformation into the Frequency Domain

Chapter 9: Relevant MATLAB Commands MATLAB

Y = fft(X); % Discrete Fourier Transform (1-D).   

% The algorithm uses an FFT.

y = ifft(X); % Inverse Discrete Fourier Transform

A = dftmtx(n);1 % Matrix of the discrete Fourier Transform

% (DFT). The matrix product with a vector 

% calculated the DFT of this vector.

spectrum;1 % Different methods for estimating the 

% spectrum (see MATLAB help)

window;1 % Function to perform windowing of signals 

% (e.g. gausswin, hamming, etc.)

S = spectrogram(x);1 % Calculates the short-time Fourier tansform

% (STFT) of a signal.
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9. Transformation into the Frequency Domain

Chapter 9: Relevant MATLAB Commands MATLAB

Pxx = pcov(x,p);1 % Calculates the spectral density function

% of the vector x by means of the

% covariance method

% p is the order of the predictor (AR).

1 : Signal Processing Toolbox
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10. Filters



Prof. Dr.-Ing. 

Oliver Nelles

Page 178

University

of Siegen

4. Filter

10.1  Requirements

10.2  FIR and IIR Filters

10.3  Design of FIR Filters

- Window Method

- Optimization Method (Parks-McClellan)

10.4  Design of IIR Filters

- Method of Bilineare Transformation

- Overview of Analog Filter Typs

10.5  Implementation of Filters

10.6  Nonlinear Filters

10.7  Non-Causal Filters

10.8  Adaptive Filters

10. Filters

Contents of Chapter 10
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What is a Filter?

A filter is a system that modifies certain properties (characteristics) of a signals, e.g. it 

suppresses or enhances. Typical filters are dynamic systems and frequency selective, i.e., they 

block certain frequencies or frequency ranges or let them pass. 

Digital Filter

We focus to digital filters, i.e., filters that are discrete in time and can be described by 

difference equations. They can be implemented directly in digital electronic circuits 

(hardware) but usually are implemented by programs on a computer (software).

Time ↔ Frequency

Usually we consider signals as functions of continuous or 

discrete time t or k: x(t) or x(k). In a lot of applications, however,

the signals rather depend on other variables like location. This is 

the case for the vast field of image processing. “Frequency” then 

means the inverse of space (like normally frequency is the inverse 

of time). 

10. Filters

10.1 Requirements

high-

frequency

low

frequency
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Different Filters

10. Filters

10.1 Requirements

Optical filter:

Lets only certain 

colors pass!

Soot filter:

Lets only small 

particles pass!

Coffee filter:

Lets only liquids pass!

Analog 

electronic filter:

Lets certain 

frequencies pass!

Realized as 

R-L-C-circuit.

Digital filter:

Lets certain 

frequencies pass!

Realized in software 

on a computer.

Air filter:

Lets only small 

particles pass!
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Three Steps for Deriving a Filter

1. Specification: What should the filter do and under what restrictions?

2. Design: Which filter fulfills these specifications? 

3. Implementation (realization): How is the filter build (in hardware) or programmed 

(in software)?

Four Steps for Designing a Filter

a) Choice of a system class: E.g. linear, stable, causal, time-invariant, dynamic systems. 

b) Choice of a filter structure: 

e.g. FIR (finite impulse response) 

or IIR (infinite impulse response).

c) Determination of the filter order.

d) Determination of the filter parameters.

10. Filters

10.1 Requirements
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Signal-to-Noise Ratio

abbreviated SNR is the ratio between the averaged power of a signal (meaningful 

information) and the averaged power of noise (disturbance)

Often it is given in logarithmic scale, in decibel:

Since it relates powers (~ squares of amplitudes) the 3 dB corner frequency marks the 1/2 

drop-off, not the            drop-off as it is known from the magnitude bode diagram used in 

control theory which shows amplitudes!

Task of a filter is to improve (i.e., increase) the SNR. This is typically possible because 

signal and noise are dominant in different frequency ranges. The corner frequency of the 

filter represents the boundary between signal frequency range and the noise frequency range.

4. Filter

10.1 Requirements
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4. Filter

10.1 Requirements
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Limit (Cut-off) Frequency

A frequency selective filter can only be useful if the desired 

signal and the disturbance are in different frequency ranges.

Then it is possible to place the limit (cut-off) frequency 𝜔g

in such a way that a significant part of the desired signal can 

pass while a significant part of the disturbance cannot.

Filter Types

If, as in the above example, the desired signal lies mostly in the low-frequency range while 

the disturbance lies mostly in the high frequency range, a low-pass filter can improve the 

signal quality a lot. A low-pass filter lets all low frequency components pass but suppresses 

all high frequency components. That is the most common used filter type. In many 

applications, however, the desired signal and disturbance are in other frequency ranges.

Low-pass High-pass Band-pass Band-stop
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Application Examples for Different Filter Characteristics

• Low-pass: Suppression of high frequency noise to improve the quality of the signal.

• High-pass: Suppression of a slowly changing signal change like offsets (frequency 0) or 

trends or drifts. 

• Band-pass: Extraction of a frequency band. Typical for radio or TV receivers. The signal is 

modulated on a high frequency carrier that it needs to be extracted from before further 

processing. 

• Band-stop: Suppression of certain (typically narrow) frequency ranges. Commonly applied 

to actuation signals in the aerospace industry to avoid damages due to an excitation of 

resonances (weakly damped modes). Also called a notch filter. 

Ideal Filter

• Perfect output of the signal in the passband, i.e.,                                  .

• Perfect suppression of the signal in the stopband, i.e.,                     .

• Infinitely steep transition from passband to stopband, i.e., steepness = ∞. 

• No phase shift (no delay) of the signal, i.e.,                     .

10. Filters

10.1 Requirements
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Real Filters

In the real world, these properties cannot be exactly realized. The demands for an ideal filter 

can never be achieved. Thus we easier the requirements and accept tolerances. 

Specification of Real Lowpass Filters

• Pass-band: Gain close to 1, between 1–𝛿1 und 1+ 𝛿1.

• Stop-band: Gain smaller than 𝛿2.

• Pass-band: 𝜔 < 𝜔p, transition-band: 𝜔p <𝜔 < 𝜔s, stop-band: 𝜔 > 𝜔s.

• No requirements on the phase. Sometimes linear phase is demanded, see later.

10. Filters

10.1 Requirements

Pass-band
Stop-band

Transition-

band

Remarks:

• The closer 𝜔p and 𝜔s lie together and

the smaller 𝛿1 and 𝛿2 are chosen, the more

extreme are the requirements.

• More extreme requirements necessarily  

lead to more complex filters.
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Restriction to Filters With the Following Properties (see Chapter 8)

• Stable 

• Linear (for nonlinear filters see Section 10.6)

• Causal (for non-causal filters, see Section 10.7)

• Time-invariant (for time-variant filters, see Section 10.8)

Furthermore it is sometimes desirable, particularly in communications: 

• linear in its phase

This means that every oscillation is identically shifted by the filter in phase. This is 

independent of the oscillation frequency. This property is important in acoustic environments 

(audio components) because the ears are very sensitive the frequency-dependent phase 

differences. If the linear phase property is not at least approximately fulfilled this means low 

and high frequency sounds arrive at the ear at different times! This would disturb any 

acoustic sensation. In control systems with linear phase have a different name: they are called

• systems with a pure dead time with no other phase delay. 

10. Filters

10.1 Requirements
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Property: Linear Phase

Mathematically “linear phase” more precisely means the phase is a linear function of the 

frequency: 

with a real Tt

A filter with such a transfer function has an output y(t) to an input oscillation u(t) with an 

amplitude A1, frequency 𝜔1 and phase 𝜑1 after transients are decayed of:

Because the phase shift is linear in the 

frequency this can be written as: 

The phase 𝜑1 of the input signal u(t) is not changed by the filter. 

And this is the case independent of the frequency of the signal 𝜔1.

The dead time Tt is commonly also called group propagation delay:

10. Filters

10.1 Requirements
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Property: Linear Phase

• Can exactly only be achieved by FIR filters.

• For IIR filters the phase can only be approximately linear in a certain frequency band.

• Especially in the audio and communications fields linear phase is a commonly requested 

property of big importance.

10. Filters

10.1 Requirements
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Property: Zero Phase

A particularly simple special case of a filter with linear phase is a filter with zero phase, i.e., 

with a phase response = 0 for all frequencies. This is the case for transfer functions that are 

purely real and non-negative. Such a transfer function F(z) can be constructed from an 

arbitrary transfer function G(z) with arbitrary phase as follows:

This leads to a purely real frequency response:

This means: F(z) has for every zero zn a mirrored zero at zn
–1 = 1/zn and for every pole zp a 

mirrored pole at zp
–1 = 1/zp. If zn and zp are inside the unit circle (stable!) then 1/zp and 1/zp

automatically are outside the unit circle (unstable!). Consequently, zero phase filters have the 

following properties: 

• FIR: non-causal. 

• IIR: unstable and non-causal. 

10. Filters

10.1 Requirements
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Implementation of Zero Phase Filters

Because they are necessarily non-causal, zero phase filters can only be implemented offline. 

A simple possibility is to filter the data with a causal G(z) and subsequently filter the 

outcome in backward direction again with G(z). The phase delay induced by the first filter 

exactly will be reversed by the second backward filtering process. 

10. Filters

10.1 Requirements
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Equivalent descriptions of a linear dynamic systems in discrete time:

Difference equation of order n Impulse response

→  Can be implemented directly (m  n).        →  Cannot be implemented directly!

Usually m = n. If m < n we can assume Approximation with m+1 terms:

m = n with bi = 0 for i > m.

Properties

•   Order n is small: e.g. n = 2, 3, 4, ... •   Order m is large: m = 10, 20, 30, ...

•   Feedforward: biu(k–i) •   Feedforward: biu(k–i)

•   Feedback: aiy(k–i) •   No feedback!

•   Infinite impulse response (IIR) •   Finite impulse response (FIR)

10. Filters

10.2 FIR and IIR Filters
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Difference in the Order

• IIR filters usually have significantly fewer parameters (ai & bi) than FIR filters (bi).

• IIR filters need fewer memory for storage of previous data. 

• IIR impulse response usually asymptotically exponentially decays towards zero.

FIR impulse response is exactly equal to zero after time steps k > m. 

• IIR filters can be unstable. FIR filters are inherently stable (no feedback).

• IIR filters have an analog correspondence. FIR filters exist only in the digital world. 

10. Filters
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Transfer Functions

IIR Filter FIR Filter

•   m zeros at arbitrary locations •   m zeros at arbitrary locations

•   n Pole at arbitrary locations •   m poles at 0

•   b0 = 0 for strictly proper systems • b0 = 0 for strictly proper systems

• Complex relationship between  • bi = gi are the first m+1 steps of the 

parameters and impulse response impulse response, all subsequent ones = 0

• Not well suited for adaptation • Well suited for adaptation

– feedback structure – feedforward structure

– stability problems – inherent stability

10. Filters

10.2 FIR and IIR Filters
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Example:

A system with impulse response                   can be exactly realized by an 

IIR filter of 1. order:

This infinite geometric series can exactly be written as:

The gain of this IIR filter is:

The marginally stable case (integral behavior) is achieved for a = 1. 

Then the gain cannot be calculated anymore.

10. Filters
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An FIR filter can approximately represent every stable impulse response. For the first m+1 

terms an FIR of m. order can exactly describe every sequence:

A natural choice for the filter parameters would be:

However, this would yield a wrong (too small) gain because all summands for k > m are 

simply missing. 

Alternatively the last parameter (summand) can be

adjusted in order to make the gain correct, 

i.e., for 𝜔 → 0 / z → 1: 

This is a reasonable approach for low-pass filters. 

For high-pass filter an alternative could be to require

identical gains for 𝜔 → ∞ / z → ∞. 

10. Filters
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Properties of FIR filters:

• stable,

• can realize linear phase,

• very flexible because many degrees of freedom (parameters) → frequency response can 

be shaped as desired,

• only forward path → simple to implement,

• easy to adapt.

Properties of IIR filters:

• can become unstable,

• no linear phase possible,

• with the help of a few parameters significant effects can be realized,

• high steepness even for low orders,

• feedback path → more complex to implement,

• complex to adapt (stability problems, not linear in its parameters). 

10. Filters

10.2 FIR and IIR Filters
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General Remarks About FIR Filter Design

The design of digital filters commonly is based on the mature field of design of analog filters. 

Because FIR filters only exist in the digital world, no analog correspondence is available. 

New design method must be developed. The three standard approaches are:

• Window method: A simple approach that can be pursued by hand. The desired amplitude 

response is established. Then it is transformed by the inverse Fourier transform to the 

impulse response in the time domain. Since the impulse response is usually of infinite 

length the filter order m must be reduced/cropped to a realizable number. This causes an 

approximation error and thus the method is not very accurate.

• Frequency sampling method: This is a very universal approach and also possible for 

recursive filters. The desired frequency response is sampled and transformed with the 

inverse DFT to the impulse response.

• Optimal filter method: With support of a software tool this is the most powerful and 

flexible approach. A minmax optimization problem is solved via a Chebyshev 

approximation that minimizes the maximal deviation between the frequency response of the 

filter and the desired frequency response. This is carried out with the algorithm proposed by

Parks-McClellan and implemented in the MATLAB signal processing toolbox. 

10. Filters

10.3 Design of FIR Filters
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Example: A simple FIR filter of 1. order

For FIR filters the output is calculated as a weighted average of the current and previous 

inputs (moving average, MA). A simple low-pass filter can look like:

10. Filters
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Remarks on FIR Filters With Linear Phase

FIR filters have to fulfill certain condition in order to have a linear (or affine) phase:

• Linear phase, i.e.,                      : symmetrical impulse response.

• Affine phase, i.e.,                            : centrosymmetrical impulse response.

Remember: 

Addition of two conjugate complex numbers: 

→ purely real!

Same numbers written in absolute value and phase form:

→ purely real!

→  Sum of two conjugate complex numbers is purely real!

10. Filters

10.3 Design of FIR Filters
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Example: Symmetrical FIR Filter of Length L = 9 (Order m =8)

Transfer function of the filter:

Because of symmetry we have: 

Factoring z–4 out yields: 

The frequency response is obtained for                 . Expression of the following form

are purely real and therefore have phase = 0. Thus the phase of this filter finally is: 

(+ 𝜋 if the sign of “{...}” is negative!)

10. Filters

10.3 Design of FIR Filters
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The 4 Types of FIR Filters With Linear Phase

10. Filters

10.3 Design of FIR Filters
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Window Method

The idea behind this approach is to design a filter that has a desired frequency response 

GD(i𝜔) (D = desired). Subsequently the impulse response g(k) can be calculated via the 

inverse Fourier transform as follows: 

This impulse response typically is non-causal and of infinite length. We have to shift it and 

crop it at a certain finite order m to make the FIR filter realizable. 

Example: Low-pass with cut-off frequency 𝜔e (sampling rate T0 = 1s)

4. Filter

10.3 Design of FIR Filters
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Approximation Error Through Cropping the Impulse Response

10. Filters

10.3 Design of FIR Filters
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Consequences From Unwanted Behavior of FIR-Filters

The ripple in the amplitude response of the FIR filter can easily be explained. The cropping 

of the impulse response g(k) is identical to a windowing with a uniform/rectangular window 

w(k). In the frequency domain this corresponds to a convolution with the Fourier transform 

of the rectangular window W(i𝜔), the sinc-function: 

This explains the ripples. Unfortunately they do not become smaller if more coefficients are 

spent to describe the impulse response more accurately. This is the so-called Gibbs 

phenomenon (see math, “Fourier series”). 

In order to reduce this undesirable effect, the impulse response is multiplied with a smoother 

window like in the DFT context. Such a window can reduce high frequencies by letting the 

impulse response slowly decay towards zero. For FIR filter design the so-called Kaiser

window is commonly applied. 

10. Filters

10.3 Design of FIR Filters
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Optimal Filter Design Method

With most optimization methods the quadratic error |E(i𝜔)|2 between the desired filter 

characteristics HD(i𝜔) and the real filter characteristics H(i𝜔) is minimized: 

However, the algorithm according to Parks and McClellan minimizes the maximal (not 

squared) error because it has yield more reliable results: 

The minimization of the maximal absolute value ensures that the ripples are equally

distributed over all frequencies which led to the name Equiripple filter. The criterion is also 

important in many other approaches to robust optimization and control. 

Because the absolute value of the error is magnitudes larger in the pass-band than in the stop-

band, it is important to multiply the errors with a normalization weight that guarantees no 

frequency ranges are preferred:

10. Filters

10.3 Design of FIR Filters
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To achieve a filter with equally large (small) ripples in the pass- and stop-band the following 

frequency weight must be chosen for a low-pass filter:

or

MATLAB offers the Parks/McClellan minimax algorithm 

and least-squares optimization tools: 

The default mode of operation of firls and firpm is to design type I or type II linear phase filters, depending on whether 

the order you desire is even or odd, respectively. A lowpass example with approximate amplitude 1 from 0 to 0.4 Hz, 

and approximate amplitude 0 from

0.5 to 1.0 Hz is

n = 20;                    % Filter order

f = [0 0.4 0.5 1];         % Frequency band edges

a = [1  1  0 0];           % Desired amplitudes

b = firpm(n,f,a); % Parks-McClellan FIR Design

From 0.4 to 0.5 Hz, firpm performs no error minimization; this is a transition band or "don't care" region. A transition 

band minimizes the error more in the bands that you do care about, at the expense of a slower transition rate. In this 

way, these types of filters have an inherent trade-off similar to FIR design by windowing.To compare least squares to 

equiripple filter design, use firls to create a similar filter. 

10. Filters
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Type bb = firls(n,f,a); 

and compare their frequency responses using FVTool: fvtool(b,1,bb,1)

Note that the y-axis shown in the figure below is in Magnitude Squared. You can set this by right-clicking on the axis 

label and selecting Magnitude Squared from the menu. 

The filter designed with firpm exhibits equiripple behavior. Also note that the firls filter has a better response over 

most of the passband and stopband, but at the band edges (f = 0.4 and f = 0.5), the response is further away from the 

ideal than the firpm filter. This shows that the firpm filter's maximum error over the passband and stopband is 

smaller and, in fact, it is the smallest possible for this band edge configuration and filter length.

10. Filters

10.3 Design of FIR Filters MATLAB
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Removing Periodic Signals of Known Frequency (High-pass Approach)

With an FIR filter a arbitrary periodic signal of known frequency can be removed perfectly. 

Typical applications: 

• Carrier frequency of a radio signal

• Hum (50 Hz and multiples as upper harmonics)

The following FIR filter removes all periodic signals with period length Tp = m∙T0 or 

frequency 𝜔p = 𝜔0 /m, respectively:

10. Filters
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The special properties of such a filter are: 

• Independence of the shape of the signal (depends only on the period length). 

• Removes all multiples of 𝜔p perfectly. 

• Perfect damping with –∞ dB (infinite steepness!).

• High-pass! Removes all low frequencies (and d.c. values) as well. 

10. Filters
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Removing Periodic Signals of Known Frequency (Low-pass Approach)

If the same task as before is requested with a low-pass filter instead of a high-pass the 

following two possibilities with gain = 1 suggest itself: 

10. Filters
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10. Filters
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Example: A Simple IIR Filter of 1. Order

For IIR filters the output is a weighted average of the current and previous inputs (moving 

average, MA) and previous outputs (autoregressive, AR) → ARMA. The most simple first 

order IIR filter is a PT1-system, i.e.: 

10. Filters

10.4 Design of IIR Filters
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In comparison to FIR filters, here 

implicitly infinitely old inputs u(k-i) 

influence the output!
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Transformation from Analog in Digital

Typically IIR filters are designed with traditional methods in the analog world. In a second 

step they are transformed from the analog in the digital world. For this transformation various 

approaches are common, dependent on the application area:

• Impulse invariance method: Demand identical impulse response in the analog and digital.

• Bilinear transformation (also called: Tustin formula): The s-variable in the analog 

frequency domain is approximated by a rational fractional function in z such that a 

numerator / denominator expression in the s-domain becomes a numerator / denominator 

expression in the z-domain (and vice versa). 

Furthermore there exist other method that are more popular in digital control than in filter 

design: 

• Identical time signals with zero or first order hold.

• Identical poles and zeros.

In the following, we focus on the bilinear transformation approach. 

10. Filters

10.4 Design of IIR Filters
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Bilinear Transformation (Tustin Formula)

The exact transformation between s and z is nonlinear and 

would destroy the fractional rational function form. Linear 

system theory would not apply anymore.  

Via the bilinear transformation this form is preserved. The stability properties stay identical, 

as well.

10. Filters

10.4 Design of IIR Filters
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Comparison: Frequency Response in the Analog and Digital World

A transfer function Ga(s) in the s-domain can approximately be transformed by the bilinear 

transformation into the z-domain: 

The frequency response in the analog can be obtained by               and correspondingly by 

going through the unit circle in the z–domain                   . Since the bilinear transformation is 

just an approximation, the analog frequency       differs from the digital frequency      : 

The upper bound for the digital frequency is given

by the half sampling frequency according to Shannon:

10. Filters

10.4 Design of IIR Filters
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Bilinear Transformation (Tustin Formula) = Trapezoidal Rule for Integration

In discrete time a continuous integration can be approximated in different ways. More 

accurate than calculating the lower or upper sum (see next slide) is the trapezoidal rule:

In the z-domain this results in:

This formula shall correspond to an integration in the s-domain:

This exactly yields the bilinear transformation: 

10. Filters

10.4 Design of IIR Filters
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Integration with Lower and Upper Sum

Differentiation with Forward and Backward Differences

10.4 Design of IIR Filters

tkT0(k–1)T0 (k+1)T0
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10. Filters
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Comparison

Bilinear Transformation Forward Differences Backward Differences

(Trapezoidal Integration) (Lower Sum Integration)         (Upper Sum Integration)

10. Filters

10.4 Design of IIR Filters
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Procedure for Filter Design Via Bilinear Transformation

1. Specification is either directly made in the analog world or it is transformed from the 

digital in the analog world.

2. Filter design in the analog world.

3. Transformation of the final analog filter in the digital world. 

The Following IIR Filters are Common:

• Bessel filter: Approximately linear phase in the pass-band

• Butterworth filter: Monotone amplitude response

• Chebyshev filter type 1: Ripple in the pass-band

• Chebyshev filter type 2: Ripple in the stop-band

• Cauer filter (elliptic filter): Ripple in the pass- and stop-band

For the steepness of filters of identical orders (i.e., comparable complexity):

Bessel  <  Butterworth  <  Chebyshev  <  Cauer

10. Filters

10.4 Design of IIR Filters

Friedrich Bessel, 1784-1846
(www.wikepedia.org)
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Overview on Analog Filters

10. Filters

10.4 Design of IIR Filters
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Butterworth Filter

• Design with focus on maximal flatness of the amplitude response close to the limit 

frequency     . 

• Monotone amplitude response, i.e., no ripples.

• Fast drop-off in the amplitude response at the limit frequency. 

• Strong overshoot of the impulse response. 

• Relative low steepness with 20∙n dB / decade (n = filter order).

Amplitude Response:

where si are the n stable poles of the 2n-root of         .

10. Filters

10.4 Design of IIR Filters
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Stephen Butterworth, 1885-1958
(www.wikepedia.org)
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10. Filters

10.4 Design of IIR Filters
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10. Filters

10.4 Design of IIR Filters
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Chebyshev Filter

• Steeper than Butterworth filter.

• Ripples in pass-band (type I) or stop-band (type II) in the amplitude response. 

Acceptance of ripple drawback for benefits in steepness.

• Step response oscillates more than for Butterworth filter. 

• Transposes into Butterworth filter if the allowed ripple factor 휀 → 0!

• Design parameters: limit frequency      , order n, allowed ripple factor 휀. 

Chebyshev Polynomial of Order n: 

휀 : ripple factor

Because the Chebyshev polynomial changes 

in the pass-band between 0 and 1 a lower limit 

on the gain is given by:

10. Filters

10.4 Design of IIR Filters
Pafnuti Chebyshev, 1894
(www.wikepedia.org)
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10. Filters

10.4 Design of IIR Filters

Source: https://en.wikipedia.org/wiki/Chebyshev_filter
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10. Filters

10.4 Design of IIR Filters
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10. Filters

10.4 Design of IIR Filters
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10. Filters

10.4 Design of IIR Filters

Chebyshev Filter Type I  (n = 4)
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10. Filters

10.4 Design of IIR Filters

calculated according to 

a complex formula in 

dependence on 𝜉.

Wilhelm Cauer, 1900-1945
(www.wikepedia.org)

for odd n

for even n

Cauer Filter (Elliptic Filter)

• Steeper than Chebyshev filter, even the steepest possible (for linear filters). 

• Ripples in the pass-band and stop-band in the amplitude response. 

• Step response oscillates stronger than for the Chebyshev filter. 

• Transposes into Chebyshev filter type I if the steepness factor 𝜉 → ∞!

• Design parameters: limit frequency      , order n, ripple 휀 and steepness 𝜉. 

Elliptic functions of order n: 

휀 : Ripple for pass-band

𝜉 : Steepness (selectivity factor)

xni: zeros

xpi: poles

Maximal steepness at x = 1. 
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10. Filters

10.4 Design of IIR Filters

Source: https://en.wikipedia.org/wiki/Elliptic_filter
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10. Filters

10.4 Design of IIR Filters
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10. Filters

10.4 Design of IIR Filters
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%   For data sampled at 1000 Hz, design a 9th-order highpass

%   Butterworth filter with cutoff frequency of 300Hz.     

Wn = 300/500;                   % Normalized cutoff frequency            

[z,p,k] = butter(9,Wn,'high');  % Butterworth filter    

[sos] = zp2sos(z,p,k);          % Convert to SOS form    

h = fvtool(sos);                % Plot magnitude response

4. Filter

4.4 Entwurf von IIR-Filtern
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%   Design a 4th-order butterworth band-pass filter which passes    

%   frequencies between 0.15 and 0.3.     

[b,a]=butter(2,[.15,.3]);        % Bandpass digital filter design    

h = fvtool(b,a);                 % Visualize filter

4. Filter

4.4 Entwurf von IIR-Filtern
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%   For data sampled at 1000 Hz, design a 9th-order lowpass Chebyshev    

%   Type I filter with 5 dB of ripple in the passband, and a passband    

%   edge frequency of 300Hz.     

Wn = 300/500;               % Normalized passband edge frequency    

[z,p,k] = cheby1(9,5,Wn);    

[sos] = zp2sos(z,p,k);      % Convert to SOS form   

h = fvtool(sos)             % Plot magnitude response

4. Filter

4.4 Entwurf von IIR-Filtern
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%   Design a 2nd-order Chebyshev Type I band-pass filter which passes    

%   frequencies between 0.2 and 0.5 with 3 dB of ripple in the    

%   passband.     

[b,a]=cheby1(2,3,[.2,.5]);      % Bandpass digital filter design    

h = fvtool(b,a);                % Visualize filter

4. Filter

4.4 Entwurf von IIR-Filtern
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%   For data sampled at 1000 Hz, design a ninth-order lowpass

%   Chebyshev Type II filter with stopband attenuation 40 dB down from    

%   the passband and a stopband edge frequency of 300Hz.     

Wn = 300/500;               % Normalized stopband edge frequency    

[z,p,k] = cheby2(9,40,Wn);   

[sos] = zp2sos(z,p,k);      % Convert to SOS form 

h = fvtool(sos)             % Plot magnitude response

4. Filter

4.4 Entwurf von IIR-Filtern



Prof. Dr.-Ing. 

Oliver Nelles

Page 239

University

of Siegen

%   Design a 6th-order Chebyshev Type II band-pass filter which passes    

%   frequencies between 0.2 and 0.5 and with stopband attenuation 80 dB    

%   down from the passband.     

[b,a]=cheby2(6,80,[.2,.5]);     % Bandpass digital filter design    

h = fvtool(b,a);                % Visualize filter

4. Filter

4.4 Entwurf von IIR-Filtern
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%   For data sampled at 1000 Hz, design a sixth-order lowpass

%   elliptic filter with a passband edge frequency of 300Hz, 3 dB of     

%   ripple in the passband, and 50 dB of attenuation in the stopband.     

Wn = 300/500;               % Normalized passband edge frequency    

[z,p,k] = ellip(6,3,50,Wn);    

[sos] = zp2sos(z,p,k);      % Convert to SOS form    

h = fvtool(sos)             % Plot magnitude response

4. Filter

4.4 Entwurf von IIR-Filtern
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%   Design a 6th-order Elliptic band-pass filter which passes     

%   frequencies between 0.2 and 0.5, and with 5 dB of ripple in the    

%   passband, and 80 dB of attenuation in the stopband     

[b,a]=ellip(6,5,80,[.2,.5]);    % Bandpass digital filter design             

h = fvtool(b,a);                % Visualize filter

4. Filter

4.4 Entwurf von IIR-Filtern
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Normalization and Transformation

Up to here we have focused on low-pass filters. But with the help of simple transformations 

this knowledge can be carried over to all kind of filters. 

Starting point is the design of a low-pass filter with normalized limit frequency 𝜔g = 1 rad/s. 

All other filters can be easily derived from this:

Low-pass with limit frequency 𝜔g: 

High-pass with limit frequency 𝜔g: 

Band-pass with limit frequencies 𝜔g1 and 𝜔g2:

Band-stop with limit frequencies 𝜔g1 and 𝜔g2:

10. Filters

10.4 Design of IIR Filters
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Block Diagram of Digital Filters

Delay of one sampling time step: 

WARNING: Formally such a block diagram is wrong because it mixes time and frequency 

domain. However, such a sloppy representation is commonly found and easy to read. More 

strictly the following time delay is meant:

Multiplication with a factor: 

Addition: 

Subtraction:

10. Filters

10.5 Implementation of Filters

symbolic representation!
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FIR Filter

• m memory elements

• m+1 multiplications and m additions

• No feedback

• For symmetrical filter with                                                                                                  ,

half of the multiplications can be save by first adding u(k) with u(k–m) and 

u(k–1) with u(k–m–1), etc. 

10. Filters

10.5 Implementation of Filters

tapped delay line

or
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Efficient Realization of a Tapped Delay Line in Software

Example for m = 3:

The pointer             moves up one memory block in each time step. When it moves out at the 

top it jumps back to the bottom. This can be implemented with the modulo operator: 

adr := (adr + 1) mod m. In each time step only one memory block has to be overwritten 

instead of moving all of them one step further!

10. Filters

10.5 Implementation of Filters
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IIR Filter

An IIR filter of order n can be written as

If the order of the numerator is smaller than the order of the denominator (m < n) then simply 

the lacking bi = 0 for i > m. This transfer function can be split into two part in two ways:

Direct Form I: 

Direct Form II: 

10. Filters

10.5 Implementation of Filters

u yx

u yx
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IIR Filter in Direct Form I

• 2n memory blocks

• 2n+1 multiplications 

and 2n additions

• n feedback paths

10. Filters

10.5 Implementation of Filters
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IIR Filter in Direct Form II (redundante Variante)

• 2n memory blocks

• 2n+1 multiplications 

and 2n additions

• n feedback paths

10. Filters

10.5 Implementation of Filters

identical!
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IIR Filter in Direct Form II (Non-Redundant Variant)

• n memory blocks

• n memory bocks correspond 

to the n states of the filter

(see state space in control)

• 2n+1 multiplications 

and 2n additions

• n feedback paths

10. Filters

10.5 Implementation of Filters
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Cascade Form

Consists of a series circuit of IIR filters of 2. order in direct form II: 

In this product each factor represents a second order system with two conjugate complex or 

two real poles. For an even order n of the complete filter l = n/2. 

For an odd n we have l = (n+1)/2 and bl2 = al2 = 0.

Parallel Form

Consists of a parallel circuit of filters derived from a partial fraction expansion:

This means that filters with poles at 0, with real poles at –ai and with conjugate complex pole 

pairs at –fi and –fi
* are run in parallel.. 

Ladder Form and Lattice Form

Representations in form of continued fractions or lattice structures are sophisticated filter 

forms that possess advantages with respect to robustness against round-off errors. 

10. Filters

10.5 Implementation of Filters
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Causal Filters

For a causal filter its output y(k) depends only on the current and previous input u(k–i) 

with i ≥ 0. This automatically means that the impulse response is equal to zero for negative 

times:

Non-Causal Filters

For a non-causal filter its output y(k) also depend on the future input u(k–i) with i < 0. 

This automatically means that the impulse response is not equal to zero for negative times:

10. Filters

10.6 Non-Causal Filters u(k) y(k)
g(k)

since g(i) = 0 for i < 0, 

otherwise the future inputs would influence the now: u(k–i)

since g(i) ≠ 0 for i < 0, because future inputs are relevant: u(k–i)

k

g(k)

k

g(k) commonly 

symmetrical,

but this is 

not necessary
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How the Future is Known to Calculate a Non-Causal Filter?

• Offline data processing: The data set is available from start to end in the computer. Then 

the “now” can be arbitrarily chosen be the user. 

• Buffers in online data processing: Data is stored in a buffer for a couple of sampling time 

steps, say D steps, before being processed further. The whole processing is therefore 

delayed by D steps. Relative to this delayed “now” there exist the possibility to look D

steps into the future up to g(–D). It is important to note that in order to look D steps into 

the future with a non-causal filter, we have to buffer D steps of the signal, thus introducing 

a dead time of D steps. 

Signal processing is based on 

buffered signals that are D

steps back with respect to 

real time                    and thus 

as many steps can be 

predicted : 

10. Filters

10.6 Non-Causal Filters
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Advantages of Non-Causal  Filters

• An impulse or step response that is symmetric to k = 0 has a real frequency response, i.e., 

no phase delay (see green dashed filter response)!

Symmetry implies:

Rearrange:  

• By forward and backward filtering of the data (which is possible only offline) every phase 

delay introduced by the forward filtering is exactly compensated again by the backward 

filtering. This fact is independent on the nature of the filter and

thus is true for every type (FIR, IIR, nonlinear).

However, it is filtered twice. This means we effectively have 

the amplitude response of  |G(i𝜔)|2. 

• Because a non-causal filter can “react” to a step input before it 

actually happens, such a filter is much faster!

10. Filters

10.6 Non-Causal Filters
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Drawbacks of Non-Causal Filters

• Can hardly be applied for applications with strict real-time requirements such as feedback 

control because any delays deteriorate the performance significantly. 

In communication systems, however, delays introduced by buffers usually are

– irrelevant/unimportant since communication is unidirectional (radio, TV), 

– negligible when communication is bidirectional (telephone) because signal run times 

introduce the major part of the delay anyway.

In feedback control a buffer would introduce an additional dead time. This has severe 

consequences for the control quality (reduced phase margin, danger of instability). These 

drawbacks are typically more important than the achievable improvements in signal quality.

10. Filters

10.6 Non-Causal Filters
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Non-Causal Filters in Feedback Control

Feedback control gives nice examples for non-causal filters:

1. Reference input filter: Commonly the future course of the reference value is known a 

priori. The non-causal filters can easily be exploited to utilize this knowledge. 

2. Feedback filter: The comparison between desired and control value requires the control 

value as fast as possible. A non-causal filter with buffer would introduce a dead time 

which deteriorates the control performance because it causes phase lag. There non-causal 

filter would be counterproductive. A “truly” non-causal filter cannot be employed 

because the future control variable is unknown.

10. Filters

10.6 Non-Causal Filters

PlantFilter 1 Controller

Filter 2
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Nonlinear filter are seldom applied due to the additional complexity in their handling and 

design. In the field of image processing they are however, more common. Most frequently 

simple nonlinear operators like max-, min- or other order/sorting-operators can be found. 

Median Filter

Probably the most important and frequently used nonlinear filter is the median filter. It is 

helpful in eliminating outliers. In contrast to the arithmetic average, the median gives the 

numbers which is right in the middle of a sorted sequence, i.e., half of the number are larger, 

half of the numbers are smaller. 

Example: 

Sequence: 4, 7, 20, 21, 30 → median = 20, arithmetic average = 16.4

Sequence: 4, 7, 20, 21, 1000 → median = 20,  arithmetic average = 210.4

The median is commonly used to eliminate outliers e.g. in statistics where the arithmetic 

average does not represent the “typical” case like study program duration, house prices, etc. 

10. Filters

10.7 Nonlinear Filters
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Median Filter for Elimination of Outliers

A median filter of n. order has an output y(k) that is calculated as the median of the last 

n data samples u(k), u(k–1), ..., u(k–n–1). With a median filter of n. order from n subsequent 

data samples (n–1)/2 outliers in series can be filtered out and removed without distorting the 

signal very much.

Example: Median filter of 3. order versus linear average FIR filter

Median filter: 

Linear FIR filter: 

10. Filters

10.7 Nonlinear Filters
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What is an Adaptive Filter?

An adaptive filter has no fixed parameters but they change over time in order to meet 

changing requirements. The time-varying parameters are typically changed according to some 

adaptation law in order to improve the performance of the filter. Typical applications are:

• Online system identification: A time-variant process shall be identified (modeled by 

measurement data). Because the process behavior changes over time the filter has to track 

these changes. 

• Channel equalization: A signal is distorted from sender to receiver by the dynamic 

channel in between (obstacles, reflections, ...). This distortion must be compensated 

(canceled) at the receiver the improve the quality. E.g. built in cell phones! 

• Echo compensation: To avoid (or weaken) acoustic feedback distortions, adaptive filters 

are applied to eliminate the part from the sound signal back from the speaker to the 

microphone. 

• Active noise suppression: An adaptive filter can model a measured disturbance in order to 

actively compensate it by adding it to the signal with 180° phase shift (destructive 

inference). 

10. Filters

10.8 Outlook: Adaptive Filters
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Automatic Room Acoustic Correction 

Room amplitude response for left and right cannel:

• white: neural amplifier (before correction)

• orange: desired characteristics

• green: optimized amplifier (after correction)

[mactechnews]

4. Filter
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Principles of an Adaptive Filter

• Comparison between desired filter output yd(k) and actual filter output y(k). 

• Calculation of the error e(k). 

• In the adaptation law the change of the filter parameters is computed from the error. This 

usually is done by an update of the filter parameters according to: 

• Different adaptation laws distinguish each other by different calculations of this 

parameter update 𝛥𝜃 (k). The following goal are pursued and for each application a suited 

compromise must be sought: 

– convergence speed

– tracking speed

– computational demand in each update step

– numerical robustness (round-off errors!)

• Typical adaptation laws are: 

– least mean squares (LMS): gradient method

– recursive least squares (RLS): Newton’s method

10. Filters

10.8 Outlook: Adaptive Filters
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GSM: Mobile Communication

• Data send in packages of 148 bits each.

• Hereof 26 bits represent a reference signal for training of the adaptive filter in cell phone.

• This leads to an overhead of approx. 17%.

• One data package is send and received every 0.577 ms.

4. Filter

10.8 Outlook: Adaptive Filters
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Online Adaptation

The gradient method tries to minimize the quadratic error e2(k) by changing the parameter 

vector in direction opposite to the steepest ascent (gradient) by a step proportional to the step 

size or length η:

Commonly adaptive filters are of FIR type, i.e.: 

with

Thus the parameter update becomes (Remember: e(k) = yd(k) – y(k)): 

This means the update is proportional to the (new) step size 𝜂´, to the error e(k) and to the 

“excitation” (regressor) of the corresponding parameter 𝜃i by u(k–i). 

10. Filters

10.8 Outlook: Adaptive Filters
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10. Filters

Chapter 10: Relevant MATLAB Commands MATLAB

Discrete-time transfer function:

sys = filt(num,den);2 % Assigning a discrete-time transfer function

FIR filter:

fir1;1 % FIR filter using the window method

firls;1 % FIR-Filter using least squares optimization 

firpm;1 % FIR-Filter using Parks-McClellan optimization

IIR filter:

besself;1 % Bessel filter

butter;1 % Butterworth filter

cheby1;1 % Chebychev filter type 1

cheby2;1 % Chebychev filter type 2

ellip;1 % Cauer filter (elliptic filter)
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10. Filters

Chapter 10: Relevant MATLAB Commands MATLAB

y = filter(b,a,X);  % Digital IIR filter (direct form II)

y = filtfilt(b,a,X);1 % Corresponding non-causal filter 

% with forward and backward path 

% WARNING: The amplitude response has

% the squared (twice) effect 

[b,a] = yulewalk(n,f,m);1 % Digital, recursive IIR filter.

% Uses least squares to model the 

% frequency response

H = dfilt.structure(in1,...);1% Yields discrete-time filter according

% to the method 'structure', see 

% MATLAB help

[b,a] = prony(h,n,m);1 % Filter design in the time-domain 

% according to the “Prony” method 
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10. Filters

Chapter 10: Relevant MATLAB Commands MATLAB

Filter-Parameter-Identifikation:

[b,a] = invfreqz(h,w,n,m);1 % Identifies a discrete-time amplitude

% and phase response (continuous-time:

% “invfreqs”)

1 : Signal Processing Toolbox

2 : Control System Toolbox
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11. Selected Methods in

Signal Processing
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6. Selected Methods in Signal Processing

6.1  Principal Component Analysis (PCA)

6.2  Clustering   

11. Selected Methods in Signal Processing

Contents Chapter 11
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x3

Data Preprocessing

Complex tasks in signal processing often are partitioned into two or more steps that each can 

be handled simpler individually. Typically, a early (first) steps is called signal preprocessing. 

Dependent on the specific task, signal preprocessing can be: 

• Filtering, smoothing, interpolation

• Transformation of data into a new coordinate system

• Dimension reduction, data compression

• Transformation into the frequency domain

• Feature extraction

• Nonlinearity transform

Some of the most common an important data

preprocessing approaches will be discussed in 

the following.

11. Selected Methods in Signal Processing

11.1 Principal Component Analysis
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Supervised versus Unsupervised Learning

Two approaches to learning can be distinguished:

• Supervised learning: The desired output y is known and is compared with the result of the 

used method   . A loss function to measure the quality of the method that depends on y

and    is calculated and often optimized. Frequently the mean squared error (MSE) is used 

for that purpose. 

• Unsupervised Learning: The desired output y is unknown or at least not used. Rather in 

interim goal is defined which can be calculated solely on the input data {ui(k)}, i = 1, 2, 

..., p and k = 1, 2, ..., N. Frequently the distribution of data in the input space plays an 

important role.

Unsupervised learning is much simpler to realize than supervised learning. The interim goal 

is easier to achieve than the final one. However, the risk exists that the interim goal is not as 

helpful as assumed. Therefore the success of unsupervised learning is not always guaranteed. 

The methods presented here are unsupervised and require little computational effort.

11. Selected Methods in Signal Processing

11.1 Principal Component Analysis
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Projection of Vectors

In order to keep the absolute value of u constant,

the vectors describing the coordinate axes have 

to  be normalized to one, i.e.: 

6. Ausgewählte Methoden der Signalverarbeitung

11.1 Principal Component Analysis
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Transformation of the Coordinate System

With a principal component analysis (PCA) data is transformed from one coordinate system 

into a new one. The 1. new axis shall point in the direction of the highest variance of the 

data. The 2. new axis shall be orthogonal to the first and again in the direction of the highest 

data variance remaining, and so on. The idea behind this procedure is that data can often be 

described best in directions of high variance and often can be neglected in directions of low 

variance. The low variance directions typically represent just noise. 

The example on the left illustrates this idea. The data distribution shows a strong correlation 

between u1 and u2. It can be assumed that u1 and u2 may depend on each other, 

e.g. u2 = au1 + n with a ≈ 0.7 and noise n. A PCA orients the 

1. axis in direction of the highest variance, i.e., x1 = 

u1 + au2 and the 2. axis orthogonally, i.e., x2 = u2 – au1. 

If the assumed relationship between u1 and u2 is indeed 

true then x2 = n and x2 describes only noise and thus 

contains no information and can be removed (dimensionality

reduction).

11. Selected Methods in Signal Processing

11.1 Principal Component Analysis
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Derivation of Principal Component Analysis (PCA)

Start with a p-dimensional space. The task of a PCA is to find new axes xi = [xi1 xi2 ...  xip]
T

for i = 1, 2, ..., p, while the 1. axis point in the direction of the highest data variance, the 

2. axis in the direction of the second highest, and so on. All axes shall be orthogonal to each 

other. 

In the N×p data matrix U all data is stored with respect to the original coordinate system:

The scalar products uT(k) x are the projections of the k = 1, 2, ..., N data points onto an 

arbitrary axis x = {x1, x2, ...,  xp}. If the data has zero mean (if not then the mean has to be 

subtracted first) then the following expression corresponds to the squared distance to the 

mean (which is equal to 0): (uT(k) x)2. 

11. Selected Methods in Signal Processing

11.1 Principal Component Analysis
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If we calculate this variance for each data point and sum them, we get the variance of the 

whole data along the new axis x: 

We want to maximize this expression. However, we must prevent that the variance becomes 

large just by shrinking the axis (and thereby generate large numbers). Thus the axes’ scaling 

are restricted to a norm of 1:

This constraint is included in the optimization. With 𝜆 as Lagrange multiplier we achieve the 

following optimization problem: 

11. Selected Methods in Signal Processing

11.1 Principal Component Analysis
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The solution of this maximization yields the eigenvalue problem:

The eigenvector corresponding to the highest eigenvalue 𝜆1 is the 1. axis x1, the eigenvector  

corresponding to the second highest eigenvalue 𝜆2 is the 2. axis x2, and so on up to the 

smallest eigenvalue 𝜆p with the p. axis xp. The eigenvalues of UTU are the squared singular 

values of U and thus can be computed with a singular value decomposition (SVD). This can 

be done to a extremely high accuracy without explicitly squaring the matrix U. These 

eigenvalues all are positive and the associated eigenvectors are orthogonal to each other. 

For fun...

Gene Golub is computer 

scientist at Stanford University. 

He has contributed more than 

anyone else to make SVD the

most powerful and common tool

of modern linear Algebra (matrix

computation).

11. Selected Methods in Signal Processing

11.1 Principal Component Analysis

Gene Golub‘s licence plate.             

Photo of Professor Kroonenberg of the University Leiden.

Gene H. Golub, 1932-2007
(www.wikepedia.org)
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Singular Value Decomposition (SVD)

SVD computes the following matrix decomposition of an m×n matrix U: 

If U has more rows than columns the following matrix dimensions arise:

=                    ∙           ∙

Therefore the matrix U can be decomposed in a sum of n outer products (each has rank 1), 

whose influence becomes smaller through the decreasing singular values: 

mit

11. Selected Methods in Signal Processing

11.1 Principal Component Analysis

The marked red quadratic matrix in S

contains the singular values of U on 

its diagonal. They are identical to the 

square root of the eigenvalues of U TU. 

They are sorted from large to small.

s1s2 sn

maximal rank = n

If the rank of U

is r < n then

sr+1 = ... = sn = 0.
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If U is quadratic (n = m) then its eigenvalues λi and eigenvectors xi  are given by: 

If U is rectangular (n × m with m > n or m < n): 

then x i is n-dim. but y i is m-dim., i.e., the mapping U changes the dimension. No eigenvalues 

and eigenvectors can exist! But if one multiplies a second time with UT then one arrives in 

n-dim. space again and it is possible to calculate the “squares” of the eigenvalues: 

These singular values si correspond to the eigenvalues for rectangular matrices. They are the 

“gains” of matrix U in its eigendirections. However, they are always positive.

U quadratic U rectangular

11. Selected Methods in Signal Processing

11.1 Principal Component Analysis
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Example:

Dimension Reduction by PCA

The PCA transforms data from one p-dimensional space into another p-dimensional space.  

This for itself can be an advantage because the new data distribution can be numerically 

better or easier to interpret. One step further is dimensionality reduction by PCA. Here all 

axes with low variance (below some threshold) are removed. The underlying (implicit) 

assumption is that these axes represent just noise. This is especially appropriate for extremely 

high-dimensional space where supervised technique would be too complicated. 

11. Selected Methods in Signal Processing

11.1 Principal Component Analysis
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Transformation

The columns of the matrix V contain the eigenvectors of UTU . They are also called the right

singular vectors of U. Correspondingly the left singular vectors of U are in the columns of the 

matrix W and are identical to the eigenvectors of U UT. The data contained in the matrix U

can be transformed linearly into the new space by:

For the transformation back we have to calculate from X to U : 

The last equality hold because V is unitary, i.e., V TV = I and V V T = I and thus V T = V ‒1..

In the case of dimensionality reduction only the most important axes are selected. They 

belong to the largest eigenvalues of UTU or to the largest singular values of U, respectively.  

Because a SVD sorts the eigenvalues according to their absolute values, this corresponds to 

the first singular values.

11. Selected Methods in Signal Processing

11.1 Principal Component Analysis
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Dimensions

Example: Compression of a picture

• Picture with 128×45 pixels is represented as a 128×45-dimensional 

matrix where “0” stands for “black” up to “255” for “white” and 

many grey shades in between.

• The most important 5-10 axes from a PCA already represent the 

picture quite well. The singular values quickly decline to 0.

• Computational effort is high. This method is not used in praxis.

11. Selected Methods in Signal Processing
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Example: Character Recognition

• Characters A-Z with 5×5 pixels with 

“0” = “black” and “1” = “white”.

• Each pixel corresponds to one 

axis u1, u2, ..., u25. 

• On each axis the pixel values (“0” or “1”) 

are entered, i.e., in each dimension only 

values at 0 and 1 appear. 

• The 25-dimensional input space corresponds

unit hyper-cube. Data only appears at the 

corners. 

• PCA with dimensionality reduction to 2 axes 

x1 and x2 explains 44% of the data variance! 

• “A” /”R” and “W”/”N”/”M” lie closely 

together. They are hard to distinguish from 

the 2 features alone. For “X”/”O” and “T”/”H” 

and “A”/”Y” the distinction is much easier!

11. Selected Methods in Signal Processing

11.1 Principal Component Analysis
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Difficulties with Dimensionality Reduction

The assumption that low variance axes are redundant and 

can be removed can be wrong! A small variance point 

towards a possible linear dependency but this is not 

necessarily the case. An analysis based on input space 

distributions only can never ensure this with certainty. 

The output has to be considered in order to be sure. 

For example for dynamic processes a strong correlation 

of two subsequent outputs y(k–1) and y(k–2) occurs. 

However, they are not redundant if the process is of 

AR(2)-type as an example, that is it follows the equation: 

y(k) = –a1y(k–1) – a2y(k–2) + v(k)

Although y(k–1) and y(k–2) are highly correlated (the 

higher, the smaller the sampling time is) both carry 

important information and are not redundant.
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Feature Selection versus Feature Extraction

A dimensionality reduction with PCA yield a feature extraction. This means that from a 

many original inputs, say p, a smaller number of features, say q, are generated. However, 

they may depend on all original inputs. Therefore the next processing step requires are 

smaller number of inputs/features and is simpler to perform. But none of the original p

measurements can be discarded. 

A more radical approach is feature selection. Here the task is not only to reduce the 

dimensionality but also to remove inputs so that they don’t have to be measured anymore. 

This simplifies not only the further processing but also the overall effort by requiring fewer 

sensors. 

11. Selected Methods in Signal Processing
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Application: Classification

A frequent application of PCA is data pre-processing, especially for dimsnionality reduction 

in classification. The task is to correctly map measurements to r different classes. This can be 

done with the original measurements u1, u2, ..., up or with features x1, x2, ..., xq extracted from 

these measurements. Usually q << p which means that the classification problem becomes of 

much lower dimensionality. 

In the A-Z-character recognition example we have r = 26 classes, p= 5×5 = 25 original inputs 

and only q =2 features (although for a higher classification accuracy than 44% we would 

require realistically 3-5 features). 

For a coin-operated machine we would have to distinguish between r = 9 classes (1c, 2c, 5c, 

10c, 20c, 50c, 1€, 2€, “no €-coin”).  Possible inputs are 

• Weight, color, diameter, thickness, reflectance, ...

11. Selected Methods in Signal Processing
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Basics of Clustering

Like PCA Clustering operates on the input data. The task is to 

find groups (clusters) of data points. These groups can be of 

different shapes and sizes. Depending on the method, a special

prototype is defined that defines how a cluster should look

like. In two dimensions examples are: hollow or filled circles 

or ellipsoids, linies, ...

A similarity measure is defined as a loss function. The similarity

of each cluster is evaluated with this similarity measure. The 

famous K-means clustering for example utilizes the following 

type of loss function: 

where K is the number of clusters and             runs over the data points belonging to the 

cluster j whose center of gravity is closest (in the Euclidian sense). 

11. Selected Methods in Signal Processing
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K-means clustering tries to find K filled circles (or spheres) by minimizing the quadratic 

distances of all data points to the center of their associated cluster. 

Instead of looking for circles (spheres) is can be easily extended to ellipses (ellipsoids) of a 

certain shape, i.e., a given covariance matrix 𝛴. This can be done by replacing the Euclidian 

distance metric with the so-called Mahalanobis distance.

An extension to higher dimensions is easily possible.

It is possible as well to look for ellipse (ellipsoids) of variable covariance matrix (shape). 

However, this require more complex algorithms as design by Gustafson and Kessel or 

Gath and Geva. 
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K-means Clustering

The K-means algorithm works as follows: 

1. Choose the number of clusters K.

2. Initialize the cluster center with randomly selected data points.

3. Assign each data sample to the cluster with the closest center (according to the chosen 

distance metric). 

4. Calculate the center of gravity for each cluster (averaging the associated data points).

5. Place the new cluster centers at those centers of gravity

6. If (at least) one cluster center has moved then go to step 3 otherwise STOP. 

It can be shown that this algorithm minimizes the loss function (on the previous slide). 

However, is can converge to a local optimum. Because the initialization is random, different 

initialization can be tried out and the best result can be selected.

A difficult “tuning factor” is the choice for the number of clusters K. 

11. Selected Methods in Signal Processing
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Examples for K-means Clustering

Interpretation of the figures:

• Data point are marked by dots.

• The old cluster centers are marked by circles.

• The new cluster centers are marked by crosses. 

• The color of the data points represents the association to the cluster of the same color. 

Observations:

• Convergence is very fast; only a few iteration are needed. 

• The global minimum of the loss function is reached in most cases. 

• The sensitivity with respect to the initialization is low.  

• For reasonable results the number of clusters has to be chosen in the right manner. 

• Normalization of data is important because some dimensions can be dominant 

(and others almost irrelevant) if axes are scaled differently.

11. Selected Methods in Signal Processing
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Fuzzy Clustering

The loss function known from K-means clustering can be re-written (extended): 

The second sum runs over all data points (not only those belonging to a single cluster j). 

K-means is a special case of fuzzy K-means with

The variable 𝜇ij denotes the degree of membership to a cluster. A value of “1” means this 

point fully belongs to that cluster. A value of “0” means it doesn’t. The degree of 

membership 𝜇ij can be extended from a binary values to a real value between 0 and 1. Each 

point belongs to each cluster to a certain degree. They have to sum up to 1. A degree of 

membership of 0.51 to cluster A is similar to 0.49 to cluster B and would yield similar 

results. In the classical K-means it is binary and the point would fully be associated with 

cluster A und not at all with cluster B. Therefore, fuzzy clustering is less prone to bad 

initialization. 

11. Selected Methods in Signal Processing
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Clustering for Classification

Like PCA clustering is suitable for data pre-processing. It is 

often utilized for solving classification problems. Instead of 

directly feeding the input features to the (supervised) classifier, 

they are clustered first. With the help of these cluster, the 

classifier has an easier task to perform the classification. 

The underlying idea is that a certain distribution of the data 

reflects the associated classes. Often this is the case. However, 

this is not guaranteed. Therefore an unsupervised method can 

go astray. 
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Chapter 6: Relevant MATLAB Commands MATLAB

PCA:

[COEFF,SCORE] = princomp(X);1

Singular Value Decomposition:

[U,S,V] = svd(X);

Fuzzy K-means Clustering:

[center,U,obj_fcn] = fcm(data,cluster_n);2

1 : Statistics Toolbox

2 : Fuzzy Logic Toolbox

11. Selected Methods in Signal Processing
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Error Definitions

The absolute error e of some measurements is the difference between the displayed or 

outputed value y and the (typically unknown) true value Wert yw: 

The relative error er is absolute error divided by the true value yw and commonly is given in 

percentage: 

The true value yw is unknown in practice (otherwise no measurement would be necessary). 

With additional effort it can be determined with high accuracy: 

• Measurement with a precision instrument. 

• Comparison with a measuring standard. 

Often the quadratic error e2 (absolute or relative) is utilized for optimization as an criterion. 

Many reasons for this exist. An important one is that the resulting optimization is particularly 

easy to solve and manage (least squares). 

5. Measurement Errors and Statistics

5.1 Measurement Errors
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Systematic and Random Errors

Two error classes have to be distinguished:

• Systematic errors: Reason and kind of the error action are known. With a higher effort in 

the measurement system an improvement and/or compensation would be possible, at least 

in principle. 

Examples: Temperature influence with strain gauges. Nonlinear characteristics.

• Random or stochastic errors: Repeated measurements under identical conditions yield 

different results. Typically the errors are different in size and sign (not necessarily, see 

quantization errors). The measurement values scatter! In contrast to systematical errors, 

random errors can not be predicted or compensated. With averaging (calculating the mean 

value), however, their influence can be reduced. The result will improve in quality 

typically with             where N is the number of trails that are averaged. 

Examples: Brownian Motion. Fluctuations in material composition.

If we look very closely, most/all errors are of systematic nature. We have limited resources 

and cannot afford an arbitrary effort; we do not have infinite insights. Therefore we treat all 

errors that seem to be random as random! Typically many independent small systematic 

influences seem to be of random nature.

5. Measurement Errors and Statistics

5.1 Measurement Errors
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Error Causes

• Disturbances: It has to be distinguished between internal and external disturbances: 

−  Internal disturbances affect the sensor itself, e.g. wear.

−  External disturbances come from the outside world, e.g. temperature influences.

By accepting a high effort in the choice of a precision instrument and by changing the 

environment (e.g. climate chamber), disturbances can be kept to a minimum but they can 

never be annihilated. 

• Observation errors: Error induced by the observer himself, e.g. by making a mistake 

during the measurement, wrongly reading the display, … With care such errors can be 

avoided.

• Feedback error: Influence of the sensor on the object to be measured, e.g. the temperature 

of the thermometer changes the temperature of the body that shall be measured. The 

amount of such feedback depends on the measurement method. Radiation-based 

temperature measurement avoids such an unwanted feedback. Physics tells us some effect 

can never be completely eliminated (Heisenberg’s uncertainty principle) but on a 

macroscopic level it can be negligible with the appropriate method. 

• Non-ideal characteristics: The measurement system can possess static and dynamic 

errors and with a digital output it possesses quantization errors as well. 

5. Measurement Errors and Statistics

5.1 Measurement Errors
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Non-ideal Sensor Characteristics

• Static errors: In the ideal case, the characteristics of the sensor is linear/affine. 

In practice nonlinearities distort the result.

Example: quantity = temperature, output = voltage:

T [°C] –100 – 50 0 50 100

U [V] 1 1.7 3 6 10

• Dynamic errors: If the measured quantity changes over

time, the sensor follows with a time constant and delay. 

If we do not wait long enough until the measurement 

values reach steady state (settling time) a dynamic error

occurs. 

• Quantization errors: During the A/D conversion the 

discretization causes errors in time (through sampling) and

in amplitude (through quantization). The latter corresponds 

to a stepwise characteristics. The maximum error is eQ/2. 

5. Measurement Errors and Statistics
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The quality of measurement devices in practice is often characterized with their accuracy 

rating or guaranteed minimum accuracy. With this declaration a manufacturer guarantees 

that possible measurement errors within the specified conditions are limited to certain interval. 

The accuracy rating declares the maximally to expect Typical accuracy ratings: 

error in percentage of the instrument range. 0,1; 0,2; 0,5; 1; 1,5; 2,5

Example: Voltage measurement, accuracy rating = 0,5

a) Range: 0V – 100V. Display: 7V.

max. error = 0,5% · 100V = 0,5V. guaranteed interval = 7V ± 0,5V.

b) Range: 0V – 10V. Display: 7V.

max. error = 0,5% · 10V = 0,05V. guaranteed interval = 7V ± 0,05V.

Recommendation: Always measure in the upper third of the instrument range!

5. Measurement Errors and Statistics

5.2 Accuracy Rating
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Problem

Commonly the quantity to be measured cannot be measured directly but has to be calculated 

from other measurements:

Examples: 

a) Determination of electrical power from voltage and current:

b) Determination of speed or velocity from distance and time interval:

c) Determination of force via resistance change dependent on length, area, and specific 

conductivity:

How do errors in the measurement of U, I, s, t, l, A (or r), ρ affect the final results? 

5. Measurement Errors and Statistics

5.3 Error Propagation
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Gaussian Error Propagation for Systematic Errors

The requested quantity y can be deducted from the measurement values xi, i = 1, .., n, as 

follows: 

The errors of the single measurements xi are denoted by 𝛥xi. This yields the following 

systematic error accumulation for the final output y: 

This equation directly is obtained from the Taylor series expansion of the function f, in which 

all higher than first order terms (linear) are neglected. Thus it is approximately correct if the 

errors are small, i.e., 𝛥xi is close to zero. 

In the above equation, measurement errors can cancel or attenuate each other because they 

might be of opposite sign. Of course this requires knowledge about the right sign of 𝛥xi and 

the slope of f () and therefore the systematic over- or underestimation.

5. Measurement Errors and Statistics

5.3 Error Propagation
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A different situation exists if just the maximal magnitude of errors can be assessed. The 

following worst case assessment is obtained.

Gaussian Error Propagation for Maximal Errors:

Examples: 

a) Power measurement: 

If for example the voltage is measured too small (𝛥U < 0) and the current too large 

(𝛥I > 0) (and U > 0, I > 0), then these error can (partly) compensate each other. If 

nothing is known about the sign of the errors and only their magnitude can be assessed, 

then a maximal error assessment has to be made in which the individual errors 

accumulate. 

5. Measurement Errors and Statistics

5.3 Error Propagation
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Examples: 

b) Speed measurement: 

In this example a (partly) compensation happens if both, the distance and time interval, 

are over- or underestimated because of the “−” sign. Notice that the second term can 

become extremely large if the time interval t is chosen very small, i.e., then the speed 

measurement is very sensitive with respect to measurement errors in time. 

c) Force measurement with strain gauges: 

5. Measurement Errors and Statistics
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Gaussian Error Propagation for Random Errors

The quantity y to be measured depends on the input quantities xi, i = 1, .., n, as follows

The standard deviation of the individual input factors xi shall be given by sxi. Then the 

standard deviation of the output quantity y becomes: 

Example: Averaging of N measurements with equal standard deviations sx

This is a universal statistical law! 100 times more measurement values improve the quality 

by a factor of 10 by reducing the standard deviation of the output y correspondingly. 

5. Measurement Errors and Statistics
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Approximation for Random Errors in Practice

Because it is difficult to estimate the standard deviations sxi for all quantities xi, the following 

formula allows to assess the mean error of the output roughly (strictly speaking this formula 

is not exact): 

The standard deviations sxi are approximated by |𝛥xi| roughly!

Difference of the effect of systematic and random errors

Systematic errors 𝛥xi = 𝛥x, i = 1, …, N, add up: 

Random errors 𝛥xi = 𝛥x, i = 1, …, N, partly compensate each other: 

Therefore averaging yields benefits for random errors (smaller scattering)!

5. Measurement Errors and Statistics

5.3 Error Propagation
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Histograms

If we measure the same quantity N times under identical conditions, each outcome will be 

different due to random errors. In order to get an overview on the quality of the 

measurements and the size of the random errors, it makes sense to plot a histogram. This 

divides the measurements in intervals of size 𝛥x. The number of measurement values that fall 

in the interval i are called frequency of the observation (German: “absolute Häufigkeit”) 

Hi. Each measurement falls in exactly one interval (with nI intervals):

The relative value of Hi (Ger: ”relative Häufigkeit”)

hi describes the fraction of Hi that falls into interval i: 

The relative frequencies of observations sum up to 1: 

5. Measurement Errors and Statistics

5.4 Histograms and Probability Density
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Probability Density Function (PDF)

With a histogram it is easy to see how the measurements are distributed, e.g. how strongly 

they scatter around their mean value   . If we increase the number of measurements N and at 

the same time increase the resolution by making more intervals nI smaller and smaller by 

decreasing 𝛥x, then the histogram converges to the probability density function (pdf):

The density p(x) is a continuous and no stepwise function. We can calculate the probability

of a measurement to fall into a certain interval (x1 x2] by:

The true density p(x) according to which the 

measurements are distributed is usually unknown. 

Typically, realistic assumptions are made from 

insights in the first principles and a histogram. In 

most cases a Gaussian distribution is assumed if nothing

contrary is known. Here is why... (see next slide)

5. Measurement Errors and Statistics
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Normal Distribution (Gaussian)

A normal distribution with mean 𝜇x and variance 𝜎x
2 is defined as follows: 

It is of highest theoretical and practical 

importance. On the one hand, many other 

distributions can be approximated by the 

Gaussian (binomial-, t-/student distribution).

On the other hand, the central limit theorem of statistics

builds the key fundament for the essential normal distribution. It says that the sum of several 

independent random variables follows approximately a normal distribution. This is truly 

remarkable because it makes (almost, there are some minor exceptions) no restrictions on the 

distribution of each random variable! 

In practice, most random errors are caused by many tiny effects that sum up. Therefore, 

almost all random errors are nearly Gaussian distributed. This explains why the Gaussian 

appears so often and is so well known.

5. Measurement Errors and Statistics

5.4 Histograms and Probability Density
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Fundamentals of Estimation

An estimation in the statistical sense is the determination of one or many, in general n, 

quantities (parameters) by utilizing N measurement data. Typically the number of estimated 

parameters n is significantly smaller 

than the number of available data N: 

Therefore an estimation can often be interpreted as a type of data reduction or compression. 

Common examples are the estimation of the:

• mean value of the measurement data (n = 1). 

• standard deviation (scattering) of the measurement data (n = 1). 

• auto- or cross-correlation function of a time signal (n = large). 

• coefficients of a regression line (n = 2) or polynomial (n = 3, …). 

The estimation results depend on the actual measurement data. If the same quantity is 

measured twice (even under identical conditions) we obtain different results and thus 

different estimates, because the random disturbances (noise) have different values.

5. Measurement Errors and Statistics

5.5 Estimation of Mean and Variance
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Properties of an Estimator: Variance

The estimation result depends on the random fluctuations 

of the disturbances which are modeled as random variables. 

Thus the estimation will yield different results for each 

data set. The estimation result is distributed according to

an (unknown) probability density, e.g. an Gaussian normal 

distribution  

The quality of an estimation obviously is high if the estimated 

values are close to each other. This is the case, if 

the pdf is narrow, i.e. has a small variance. The smaller, the better. 

A further demand on the properties of a good estimator is that the pdf becomes smaller the 

larger the amount of data N becomes. For many estimators indeed the variance follows the 

law: 

A data set 4 times the size reduces the scatting by a factor of 2!

5. Measurement Errors and Statistics

5.5 Estimation of Mean and Variance
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Properties of an Estimator: Bias

In the previous slide is was assumed that the mean value 

of the pdf is identical to the true (but unknown) value 𝜃0

of the estimated parameters. If this is the case, the estimation 

is without bias (unbiased): 

This is a desirable but not necessary property. Furthermore it

is often traded for other advantages like a low variance!

If the estimation is not unbiased it possesses a bias (systematic estimation error) : 

If the bias (and the variance) tend to 0 for N → ∞, then we call this a consistent estimation:

5. Measurement Errors and Statistics

5.5 Estimation of Mean and Variance : estimated parameter

: true parameter
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Estimation of the Mean

Random errors can be reduced by averaging, i.e., calculating the mean value of several 

individual measurements. This is the simplest and most straightforward way to effectively 

lower scattering and noise influence. The estimation of the mean value thus plays an 

important role. We clearly distinguish between the true (but unknown) mean 𝜇x and the 

estimated mean value     (also called sample mean or empirical mean) . 

sample mean: 

It can be shown that the sample mean approaches the true value (unbiased) if N becomes large

It can also be shown that for statistically independent data the variance of the sample mean 

estimation decreases for increasing data sets N, such as [4]:

5. Measurement Errors and Statistics

5.5 Estimation of Mean and Variance
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Estimation of the Variance

The variance 𝜎x
2 of the data is also an important quantity. It determines how widely the data 

is spread or scattered. The estimation of the data variance (sample variance or empirical 

variance) can be performed by: 

sample variance: 

The true mean 𝜇x is usually unknown und is replaced by its best estimate   . Because of this 

the sum is divided by N–1 and not by N. One degree of freedom (dof) was already exploited 

or exhausted (figuratively speaking) for the estimation of this mean value and is not available 

anymore for the variance estimation. Only N–1 dof are remaining. It can also be shown 

theoretically that due to the denominator N–1 we have an unbiased estimation [4]:

The variance of an estimate can be used for assessing the reliability of an estimate itself. It is 

required for example for determination of the confidence intervals that indicate the 

reliability of the estimate. 

5. Measurement Errors and Statistics

5.5 Estimation of Mean and Variance
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Trust in a Measurement

A measurement or an estimated mean from many measurements is practically almost useless 

if its reliability is unknown. If its reliability is low then we cannot trust any information. 

Different information sources can be obtained with different reliabilities. A prerequisite for 

sensor fusion, for example, is some knowledge about their reliability. How can we quantify 

this?

Confidence Interval

The trust or confidence in an estimate can be quantified based on its probability density 

function (pdf). The pdf allows to calculate the probability that the true value lies within some 

interval. Typically a symmetric interval around the mean is considered. Most pdfs also have 

their maximal value at their mean. The probability that the deviation from the mean is 

smaller than ±δ is: 

For any interval size (width) 𝛿 we can calculate the associated probability. It is called a 

confidence interval.  

5. Measurement Errors and Statistics

5.6 Confidence Intervals
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Confidence Interval for Normal Distributions

The “width” of a pdf is determined by its standard deviation. Therefore it makes sense to 

measure the width of confidence intervals ±𝛿 in terms multiples of the standard deviation. 

For normal distributions the following confidence intervals are common:

Interval Probability (1–𝛼)

68,27%

95,45%

99,73%

99,99%

The associated probability values 1–𝛼 are called 

confidence levels. The probability of error is denoted by

𝛼 and typically chosen as a small value like 5%, 1%, or 

even 0.1%. The less risk can be accepted the more multiples of the standard deviation must 

be accounted for. Such considerations are also part of any quality control system where error 

rates like 1 in 10.000 directly correspond to a multiple of σ. 

5. Measurement Errors and Statistics

5.6 Confidence Intervals

-3 -2 -1 0 1 2 3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4



Prof. Dr.-Ing. 

Oliver Nelles

Page 322

University

of Siegen

Decreasing the Standard Deviation

The quality of the estimator depends on the standard deviation that can be decreased by:

• Improvement of the quality of the measurement: Because we need to reduce random

errors this is usually a complex and expensive task. Typical approaches are based on the 

isolation of environmental disturbances coming from temperature, air pressure, vibrations, 

radiation, etc.

• Averaging over many measurements: This is the typical approach to reduce random 

errors. The measurement is carried out several times and its average result is utilized. 

We know already that calculating the mean of N measurement values reduces the original 

standard deviation of the individual measurements 𝜎x as follows:

This means it is possible, in principle, to decrease the standard deviation of the mean to an 

arbitrary accuracy. We just have to measure often enough! To double the accuracy we 

have to measure 4 times as many values. At the end, this is just a matter of cost and time.

5. Measurement Errors and Statistics

5.6 Confidence Intervals
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Confidence Intervals for Sample Mean With Known Standard Deviations

For random variables following a normal distribution, the confidence interval is

where the factor c corresponds to the requested confidence level 1–𝛼 or error probability 𝛼, 

e.g. c = 3 for a confidence level of 99,73%. 

Instead of measuring the value x a single time, the mean    can be calculated from N measure-

ments. Then we replace x with    and its standard deviation decreases according to             :

But this formula typically cannot be applied directly because the standard deviation 𝜎x is 

unknown. The next best thing to do, is to approximate it with the square root of the estimated 

sample variance sx
2. However, by using this approximation we make an (usually tiny) error.

5. Measurement Errors and Statistics

5.6 Confidence Intervals

c = 1:  68,27% confidence interval

c = 2:  95,45% confidence interval

c = 3:  99,73% confidence interval
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Confidence Intervals for Sample Mean With Unknown Standard Deviations

Because the estimated sample mean sx is only an approximated value of the (unknown) true 

standard deviation 𝜎x the original confidence interval discussed above is not exactly accurate. 

In order to take this uncertainty into account the formula for the confidence interval has to be 

corrected. This can be done by replacing the normal distribution by the slightly wider 

Student’s t-distribution. The t-distribution accounts for the additional uncertainty caused by 

the possible estimation error of the estimated instead of the true standard deviation. It thus 

depends on the number of measurements N, the so-called

degrees of freedom (dof). If the data set is huge 

(N → ∞), the estimation error for sx tends to zero, 

then Student’s t-distribution converges to the 

normal distribution. However, for only a few 

measurements it becomes fatter at the outside 

making room for more uncertainty (fat tail!). This 

yields wider confidence intervals. 

5. Measurement Errors and Statistics

5.6 Confidence Intervals
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Confidence Intervals for Sample Mean With Unknown Standard Deviations

For random variables that follow a t-distribution the formula for the confidence interval is 

basically unchanged:

but the factor c is larger than for a normal distribution 

(see table). For large N the factor c is hardly 

changed. But for small data sets (small N) 

it becomes significantly bigger. 

The standard deviation is not known like for 

the normal distribution but estimated as follows:

5. Measurement Errors and Statistics

5.6 Confidence Intervals

Factor c for a t-distribution

N 1–𝛼 = 68,27% 1–𝛼 = 95,45% 1–𝛼 = 99,73%

5 1,11 2,65 5,51

10 1,05 2,28 3,96

20 1,03 2,13 3,42

50 1,01 2,05 3,16

100 1,00 2,03 3,08

200 1,00 2,01 3,04

∞ 1,00 2,00 3,00

estimate for 𝜎x

= Gaussian distribution



Prof. Dr.-Ing. 

Oliver Nelles

Page 326

University

of Siegen

Example: Confidence Intervals

A voltage meter yields measurement values that are corrupted by random errors. These errors 

come from an accumulation of many small disturbances which are not known in detail and 

whose sources are not studied. Therefore we can assume the overall error follows a normal 

distribution. From a long history of this voltage meter its behavior and accuracy are well 

known. The variance of the disturbance is determined to be σx
2 = 0.01 or        . 

a) The voltage meter displays: U = 7 V. 

In which range will the true voltage be if we accept an error probability of maximal 0.3%? 

→ Requested confidence level = 99.7%. For a normal distribution this corresponds to c=3. 

The formula for known standard deviation is used, i.e., the confidence interval is 

calculated from the normal distribution because the standard deviation is well-known 

from a previous history of the instrument. (Or we assume N → ∞ for the estimate). 

5. Measurement Errors and Statistics

5.6 Confidence Intervals
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Example: Confidence Intervals

b) The results in example a) does not fulfill our accuracy requirements. Therefore we decide 

to carry out 10 separate measurements and calculate its mean (average). This should get 

us closer to the true value than the above interval: 

U [V]:   7.1    7.0    7.2    6.7    6.9    7.0    6.6    7.2    7.1    7.1

Sample mean:

Standard deviation of the sample mean: 

This result is more accurate by a factor of 3.16 for the same error probability of 0.3%.

Even more measurement would improve the accuracy further. 

5. Measurement Errors and Statistics

5.6 Confidence Intervals
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Example: Confidence Intervals

c) We repeat the experimental setup from b) with a new instrument because the old one is 

broken. Thus a long history of the instrument’s accuracy is not available. We do not know 

(as before) that the variance is 0.01. Therefore we have to estimate the instrument’s 

accuracy by calculating the standard deviation of the 10 measurement values

Sample standard deviation of the measurements: 

Sample standard deviation of the mean: 

Factor c for the t-distribution with the confidence level of 1–𝛼 = 99.7%:  c = 3.96

The larger interval range has two reasons: 

(i)  factor 2 bigger standard deviations of the measurements (instrument is worse), 

(ii) factor 1.32 (3,96/3) bigger c-factor, because we need the t- not the normal 

distribution due to only estimated instrument quality. 

5. Measurement Errors and Statistics

5.6 Confidence Intervals
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„Six Sigma (6𝜎)“ Quality Management System

This quality control management system was introduced in the mid 1980s by Motorola and 

since then has been adopted by many companies. It became particularly famous due to the 

introduction within General Electric (GE) by its CEO Jack Welch who made it a great 

success and the name “Six Sigma” became quite well-known.

The idea of Six Sigma is to reduce tolerances in a way, that the short term standard deviation 

becomes so small that the failure rate corresponds only to 6𝜎 = quality of 1 ppb (parts per 

billion). According to expert knowledge, long term influences (mean changes slowly over 

time due to wear etc.) already cause approximately ±1,5𝜎. Thus the final quality will be in 

the range of 4,5𝜎 = quality of 3,4 ppm (parts per million). 

The implementation of “Six Sigma” is not only done in manufacturing. Rather all areas of a 

company are required to deliver a high quality level. An important feature of ”Six Sigma” is 

an inherent feedback control. Quality is permanently measured and deviations from the 

required numbers cause control actions. The five main steps in “Six Sigma” are: 

Define. Measure. Analyze. Improve. Control. (DMAIC). 

The statistic evaluation plays an important role in “Six Sigma”. 

5. Measurement Errors and Statistics

5.6 Confidence Intervals
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6. Static and Dynamic Behavior 

of Sensors
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6. Static and Dynamic Behavior of Sensors

6.1 Overview

6.2 Static Behavior of Sensors

6.3 Dynamic Behavior of Sensors

6. Static and Dynamic Behavior of Sensors

Contents of Chapter 6
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Measurement errors have their reasons commonly in one or more of the following 

issues:

1. Nonlinear static characteristics of the instrument.

2. Dynamic transfer behavior of the instrument. 

3. Noise superposes the desired signal.

Against these error sources counter measures can be taken that eliminate or at least 

reduce the error:

1. Compensation of the nonlinear distortion. 

2. Compensation of the dynamic lag or waiting for the signal to settle (dynamics has faded). 

3. Filtering to suppress noise. 

Even if these counter measures are not completely successful or sufficient it is important to 

understand their effects. Only this allows one to assess the errors appropriately. 

6. Static and Dynamic Behavior of Sensors

6.1 Overview
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Linear Characteristics

The static characteristics between the input x and the output y can be described by a function: 

In sensorics we are primarily interested in the relationship between a measured quantity x, 

e.g. temperature, pressure, or displacement, and the yielded or displayed output y of the 

instrument, e.g. a voltage between 0V and 10V. 

In the ideal case, this characteristics is linear, i.e., it exists a proportional relationship 

between input and output:

For converting between input and output (or back) only the 

proportionality constant k is necessary. It is independent of 

the operating point (OP). This is also true for the almost as 

simple affine relationship that includes an additional offset: 

By a simple transformation of the axis 

it can be transformed in the linear form              .

6. Static and Dynamic Behavior of Sensors

6.2 Static Behavior of Sensors
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Advantages of a Linear (Affine) Characteristics

• Easy to understand and to handle. 

• Described by one (two) parameters: k (and k0). 

• Identical sensitivities (slopes) in all operating points.

Life and Dead Zero

In measurement techniques the representation of the origin is practically important:

• Dead Zero: If the output y = f (x) = 0 for x = 0, i.e., the characteristics goes exactly  

through the origin of the coordinate system, as it is the case for linear systems. 

• Life zero: If the output y = f (x) ≠ 0 for x = 0, i.e., the characteristics does not go exactly  

through the origin of the coordinate system, as it is the case for affine systems. 

A life zero offers an important practical advantage. It allows to distinguish between a zero 

measurement x = 0 with y = k0 and a disconnection or other wire breakage (y = 0).  

6. Static and Dynamic Behavior of Sensors

6.2 Static Behavior of Sensors
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Linearization

In reality every instrument will possess a nonlinear character-

istics.  It is possible to approximate this relationship by linear 

or affine characteristics. Two alternative approaches exist:

1. Global approximation: The complete nonlinear

characteristics in the whole range is approximated 

by a line (blue dashed). 

2. Linearization around an operating point (OP): The nonlinear characteristics in a small 

range around some operating point (OP) is approximated by a line (blue solid). Such an 

approximation is superior to the first approach as long the systems stays close to the OP 

(x0, y0). Each OP requires an individual line since the slope and offset depends on the OP.  

The line follows the equation: 

Method 2 is better, if x changes slowly and it is possible to adjust the line as the OP changes. 

If the behavior is rapidly time-variant the 1. method might be better.  

6. Static and Dynamic Behavior of Sensors

6.2 Static Behavior of Sensors

OP

nonlinear

characteristics
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Sensitivity

The sensitivity S of an instrument is determined by the slope of its characteristics in the 

considered OP: 

In general, the sensitivity of a nonlinear characteristics is operating point dependent, 

i.e., S = S(x0). For linear or affine characteristics the sensitivity is constant over the whole 

operating range because the slope never changes, i.e., S = k. 

Common nonlinear characteristics possess a monotonically  

increasing or decreasing sensitivity (in absolute value). 

The first is called progressive, the latter behavior is called 

degressive. 

Of course, more complicated characteristics with inflection

point(s) are possible as well. But the four main 

characteristics to the right cover at least 90% of all cases.

6. Static and Dynamic Behavior of Sensors

6.2 Static Behavior of Sensors

progressively 

increasing

progressively 

decreasing

degressively

increasing

degressively

decreasing

If the sensitivity is low a change in the measured value x

hardly affects the output y of the instrument!
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Compensation of Nonlinear Behavior

If the nonlinear characteristics of a sensor is known (from manufacturer’s data or thorough 

measurements) it can be compensated at least partially. Two alternative exist: 

• Differential principle: This is a popular approach for inductive and capacitive sensors and 

utilizes a bridge circuit. The nonlinearity often cannot fully be compensated but the 

approximation is commonly of high quality. 

• Inversion of characteristics: By connecting the sensors and its inverted static 

characteristics in series theoretically both cancel each other. Theoretically, this is possible 

if the characteristics is strictly monotonous. 

However, practical problems occur if the sensitivity is extremely small or large. The latter 

implies that the sensitivity of the inverted characteristics is extremely small. 

This is also a standard method in control. Smart sensors commonly include such a 

compensation as well. Together with such a compensation they offer (almost) linear 

behavior which makes it very user friendly. 

6. Static and Dynamic Behavior of Sensors

6.2 Static Behavior of Sensors
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Compensation Via Difference Calculation

The key idea is to calculate the difference between two signals that are caused by counter-

acting (e.g. opposite) effects. For inductive (or capacitive) displacement sensors e.g. one 

signal shows a positive and the other a negative influence. Calculating the difference yields:

From a Taylor series expansion of the function f that gives

we recognize the quadratic terms (and all terms of even powers) are eliminated in the 

difference calculation: 

By eliminating the quadratic terms the characteristics

between x and yd become more close to linear in a 

wider range. For all purely quadratic relationship the 

difference even yields an exact linear characteristics.

6. Static and Dynamic Behavior of Sensors

6.2 Static Behavior of Sensors
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Compensation Via Inversion

The key idea is to isolated x as a function of y (inversion):

The inverse function only exists of f (x) is biuniquely, i.e., if for every y from the physically 

reasonable range, exactly one x exists. If f (x) does not fulfill this property (most will do) then 

the inversion can be carried out in intervals in which this property holds. By such an inversion, 

the electronics can compensate for all (at least most) nonlinearities in the sensor. The “~“ shall 

indicate that an exact inversion is never possible in practice. 

A prerequisite for an inversion is that the function f (x) is known accurately. Special care is 

necessary for very small or large (where the inverse is very small) sensitivities because tiny 

errors cause huge deviations. 

6. Static and Dynamic Behavior of Sensors

6.2 Static Behavior of Sensors

Sensor Evaluation
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6.2 Static Behavior of Sensors

Determination of the Static Characteristics

• The input signal must be held constant long enough that the output signal has time to 

settle. Then one point on the x-y-characteristics can be read out. 

→  Time required for measuring through the entire characteristics is high!

• Characteristics typically are stored in a look-up table with 

linear interpolation (red dashed). Alternatives: Polynomials, neural networks, ...

• Characteristics for more than 1 input are called characteristic maps. They are commonly 

measured on a grid, e.g. 8 × 8 combinations for 2 inputs. 

6. Static and Dynamic Behavior of Sensors
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6.2 Static Behavior of Sensors

Characteristics in Lookup Tables

If a quantity depends in a nonlinear way on several other quantities, a characteristic map is 

required to describe such a behavior. For more than 2 input dimensions, however, only slices 

can be graphically illustrated. Therefore a 2-D example: 

A typically characteristic map out of

an automotive area: The control of 

combustion engines. The engine torque

depends decisively on the engine speed

and the throttle angle (for gasoline engines)

or injection mass (for Diesel engines). 

6. Static and Dynamic Behavior of Sensors
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Dynamic Errors

The output y of an ideal instrument follows the input x instantaneously, i.e., without any time 

lag. In reality such an ideal behavior cannot be realized. Masses have to be accelerated, 

capacitors have to be charged, temperature must adjust, electric/magnetic fields have to build 

up, signals need to be processed. Such delays or lags cause a so-called dynamic error. 

Dynamic errors only show if the input signal changes. They are the higher, the faster these 

changes are. Examples for really fast input signals are impulses or steps. 

To compare the dynamic behavior of sensors it makes sense to relate to a common scenario 

where the input changes step-wise and the deviation of the response y to a perfect step is 

measured. The response can be partitioned into 3 parts: 

1. 0 … Tt: y(t) does not react at all. 

2. Tt … Tset: y(t) reacts.

3. Tset … ∞: y(t) settles (almost) to its final value.

For Filters see Chapter 10

settling time Tset

6. Static and Dynamic Behavior of Sensors

6.3 Dynamic Behavior of Sensors

time t
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dead time Tt
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The smaller the dead time Tt and the settling time Tset are, the faster the sensor behaves and 

the smaller the dynamic error becomes. An ideal sensor has: Tt = 0 und Tset = 0 but of course 

this is not possible

Overshoot and Damping

Unfortunately the output is not always as nice with an asymptotic approach to its final value 

as shown in the last slide. Often the dynamic behavior (at least approximately) follows a 

differential equation of 2. order:

where D is the damping and 𝜔0 is the resonance frequency

given by the physics of the sensor. The equation e.g. can 

describe a mass-spring-damper-system as it occurs in every 

instrument needle/pointer. If the damping D is too low (D < 1)

oscillations will occur; if the damping D is too high (D > 1)

the settling time will be too long. Therefore the best 

compromise is the so-called aperiodic limit case with D = 1. 

6. Static and Dynamic Behavior of Sensors

6.3 Dynamic Behavior of Sensors
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time t
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How to Avoid or Reduce Dynamic Errors?

1. Wait after a change in the measured quantity x until settling is reached after time period 

Tt + Tset and then read output value y or process it further, respectively. 

2. In a post-processing step the delayed and time-lagged output y(t) is predicted into the 

future (non-causal system). 

3. Reduce the time-lag in the dynamic error with dynamic filter with differential character. 

The price to be paid is a higher sensitivity to noise.

Method 1 and 2 can only work if the output y is not need at once! Method 1 additionally 

requires that the changes are step-wise and not continuous. 

Method 1 and 2 thus cannot be used for feedback control systems! In feedback control 

it is crucial that the control variable x is fed back at once to the comparison with the desired 

value. The controller must act as quickly as possible with respect to deviations. Any 

additional delay will deteriorate the control performance.  

That leaves us with method 3 where it is important to find a 

good trade-off between noise sensitivity and the reduction of 

dynamic errors.

6. Static and Dynamic Behavior of Sensors

6.3 Dynamic Behavior of Sensors
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2. Measurement of Electrical Quantities

2.1 Moving Coil Mechanism

2.2 Measurement of Current

2.3 Measurement of Voltage

2.4 Measurement of Power and Energy

2.5 Measurement of AC Quantities

2.6 Measurement Methods and Amplifier Circuits 

2. Measurement of Electrical Quantities

Contents of Chapter 2
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Why is the measurement of electrical quantities so important?

Electrical current possesses many advantages over alternative physical means to transport 

energy and information like with air pressure or hydraulics. Electricity is:

• Easy to measure with high efficiency.

• Easy and with high efficiency to transform to other quantities with motors (torque, 

speed), electric heating (heat) or air conditioning (coldness), lamp or LED (light). 

• Well and easy to control. 

• Efficiently to transport over long distances. 

• Almost everywhere available.

• Standard means to transmit information. 

• Easy to covert into digital signals and to process in a computer.

Because of these advantages electricity plays a dominant role in measuring things (sensorics) 

and manipulating things (actuation). At least the last part in sensorics and the first part in 

actuators is often of electrical nature to exploit the good controllability properties. 

2. Measurement of Electrical Quantities

2.1 Moving Coil Mechanism
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First Principles

A magnetic field of flux density B generates a force 

on a wire of length l that is orthogonal to the field 

and carries an electrical current I. The generated

Lorentz force is calculated by 

This force is proportional to the current and can be used to indicate 

its value. If this force is in balance with a spring, a pointer can 

display the size of the current. 

More accurately, the force is generated in N windings of a coil. 

Because it acts on each side of the coil, the actual torque is twice

this force times the distance r (diameter of the coil = d = 2r). 

This gives the torque:

Acting on a torsion spring with torque M = c𝛼 results in a displayed angle 𝛼.

2. Measurement of Electrical Quantities

2.1 Moving Coil Mechanism
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2. Measurement of Electrical Quantities

2.1 Moving Coil Mechanism

(1) Weicheisenkern, (2) Permanentmagnet, (3) Polschuhe, (4) Skale, (5) Spiegelskale, (6) Rückstellfeder, (7) Drehspule, (8) 

Ruhelage, (9) Maximalausschlag, (10) Spulenkörper, (11) Justierschraube, (12) Zeiger, (13) Südpol, (14) Nordpol

Source: http://de.wikipedia.org/wiki/Drehspulmesswerk
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Some Facts on the Moving Coil Mechanism Meter

• Most frequently applied analog way to measure currents. 

• Range: 10−6A − 100A. Accuracy: 0,1% − 1,5%. Settling Time:  0,5s − 1s. 

• With resistors in parallel the range can be changed.

• By coupling it with an DC converter it can be used to measure an AC current.

• With an auxiliary resistor and Ohm’s law, it can be used to measure voltage. 

• Replacing the permanent magnet creating B by an electromagnet, the meter can be used 

for measurement of power.

Change of Range: 

2. Measurement of Electrical Quantities

2.2 Measurement of Current

A

RM

I
A

RM

I
A

RM

I
: 10 : 10

x 10 x 10

Internal Resistance: RM

Internal Resistance: 10RM Internal Resistance: 100RM
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Systematic Error of Current Measurement

Circuit without meter Circuit with meter

True current: Measured current: 

This leads to a relative error in the current measurement of: 

Current meters should have an internal resistance as small as possible!

2. Measurement of Electrical Quantities

2.2 Measurement of Current

I0R

U0

A

RM

IMR

U0

Internal 

resistance 

distorts the 

measurement!

0
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Using a Current Meter for Measuring a Voltage

Circuit without meter Circuit with meter

True voltage: Measured voltage: 

This leads to a relative error in the voltage measurement of: 

Voltage meters should have an internal resistance as large as possible!

2. Measurement of Electrical Quantities

2.3 Measurement of Voltage

I0

R
V
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Change of Range

Nomenclature of Voltage Meters

The internal resistance is given in relation to the upper range value and in Ω /V. 

E.g. “1 kΩ /V” means:

• 100 kΩ internal resistance within the range 0…100 V. 

• 10 kΩ internal resistance within the range 0…10 V, etc. 

2. Measurement of Electrical Quantities

2.3 Measurement of Voltage

: 10 : 10

V V

RM
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RM

9RM

V
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Internal Resistance: RM Internal Resistance: 10RM Internal Resistance: 100RM
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Considerations About the Systematic Errors in Current and Voltage Measurements:

• To reduce the deterioration in current measurements, we want to have a small internal 

resistance, in the ideal case RM = 0. 

• To reduce the deterioration in voltage measurements, we want to have a large internal 

resistance, in the ideal case RM = ∞. 

• The demand for a small internal resistance is much more difficult to fulfill than the 

demand for a large internal resistance, because

− the coil of the moving coil mechanism naturally has a finite resistance, in particular if 

N is high, 

− also the connections/contacts where the meter is attached have a resistance, 

− amplifier circuits easily can generate a resistance close to RM = ∞ (see Chapter 2.6). 

These arguments show that a voltage measurement can be performed more accurately 

than a current measurement. 

Therefore we can apply a trick to use voltage measurements for determining currents. 

2. Measurement of Electrical Quantities

2.3 Measurement of Voltage
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Indirect Current Measurement With a Shunt

A Shunt is a measurement resistor that has been manufactured with care (expensive!) to 

ensure a low resistance with great accuracy almost independent of disturbing influences like 

temperature. The voltage drop over such a shunt is measured and by Ohm’s law the flowing 

current is determined. Compared to a direct current measurement, which incorporates the 

meter in series within the circuit, the following advantages are obtained:

• The resistance of shunt is more accurate than the internal 

resistance of the meter. 

→ Smaller measurement error. 

• The resistance of the shunt can be chosen to be smaller than 

the internal resistance of the meter. 

→ Smaller measurement error.

• The wires and connections to the meter lead to a voltage drop 

and are sources of measurement errors. Because the current 

through the voltage meter is tiny (<< I), these are insignificant

compared to the direct method. 

2. Measurement of Electrical Quantities

2.3 Measurement of Voltage

A

RM << 1

I

V

RM >> 1

I

Shunt

Direct current measurement

Indirect current 

measurement via a shunt
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First Principles

Electrical power is the product between voltage and current:

Replacing the permanent magnet of the moving coil mechanism creating the magnetic field B

by an electromagnet, constructs the electrodynamic instrument. It can measure power. If 

the electromagnet is fed with voltage U this creates a current and subsequently a magnetic 

field proportional to U:

With the formula for the moving coil mechanism we obtain: 

The generated torque is proportional to the power P. 

2. Measurement of Electrical Quantities

2.4 Measurement of Power and Energy
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Measuring Electrical Energy

Measuring energy is based on the measurement of power. Energy is power integrated over 

time:

If the power is constant over time, energy is simply power times time:

Otherwise can be fed to an integration circuit (see Chapter 2.6) and be computed in an analog 

manner. Alternatively it can be measured (counted) by a motor meter. A motor meter 

basically is an induction measuring system (see Chapter 2.5) in which the electromagnets are 

replaced with an electromotor whose torque is proportional to the power. The number of 

revolutions of the disk is proportional to the energy.

2. Measurement of Electrical Quantities

2.4 Measurement of Power and Energy
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Mean, Peak, Rectified, and Root Mean Square (RMS) Values

AC Quantities are periodic signals x(t) with a period (cycle duration) of T. The following 

measures of “size” have to be distinguished: 

Mean: Peak:

Rectified: RMS:

The by far most important periodic signal type is a sine or cosine signal. A sine oscillation 

with amplitude A has the following characteristic values: 

Mean: Peak:

Rectified: RMS:

For a rectangular oscillation the mean, peak, rectified, and RMS values are all identical to its 

amplitude A. The rectified value is the mean of the absolute value. The RMS value is a 

measure for the signal power or energy. 

2. Measurement of Electrical Quantities

2.5 Measurement of AC Quantities
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Measuring Mean Values

The mean value of an electrical AC quantity can be directly measured with a moving coil 

mechanism, if the frequency of the signal is high enough. Often occurring frequencies around 

50 or 60 Hz (power net frequency) are so much higher than the bandwidth of the moving coil 

mechanism (around 1 Hz) that the instrument shows only the mean value. I.e., only the offset 

value of the AC signal is displayed.

Measuring Peak Values

A diode lets only the positive half part of an oscillation 

signal u(t) pass.  A capacitor C stores the highest occurring 

value of this voltage. Since the voltage meter has a very

high internal resistance RM, the capacitor will be hardly 

discharged (dashed line) before it is charged again at the 

next period T. A circuit manages to half the refresh times 

by an additional diode. 

2. Measurement of Electrical Quantities

2.5 Measurement of AC Quantities
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Measuring Rectified Values

The most straight forward way to rectify a signal is to 

let only the positive half of the oscillation pass by a diode. 

The negative halves are blocked. In contrast to its 

definition, this approach in the mean measures only ½ 

of the rectified value. Therefore the result has to be 

multiplied by 2. 

More advanced is the Graetz circuit which requires 4

diodes that manage to let the positive halves pass and

let the negative halves pass in the other direction. Thus

the full rectified value is determined. 

Because for oscillations of sin type, the relation between 

the rectified value and both, the peak value and the RMS

value are known, both values can be calculated from the 

rectified one:

2. Measurement of Electrical Quantities

2.5 Measurement of AC Quantities
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Apparent, Active, and Reactive Power

In coils and capacitors where inductivity and capacity are the dominant factors, AC voltage 

and current are phase shifted by +90° and –90°, respectively. Thus, if not purely ohmic 

impedances are present, phase shifts 𝜑 between voltage and current have to be taken into 

account in any AC circuit in general. The apparent power PS in such a impedance is simply 

the product between the RMS values (called “effective” in German) of voltage and current:

But the entire apparent power cannot perform work. One part of it just oscillates around the 

mean value 0. The really useful part of it is called active power (“Wirkleistung” in German). 

This part can perform work and is calculated by:

The part that cannot perform any work is called reactive power (“Blindleistung” in German) 

and calculated by: 

If voltage and current are not phase-shifted (φ = 0), then the 

reactive power = 0 and apparent power = active power.

2. Measurement of Electrical Quantities

2.5 Measurement of AC Quantities
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2. Measurement of Electrical Quantities

2.5 Measurement of AC Quantities
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Power Measurement

What happens if we measure an AC current with a moving coil mechanism instrument like a 

DC current? 

The displayed deflection is proportional to the product between voltage and current

The 2. cos term is averaged out to 0, because we can assume a high frequency of AC 

quantities (e.g. 50 Hz) compared to the bandwidth of the instrument (around 1 Hz). This 

gives the mean value of the apparent power pS(t) which is identical to the mean of the 

amplitude of the active power: 

The reactive power can be measured by shifting the voltage by –90° before feeding it to the 

instrument. The displayed value is proportional to the reactive power: 

2. Measurement of Electrical Quantities

2.5 Measurement of AC Quantities
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Measuring the Apparent Power

One way to measure apparent power is to measure the RMS of voltage and current separately 

and subsequently multiply them:

An alternative is to let this multiplication happen in a moving coil mechanism instrument by 

physical law. To do this, the instrument has to be fed with the rectified values of voltage and 

current. The scale must then consider the quadratic nature of the result and the conversion 

factor between rectified and RMS values.

Measuring the Phase Shift

There are instruments to measure the phase shift between voltage and current. If this is 

determined, the active and reactive powers can be calculated form the apparent power. 

Besides these possibilities there are some tricky measurement circuits for three-phase 

systems that are beyond the scope of this chapter. 

2. Measurement of Electrical Quantities

2.5 Measurement of AC Quantities
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Energy Measurement

Because only active power can perform work, the energy (work)

can be calculated by integration:  

If the power is constant over time this gives: 

To really measure the energy, can be done by an 

induction-based system. Such a reliable measure-

ment system is very common, e.g. in any household 

for measurement of the consumed electricity 

(“Stromzähler”). 

An electromagnet generates a field that creates

eddy currents in the revolving disk. These cause 

a torque which is proportional to the product of

voltage and current, i.e., the active power. 

2. Measurement of Electrical Quantities

2.5 Measurement of AC Quantities



Prof. Dr.-Ing. 

Oliver Nelles

Page 366

University

of Siegen

Operational Amplifier

An operational amplifier (OpAmp) is an active component. This means that it needs an 

external energy source which is given by a supply voltage UV. An OpAmp is a multi-stage 

amplifier circuit that incorporates many transistors. Since 1962 it is available as an integrated 

circuit on a chip. Practically all measurement circuits are realized with the help of OpAmps. It 

is easy to build filter, integrator, differentiator and many more kind of circuits. Analog 

computers are based on OpAmp circuits and allow to simulate differential equations in a 

straight forward manner. They can be seen as the predecessor of Simulink. 

A real OpAmp has the following properties:

• 2 inputs U+ und U–, whose difference Ue

is amplified and generates the output Ua = Vue. 

• Input resistance Re is in the mega ohm range.

• output resistance Ra is only a few ohm.

• Gain V is in the range 10.000 – 100.000.

2. Measurement of Electrical Quantities

2.6 Measurement Methods and Amplifier Circuits
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Ideal Operational Amplifier

Idealized an OpAmp can be described by the following approximations: 

• Input resistance Re = ∞. 

• Output resistance  Ra = 0.

• Gain V = ∞. 

Amplifier with Feedback

An OpAmp is either used as a switch (comparator) or most frequently applied with feedback 

that typically is used with negative sign (like in feedback control). I.e., the output is fed back 

to the “–”-input. This ensures that the input voltage Ud becomes very small since Ud = Ua/V

with V = ∞. Furthermore, the current into the OpAmp is insignificant since the input 

resistance is huge (Re = ∞). Therefore, all fed back OpAmps are assumed to follow the 

important simplifications: 

• OpAmp input voltage Ud = 0. 

• OpAmp input current Ie = 0. 

2. Measurement of Electrical Quantities

2.6 Measurement Methods and Amplifier Circuits
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Voltage Amplification (Non Inverting)

A voltage amplifier has the task to convert an 

input voltage Ue in an output voltage Ua = KUe.

Moreover the load on the input voltage should 

be as small as possible, i.e., only a tiny current 

should be drawn from the circuit at the input.

On the other side, the output should be capable 

to drive significant currents. 

The gain of the voltage amplification has to be adjusted by the components within the circuit 

easily. 

Ue can be measured over the resistor R2, because between the “+“ and “–“ inputs of the 

OpAmp almost no voltage drops. Ue splits according to the standard voltage divider rules 

onto both resistors, since almost no current goes into the OpAmp. Therefore the transfer 

function becomes:

2. Measurement of Electrical Quantities
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Application of a Voltage Amplifier

• Voltage Measurement: The voltage that shall be measured is connected to the input. 

At the output any circuit can draw a high current without influencing the measure-

ment circuit. The evaluation circuit itself does not need to possess a very high resistance. 

• Constant Voltage Source: If a voltage source is connected to the input, the OpAmp

output can draw big currents without putting any load on the input. The voltage source is 

then in no danger to break down. 

• Voltage Amplification: With an appropriate choice of R1 and R2 almost any desired gain 

K > 1 can be created. 

Voltage Follower / Impedance Converter

Interesting is the special case R1 = 0 (short circuit) 

and R2 = ∞ (wire open). Such a circuit just converts the 

resistance/impedance. The transfer function is unity:

2. Measurement of Electrical Quantities

2.6 Measurement Methods and Amplifier Circuits
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Voltage Amplification (Inverting)

The voltage amplification circuit has a small input 

resistance. Furthermore, it changes sign (inverting). 

Ue also drops at the resistor R1, because between 

the “+“ and “–“ inputs almost no voltage drops. 

According to the same argument, the output 

voltage Ua drops over R2. No current flows 

into the OpAmp. This means:

It is also possible to add additional input in 

parallel. It can be used to build more complex 

addition or subtraction circuits., e.g.:

2. Measurement of Electrical Quantities
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Creation of Desired Dynamic Behavior

With the OpAmps any dynamic behavior can be achieved by using not only ohmic 

impedances, but also applying frequency-dependent components like capacitors and coils.

With a current of sin-type we get:

At a resistor with resistance R the voltage becomes:

At a coil with inductivity L: 

At a capacitor with capacity C: 

2. Measurement of Electrical Quantities
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Integrator

An integrator circuit is needed e.g. for the simulation of 

differential equations. It is also required for computing 

energy from power, speed from acceleration, distance 

from speed, electrical charge from current etc. 

Differentiator

At the OpAmp circuit it is obvious, that this is the exact

opposite of the integrator shown above. 

With R and C the proportionality (time) constant can 

be adjusted. 

2. Measurement of Electrical Quantities
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Low Pass Filter

This circuit simulates a first order differential

equation. It is a simple low pass filter (PT1)

to suppress high frequency disturbances like 

noise. 

The factor –C1/C2 is a gain factor, i.e., it determines 

the static gain of the transfer function. For a filter it 

is thus reasonable to choose C1 = C2. A subsequent 

inverter should be used to get rid of the “–“ sign. R1C1 is the time constant and 1/R1C1 is 

called the corner frequency which determines the filter bandwidth.

2. Measurement of Electrical Quantities
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PID Control

This OpAmp circuit realizes a PID controller, which 

is the most widely used controller type. The 

(P) part realizes the proportional, the (I) part 

realizes the integrative, and the (D) part 

realizes the derivative action. The respective 

values can be adjusted by the corresponding 

resistors and capacitors.

With help of nonlinear components like diodes, e.g. an expo-

nential characteristics can be constructed. It is even possible 

to construct circuit that calculate the logarithm. Based 

on these, multiplication and division are easy to build.

2. Measurement of Electrical Quantities
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Bridge Circuit

Measurement of impedances (purely ohmic or frequency-dependent) can be reduced to a 

simple voltage and current measurement and a subsequent division. But very powerful and 

widely used are direct measurements via a bridge circuit. For simplicity, the procedure shall 

be explained for resistances but an extension to any kind of impedance is straight forward. 

There are 2 alternative approaches:

1. The unknown resistance is compared to an adjustable resistance. 

The adjustable resistance will be tuned as long the bridge circuit is balanced.

2. The unknown resistance deviates only insignificantly from its (known) nominal value. 

In this case, it is possible to calculate the resistance from the diagonal bridge voltage. 

Method 1 has the advantage that the diagonal bridge voltage has to be measured only for 

very small (positive or negative) values around 0. It is not necessary to have an instrument 

that can handle large amplitudes. It is possible to achieve with a high accuracy with simple 

instruments. On the other hand the tuning can be tedious. 

Method 2 is fast and effective but works only around an operating point, i.e., if the resistance 

is close to its nominal value. 

2. Measurement of Electrical Quantities
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Balance the Bridge

This bridge circuit was invented and first applied by Wheatstone 

in 1843. Under the following condition this bridge is balanced, 

i.e., the diagonal voltage is zero (Ud = 0): 

According to the voltage divider rule this means: 

If the resistance R2 is unknown, we can tune one resistor (in principle, any one or more than 

one) until the diagonal voltage is zero: Ud = 0. The bridge then is balanced. The unknown 

resistance thus can be calculated from:

Advantage: Independent of quality of the voltage source U0. Only measurement of Ud around 

zero is necessary.

Drawback: Tedious tuning of the comparing resistance.

2. Measurement of Electrical Quantities
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Bridge Voltage

If the unknown resistance deviated only slightly from its nominal 

value, the diagonal voltage can be used as a measure of this 

resistance: 

If the resistance deviation ΔR is small compared to R, in approximation we have: 

However, the relation between ΔR and Ud is only 

approximately linear:

2. Measurement of Electrical Quantities
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Increase of Sensitivity

Half Bridge

The sensitivity of the measurement can be doubled by utilizing

2 measurement resistors (red) instead of 1: 

Full Bridge

A further increase of sensitivity can be achieved by utilizing 

2 positively (red, R + ΔR) and negatively (green, R – ΔR) 

changed resistances. This is e.g. a common approach for 

resistance strain gauges. Typically the strains are attached 

on opposite sides of a bar.

2. Measurement of Electrical Quantities
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Oscillators 

Electrical oscillators consist of a capacitor with 

capacity C and a coil with inductivity L and a

resistor with (relatively small) resistance R.

Such an oscillator is the equivalent to a mass-damper-spring system in mechanics. Only in 

the resistor or the damper, respectively, energy is lost (more strictly speaking converted to 

heat). Without these dissipative elements, they would oscillate forever with their resonance 

frequency 𝜔0. This resonance frequency depends on C and L (or the spring constant c and 

the mass m, respectively). Therefore, it can be utilized to measure capacities and/or 

inductivities in an indirect manner. 

Electrical oscillators follow the relationship between voltage and current given by:

With a current of sin-type:

2. Measurement of Electrical Quantities
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Resonance in Oscillators

In the case of resonance, the change of voltage at the capacitor and the coil cancel each other 

exactly. Resonance happens for: 

Then, the impedance of the oscillator is purely ohmic. In the ideal case of no energy loss 

(R → 0 or in the mechanical case damper constant d → 0, respectively) the current would be 

of infinite amplitude and oscillating at the resonance frequency of:

or for the mechanical counter part: 

The resonance frequency 𝜔0 can be used to determine:

• the inductivity L if C s known, 

• the capacity C if L is known.

Coils, capacitors, and whole oscillators can naturally be build in OpAmp circuits.

2. Measurement of Electrical Quantities
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3. Measurement of Non-Electrical Quantities

3.1 Sensors and Sensor Systems

3.2 Displacement and Angles

3.3 Speed

3.4 Acceleration

3.5 Force, Torque, Pressure, and Mass

3.6 Temperature

3.7 Flow

3.8 Miscellaneous
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Desired Properties for Sensors

• Conversion of a physical measurement quantity into a signal that is suitable for further 

processing. Typically, this is an electrical signal because it is especially well suited for 

this task. 

• Sensitivity: High as possible reaction with respect to the quantity that shall be measured. 

• Selectivity: Low as possible reaction with respect to everything else.

• Stability: Constant as possible behavior with respect to all environmental changes like 

temperature and aging. 

Sensor Systems

• Sensors integrated with intelligent components such as micro-controllers with software 

(also called smart sensor). 

• Combination of many identical or different sensors.

• Integration of sensors, actuators, and appropriate control equipment.

3. Measurement of Non-Electrical Quantities
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Sensor Fusion

• Information of many sensors is combined in a clever way to achieve advantages.

• Stochastic measurement errors can be reduced by averaging.

• Different principles can be combined to reduce their weaknesses and 

gain strengths from synergy effects.

Examples for Sensor Fusion: 

• Stereo Vision: 2 cameras build up a 3D picture or video. 

• Navigation System: Modern such systems for planes, ships, and cars make use of the 

satellite-based GPS and combine it with local sensing of speed, steering angle, etc.

• Driver Assistance: Adaptive cruise control (ACC), lane detection, night vision, lane 

changing assistant (blind spot detection), etc. are based on a variety of different sensors 

like radar, laser, CCD camera, ultrasonic, navigation maps, …

• Smart Dust: Next page.

3. Measurement of Non-Electrical Quantities
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Smart Dust

A few cm3 small, intelligent sensor systems communicate over a wireless network with a 

base station and possibly with each other. This is performed by the means of laser beams. 

These concepts are currently developed at UC Berkeley by Pister and some ideas and 

problems are known from the novel “Prey” by Crichton. Maybe it becomes reality! 

Integration of Different Technologies:

• Ultra energy efficient micro-electronics.

• MEMS: micro-electro-mechanical

systems. 

• Wireless laser-based 

communication (1 kB/s).

• Management of huge distributed networks.

• Possible sensors: camera, microphone, 

acceleration sensor, temperature, humidity. 

• Extremely cheap. 

3. Measurement of Non-Electrical Quantities

3.1 Sensors and Sensor Systems



Prof. Dr.-Ing. 

Oliver Nelles

Page 386

University

of Siegen

F

Resistive Measurement Methods

Many of the techniques to measure displacement and angels can also be used for the 

determination of force, torque, and pressure. It is just necessary to have a spring whose 

displacement is proportional to these quantities.

Principle of Resistive Displacement Measurement

The ohmic resistance of a electric wire depends on its length l, its cross-section area and its 

specific resistance 𝜚 which in turn depends on the material:

If the wire is pulled apart with a force F this is influencing the relative resistance: 

The factor K summarizes the influence of length and area change 

and the variation of the specific resistance. 

3. Measurement of Non-Electrical Quantities

3.2 Displacement and Angles
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3. Measurement of Non-Electrical Quantities

3.2 Displacement and Angles

Resistive Measurement Method: Strain Gauge

Resistive strain gauges utilize the resistance change caused by a length change 휀. They are 

commonly manufactured as an elastic foil and glued on the body to be measured. It can be 

distinguished between different material types:

• Metal: Typical sensitivity is around K = 2. 

The resistance change is mainly based on the 

length and area change. Specific resistance 

changes only insignificantly. 

• Semiconductor: Typical sensitivity is very 

high in absolute values, either around K = –100 or around K = 100 for n- or p-doped 

semiconductors. The piezoresistive effect is utilized, i.e., the internal generation of 

electrical charge resulting from an applied mechanical force. It changes the specific 

resistance significantly. This extremely high sensitivity must be 

paid for by an undesirable high temperature dependency. 
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Resistive Method: 

Strain Gauge Embodiments [3]

3. Measurement of Non-Electrical Quantities
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Resistive Measurement Method: Placement of Strain Gauges

Applying multiple strain gauges can improve the sensitivity of the measurement. Like shown 

below, in a bridge circuit the sensitivity can be quadrupled (4x). The higher selectivity of 

such an approach is desirable. However, most important is the robustness against temperature 

changes because the temperature effects (and others) cancel each other. If the resistances are 

all changed relatively in the same manner, the bridge voltage is not affected at all. 

3. Measurement of Non-Electrical Quantities

3.2 Displacement and Angles
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Resistive Measurement Method: Effect of Magnetic Field

• Hall sensors: A magnetic field orthogonal to an electrical current leads to an Lorentz 

force on the electrons. This causes a Hall voltage orthogonal to magnetic field and 

current. For currents around 100…500 mA the voltage is typically around 50…400 mV 

with reasonable field strength. Such Hall sensors are commonly used as limit switches. 

• Field-plates: The Hall effect deflects the current and enforces it not go the direct way but 

to take a detour. As a consequence, the resistance increases (magneto resistive effect). A 

quadratic characteristic results. 

It can be compensated by a 

differential bridge circuit.

3. Measurement of Non-Electrical Quantities

3.2 Displacement and Angles
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Inductive Measurement Method: Inductivity of a Coil [3]

The inductivity of a coil can be calculated from its number of 

windings N and its magnetic resistance Rm: 

where s is the length of the flux lines, A is the area where the

flux lines pass through, and 𝜇r is the relative magnetic

permeability of the material. For the coil three such parts add up: a) inside the coil in a part 

that is filled with iron (𝜇r >> 1), b) inside the coil in a part that is filled with air or nothing 

(𝜇r ≈ 1) and c) outside the coil that usually also consists of air or nothing (𝜇r ≈ 1): 

The 1. term can be neglected due to the very high value for 𝜇r. The 3. term can be neglected 

due to the large area Aoutside outside. This leaves us the 2. term. Therefore the inductivity is 

inverse proportional to the length of the part inside the coil which is not filled: 

3. Measurement of Non-Electrical Quantities

3.2 Displacement and Angles
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Inductive Measurement Method: Plunger and Differential Plunger

A small displacement 𝛥s of the armature 

from the operating point s influences the

inductivity in a nonlinear way as follows:

This means that only for tiny displacements the inductivity L is roughly proportional to the 

displacement 𝛥s (with negative sign, i.e., 𝛥s > 0 → 𝛥L < 0). To enlarge the roughly linear 

range, the differential approach was developed. The idea is to introduce a second coil whose 

inductivity operates in the other direction. The displacement drives the armature opposite to 

the first coil and a displacement 𝛥s leads to a decrease in the first but increase in the second 

coil, or the other way round: 

A clever combinations of both inductivities by a circuit creates a linear measurement

characteristics. The linear behavior is achieved in an exact way, not only by approximation or 

linearization, which would be valid only for small displacements 𝛥s. 

3. Measurement of Non-Electrical Quantities

3.2 Displacement and Angles
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Inductive Measurement Method: Differential Measurement Principle

Such a bridge circuit can be used to create a linear characteristics. The diagonal bridge 

voltage Ud is equal to the difference between the voltage drop along the upper resistance and 

inductivity: 

Introduction of the dependency on the displacement gives:

The differential principle together with the bridge circuit results in an exact proportionality 

between displacement and diagonal voltage. This type of “physical linearization” is widely 

applied in many circumstances (also with capacitor, etc.). 

3. Measurement of Non-Electrical Quantities
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Inductive Sensors [3]

3. Measurement of Non-Electrical Quantities

3.2 Displacement and Angles
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Capacitive Measurement Method

The capacity C of a plate capacitor depends on the distance between the plates d, the area of 

the plates A and the permittivity 휀r determined by the material between the plates: 

Change of Capacitor Plate

A change in the distance between both plates has the same

nonlinear effect as the just discussed displacement in the inductivity: 

Similar to the inductivity change, the capacitor can be built 

according to the differential principle. Again, together with 

a bridge circuit a linear characteristics can be created. 

3. Measurement of Non-Electrical Quantities

3.2 Displacement and Angles
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Capacitive Measurement Method: Change of Capacitor Plate

A change of the plate area directly (without any tricks) effects the capacity in a linear way: 

With an original plate area of A = bs this yields a change of that area of 𝛥A = b𝛥s. Thus, the 

capacity changes linearly with the displacement of the plates against each other: 

This approach is commonly applied for displacement and angle 

measurement as well as fill level measurement in tanks and other types 

of reservoirs. It is important to notice that the liquid must be conducting

electricity. The reservoir together with the conducting contents acts as the 

one capacitor plate, the electrode as the other. The insulation layer acts as 

dielectric medium. The effective plate area (proportional to the capacity)

is proportional to the fill level. 

3. Measurement of Non-Electrical Quantities

3.2 Displacement and Angles
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Capacitive Measurement Method: Change of Dielectric Medium

With the shown approach the thickness of layers can be measured if their 

permittivity 휀r2 is known. On one capacitor plate the material layer 

is applied; the remaining part is typically filled just with air, i.e., 휀r1 = 1. 

The capacity of the capacitor is influenced in a nonlinear way by the 

thickness of the material layer d2. According to the rule of a series connection of two  

capacitors, we get the following overall capacity (d1 = d – d2): 

Displacement, angles, and fill levels even of non-conducting materials

(as long as 휀r2 is significantly different from 휀r1) can be measured with

the approach shown to the right. Here, the relationship between the 

displacement s2 and the overall capacity follows the rule of two capacitors 

in parallel which yields a linear relationship (s1 = s – s2): 

3. Measurement of Non-Electrical Quantities

3.2 Displacement and Angles
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3. Measurement of Non-Electrical Quantities

3.2 Displacement and Angles

Optical Measurement Techniques

• Incremental Displacement Measurement: The distance is divided into equidistant 

intervals whose width determines the resolution of the measurement. The intervals are 

counted and the measurement is always relative to a starting point.

• Coded Displacement Measurement: Coding of the position allows to determine the 

absolute, not only the relative, position.

• Interferometric Displacement Measurement: Highly accurate measurement based on 

interference of laser beams. Displacement around 𝜆/8 can be determined (𝜆 ~ 600 nm). 
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Miscellaneous

Displacement measurement techniques applied in modern driver assistant systems:

• Infrared: Based on the emission and reflection of laser impulses and the measurement of 

their time delay (ns range!). Can be used to measure the distance to the ahead driving car 

for adaptive cruise control systems. Good visibility is required, but then good signal 

quality can be expected. Quite low price.

• Radar: An alternative to infrared technology. Typically, realized with 77 GHz radar 

frequency. According to the Doppler principle besides the distance, the relative velocity

to the next car can be measured. Bad visibility is no handicap. Relatively expensive.

In the short range 24 GHz radar is used for parking sensors. 

• Ultrasound: Used for parking sensors (only short distances!). High importance for 

nondestructive material testing.   

• CCD camera: Together with powerful but expensive and complex image data processing, 

this can support the other sensors. It is necessary for lane and blind spot detection. Very 

flexible but complicated. Not very robust.  

3. Measurement of Non-Electrical Quantities

3.2 Displacement and Angles
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Possibilities for Speed Measurement

Three main alternatives are available for speed measurement:

1. Measurement of a time interval 𝛥t, in which are certain distance 𝛥s is covered. 

Subsequently the speed can be calculated by v = 𝛥s /𝛥t. Speed measurement is done by 

measuring distance and time.

2. Measurement of a rotational speed 𝜔 and conversion into the 

translational speed with v = 𝜔r.

3. Direct measurement of speed by the use of: 

- Doppler effect of acoustic waves. 

- Doppler effect of electromagnetic waves with radar or light.

- Combination of 2 cameras and correlation analysis 

(strictly speaking based on method 1, but only used for speeds). 

3. Measurement of Non-Electrical Quantities

3.3 Speed
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Doppler Effect for Acoustic Waves

The Doppler effect describes the relative velocity between 

the object that emits the waves and the objet that reflects 

the waves. The acoustic Doppler effect is typically used in 

the ultrasonic range.  

For departing objects the frequency shift becomes 

(c = speed of sound): 

For approaching objects: 

Doppler Effect for Electromagnetic Waves (Radar, Light)

Due to the theory of special relativity (c = speed of light):

3. Measurement of Non-Electrical Quantities

3.3 Speed
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Speed Measurement with 2 Cameras and Correlation Analysis

With well-structured surfaces like bulk on 

a conveyor belt or a street below a car, 

these patterns can be recorded with 2

distant cameras.

Comparing both camera signals with

the help of correlation analysis, yields 

the time interval between both signals.

With known camera distance d, the 

speed can be calculated from v = d /𝛥t.

3. Measurement of Non-Electrical Quantities
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Speed Measurement: Optical Methods

A disc as shown to the right can be mounted on

an axle and illuminated by a light source. The 

reflected light can be accepted from a photo diode. 

The discs can be marked incrementally or coded. Typically they have a marking of the initial 

point, that give an absolute reference for the incremental disc. The speed range that can be 

covered by this kind of approach is typically around 0 – 12000 min-1. 

Speed Measurement: Tachogenerators

A generator can be used for speed measurement.

DC motors/generators yield a DC voltage 

proportional to the speed. AC motors/generators

yield an AC voltage that has to be rectified 

before its amplitude is proportional to the 

speed. However the direction information 

(sign) is lost by this procedure.

3. Measurement of Non-Electrical Quantities

3.3 Speed
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Speed Measurement: Inductive Method

The inductivity of a coil depends on the relative magnetic permeability 

𝜇r of the material through which the field line pass. Therefore, teeth 

and gaps can be detected, if the cog wheel is built of ferromagnetic 

material. In contrast to optical speed sensors, this approach is very

robust against dirt and other environmental disturbances.

Thus, they are commonly used in automotive industry. 

A double gap marks the initial point. 

Speed Measurement: Magneto Resistive Method

It is similar to the inductive method. With a field plate the 

dependency of the electrical resistance of a resistor on the 

strength of a magnetic field is utilized (see Hall effect). 

By using nonsymmetrical teeth-gap sequences, even the 

speed direction can be recovered. 

3. Measurement of Non-Electrical Quantities
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Yaw/Angular Velocity Measurement: Coriolis Principle (e.g., for ESP)

With micromechanics it is possible to realize an equivalent 

of a tuning fork that can be excited by permanent oscillations

(in direction left/right). Due to these oscillations, the endings 

of the fork move with speed v. An angular velocity w (from 

outside) with the oscillation orthogonal with respect to the

movement creates the Coriolis force orthogonally

which is proportional to the angular velocity w.

3. Measurement of Non-Electrical Quantities
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Measurement Principles

For measurement of accelerations (translationally or rotationally) the following two 

approaches are important: 

• The derivative of speed signals (attention: Derivatives enhance the noise!).

• Measurement of the force F or torque M at a body with mass m or a moment of inertia Θ

and determination of acceleration via:

or 

The first approach leads to the two previous sections. Therefore only the second approach is 

pursued here. Hereby the inertia of a mechanical resonator acts on a seismic mass. The 

equations of motion are those of a standard spring-damper-mass system: 

3. Measurement of Non-Electrical Quantities

3.4 Acceleration
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Measurement of Acceleration with a Seismic Mass

With the usual notations for the damping D and the resonance frequency 𝜔0, a seismic mass 

follows the equation: 

If 𝜔0 is chosen to be big (via a stiff spring and a small mass) then the 

3. term dominates the left part of this equation which yields 

approximately: 

Acceleration measurement: 

Velocity measurement: 

Displacement measurement:

3. Measurement of Non-Electrical Quantities
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Frequency Response of a Seismic Mass

The frequency response is very dependent on the damping D around              . Therefore, 

either the low frequency range                (tuned to high resonance frequency) or the high 

frequency range                 (tuned to low resonance frequency) is utilized. The high frequency 

range is used for measuring accelerations (slide before), the low frequency range is used for 

measuring displacement of oscillations. 

The frequency response shown on the

right is given by the relationship: 

3. Measurement of Non-Electrical Quantities
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Force Measurement

Measurement of force is typically achieved via measurement of displacements. The following 

principles are the most common ones:

• Strain Gauges: In elastic deformation the force is proportional to the change of length 

which in turn results in a change of electric resistance (see Chapter 3.2). 

• Piezoelectric Effect: A force or stress applied to a crystal generates an electric charge 

(“piezo” means “squeeze” or “press” in Greek). This principle is well-suited to measure 

highly dynamic (fast and/or oscillating) forces.  

This effect is a reversible process, i.e., a mechanical force is generated if an electrical 

field is applied to the crystal. The force field effect can be used for sensors; the 

field force effect can used to build actuators. The latter is e.g. used to generate 

ultrasound or for injection valve control of modern Diesel engines.

• Magnetoelastic Effect: The dependency of the magnetic properties of certain alloys with 

respect to an external force can be used to measure this force. The caused displacement is 

minimal. 

3. Measurement of Non-Electrical Quantities

3.5 Force, Torque, Pressure, and Mass
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Load Cell

A load cell consists of an elastic, cylindrical body that is compressed or elongated by an 

external force. Strain gauges are glued on this body which measure the resulting stress. 

• Range: 50 N … 5 MN.

• Uncertainty ~ 0,05%.

• Applications, e.g. electromechanical scales (balances):

- Commercial balances.

- Horizontal containers.

- Weighbridges.

- Rail scales. 

- Belt scales.

3. Measurement of Non-Electrical Quantities

3.5 Force, Torque, Pressure, and Mass
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Piezoelectric Force Measurement

Certain types of crystal, e.g. SiO2, generate an electric field in response to mechanical force 

or stress. Dependent on the polarization direction, an electric charge gathers on the stressed 

areas (longitudinal effect, “Längseffekt”) or in the orthogonal direction (transverse effect, 

“Quereffekt”) or from a shear force (shear effect, “Schereffekt”)

The amount of electric charge Q is proportional to the 

causing force F: 

Q = kF with k = 2,3·10-12 As/N

In order to increase this tiny amount of charge, 

those crystals are typically build as stacks, i.e., 

many crystals are placed in series. 

Shortly after their generation the charges try 

to balance each other. Thus, the effect is only 

temporarily. The electric charge has to be 

stored somehow after its generation.

3. Measurement of Non-Electrical Quantities

3.5 Force, Torque, Pressure, and Mass
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Piezoelectric Force Measurement: Dynamic Behavior

It is possible to describe the crystal as a current source with an internal resistance Rq and a 

capacity of Cq (see figure b) below). If a force appears suddenly (step input), then quickly a 

charge Q0 is generated. With a time constant of RqCq this charge exponentially fades away 

although the force continues to act. Via the internal resistance the capacitor discharges. If it is 

required to measure static forces, it is therefore necessary to feed the voltage to an integrator 

OpAmp circuit. 

This transient behavior of the piezoelectric effect is a drawback for stationary measurements, 

but is well-suited for fast dynamic measurement because it possesses a high bandwidth. 

The voltage generated as a result 

of the electric charge can be 

calculated as:

Uq = Q / Cq

3. Measurement of Non-Electrical Quantities

3.5 Force, Torque, Pressure, and Mass
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Reversed Piezoelectric Effect: Principle of Actuators

The piezoelectric effect offers new possibilities in actuation because of its high bandwidth. 

High injection pressures of 2000 bar spray the Diesel fuel very accurately and smoothly into 

the cylinder. This allows to partition the injection into several small injections to shape the 

combustion profile. Thereby, it is possible to make the explosion more efficient and at the 

same time optimize its other properties like decent acoustics.

Piezoelectric Injector for Diesel Engines [Siemens VDO]

3. Measurement of Non-Electrical Quantities

3.5 Force, Torque, Pressure, and Mass
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Torque Measurement

For the measurement of torque

the technique discussed for 

force measurement can be applied. Strain gauges can 

be applied to an axle to measure torsional stress. The 

change in resistance can be evaluated in a bridge circuit. 

A different possibility is to measure the torsional dis-

placement between a flange-mounted disc and a pipe 

mounted in further distance. The displacement measure-

ment can be performed inductively or capacitively.

Signal Processing

One difficulty with measuring torques is the transmission 

of the measurement signals outside of the rotating axle to a 

fixed system around. This can be solved via slip rings. 

A more robust technique is via a transformer.  

Modern systems are based on infrared or radio systems.

3. Measurement of Non-Electrical Quantities

3.5 Force, Torque, Pressure, and Mass
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Pressure Measurement

Pressure measurement is typically based on the measurement of force. The force acts on a 

defined area, normally a membrane. Actually, pressure differences are measured, i.e., the 

deviation between a pressure and some reference pressure: 

• If the reference is equal to the atmosphere pressure, measurement value is called 

excess (over) pressure or under pressure. Example: tire of a car.

• Sometimes the reference pressure is zero (vacuum). Then, the 

measurement value is called absolute pressure. 

The difference pressure lifts or lowers the membrane. 

By this, the pressure difference is converted 

into a displacement. This can either be

displayed directly (see figure) or it can 

be further converted with the principles 

discussed in Chapter 3.2 

(resistive, inductive, capacitive) 

into an electric signal. 

3. Measurement of Non-Electrical Quantities

3.5 Force, Torque, Pressure, and Mass
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Mass Measurement

Masses m can be determined via their proportional weight force F. The proportional constant 

is the acceleration due to gravity g: 

F = mg

A counter force is created that balances the weight force. If the counter force is also 

generated by masses, the acceleration g cancels out. If, on the other hand, the counter force is 

generated by springs, magnetic or electric fields, or similar, the scale has to be calibrated 

dependent on the location because g is influenced by the location on earth (not a perfect, 

homogeneous sphere!), even so in higher heights. 

3. Measurement of Non-Electrical Quantities

3.5 Force, Torque, Pressure, and Mass
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A) Thermocouples

• 2 wires consisting different materials (usually metal alloys) A and B that produce a 

voltage proportional to a temperature difference between either end of the pair of 

conductors. Thermocouples are a widely used type of temperature sensor for 

measurement and control of temperature T. 

• At the ends of the wires a circuit is connected. These connection have temperature T0. For 

reference, these connection can be put into ice water.

• The voltage generated by the thermocouple consisting

of wire A and B is given by:

The proportionality constant kAB and the reference 

temperature T0 have to be known a priori!

3. Measurement of Non-Electrical Quantities
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B) Resistance Thermometer (PTC, Positive Temperature Coefficient) − Metal

The ohmic resistance of a metal wire depends on the temperature T approximately as follows:

The coefficients 𝛼 und 𝛽 are material dependent, R0 denotes the resistance at a reference 

temperature T0 (as well material dependent). Because 𝛽 is much smaller than 𝛼, the quadratic 

term can be neglected − at least for small and moderate temperate changes.

Typically the reference temperature is chosen as T0 = 0°C:

where 𝜗 denotes the measured temperature in °C. 

The temperature coefficient 𝛼 describes the relative 

change of the resistance with the temperature:  

From the measured value we obtain:

3. Measurement of Non-Electrical Quantities

3.6 Temperature 

standardized

at 100 Ω

𝛼 > 0 for PTC

𝛼 < 0 for NTC



Prof. Dr.-Ing. 

Oliver Nelles

Page 419

University

of Siegen

Signal Processing for Resistance Thermometer

• Processed with bridge circuits

• Direct voltage measurement possible if current is forced by a constant current source.

• CAUTION: The current through the measurement resistor must be small enough that the

power loss (dissipation) is negligible. Otherwise, the heat can distort the temperature 

measurement. 

• For the Pt-100 resistance thermometer two accuracy classes are standardized: 

Class A:  ± (0.15 + 0.002|𝜗 |)°C Class B:  ± (0.30 + 0.005|𝜗 |)°C

PTC Resistance Thermometer (Metal) Thermocouples

more accurate less accurate

up to max. 850°C even for higher temperatures

slower (large time constant) faster (small time constant)

no point-wise measurement point-wise measurement

3. Measurement of Non-Electrical Quantities
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C) Resistance Thermometer (NTC, Negative Temperature Coefficient) − Semiconductor

In semiconductors the number of free electrons grows with the temperature significantly. The 

intrinsic conductivity increases, the resistance decreases. With the material constant b and the 

resistance R0 at temperature T0 the following relationship holds: 

With the constant                             this yields:

Thus, the sensitivity becomes:

The temperature coefficient is:

Applications: car, appliances.

3. Measurement of Non-Electrical Quantities

3.6 Temperature 

𝛼 < 0: negative temperature coefficient!
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PTC Resistance Thermometer NTC Resistance Thermometer

𝛼 is positive and small 𝛼 is negative and has large absolute value

𝛼 is almost constant 𝛼 is strongly temperature dependent 

(~ linear characteristics) (strongly nonlinear characteristics)

resistance is small; Calibration resistance is so large that no calibration of the  

of the wires is necessary wires is necessary

extensive in space manufactured in tiny sizes

no point-wise measurement point-wise measurement possible

slow fast

high accuracy medium accuracy

high long-term-stability little long-term-stability

3. Measurement of Non-Electrical Quantities
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D) PTC Resistance Thermometer – Semiconductor

PTC thermometers consisting of semiconducting and ferromagnetic material and not of metal. 

In the low temperature range it has a small resistance with negative temperature coefficient. 

Above a material dependent critical temperature TA, the Curie temperature, the unified 

orientation dissolves. This leads to a exponential increase of the resistance in a small 

temperature band (TN – TE). In this range the approximate relationship holds: 

Sensitivity and temperature coefficients are: 

The temperature coefficient 

is 5 x higher as with NTC. 

Drawbacks are the extremely  

dispersive material properties and 

volatile stability. Thus, only a low

precision is possible. 

3. Measurement of Non-Electrical Quantities
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E) Miscellaneous

Besides the discussed temperature measurement approaches, there exist 

many alternatives that also work according to a contact principle. The 

following things have to be considered: 

• First, the sensors measure their own temperature. 

• The instrumentation engineer has to ensure that the sensor adopts 

the temperature of the medium which shall be measured. 

• The sensors affect the medium which shall be measured. Thus, the sensors can introduce 

or draw heat from the medium. This means, the measurement is interacting!

Alternatively, there exist sensors which work according to the radiation principle. 

Especially for high temperatures this is a common approach. The sensors do not have any 

contact to the measured medium. They evaluate its radiation, e.g.:

• Thermopile: Series connection of thermocouples that are sensitive to heat radiation.

• Pyroelectric temperature sensor (see picture): Based on the change of polarization of 

certain dielectric materials whose charge density on their surface is measured.

• Radiation pyrometer: Based on the measurement of the radiation power density ~ 𝜎T 4. 

3. Measurement of Non-Electrical Quantities
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Volume Flow and Mass Flow

The volume flow is defined as:

The mass flow is defined as:

Both quantities are related via the density 𝜚 of the fluid:

If the density is known theoretically (commonly the case for incompressible fluids) or can be 

measured, then it is possible to convert volume flow in mass flow and vice versa. 

Mass flow as a quantity has the advantage that it is constant in closed systems, while volume 

flow of compressible fluids depends on their density and thus also on pressure and 

temperature. On the other hand, the measurement of volume flows is cheaper, simpler, and 

more widely used.

3. Measurement of Non-Electrical Quantities

3.7 Flow



Prof. Dr.-Ing. 

Oliver Nelles

Page 425

University

of Siegen

A) Differential Pressure Method

The flow measurement is indirectly performed by measuring pressures. A narrowing pipe 

increases the flow velocity due to a decreasing cross-section. Following Bernoulli, the flow 

velocity increases accordingly: 

The pressure drop therefore becomes:

The volume flow can be calculated from the square root of the difference pressure:

Dependent on the kind of narrowing (orifice, nozzle, venturi), an additional pressure drop of 

9% – 60% has to be considered due to turbulence (energy loss). That has to be taken into 

account with a proportionality factor k. 

With a Pitot tube well-known through Prandtl such difference pressures can be measured.

3. Measurement of Non-Electrical Quantities

3.7 Flow
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Different Kinds of Narrowing Pitot Tube 

Properties of Flow Measurement with the Differential Pressure Method

• Robust, simple and resistant (endure hard environmental conditions). 

• No moving parts. Limited measurement range due to quadratic pressure dependency. 

• Most commonly used and standardized approach. 

3. Measurement of Non-Electrical Quantities

3.7 Flow

Mounted on Airbus A380
Source: 

http://en.wikipedia.org/wiki/Pitot_tu

be



Prof. Dr.-Ing. 

Oliver Nelles

Page 427

University

of Siegen

B) Volume Counter Measurement

Volume counter with metering chamber

Transports fluid in chambers and thus 

counters its amount and therefore flow. 

Volume counter with hydrometric vane

A wheel with vanes (or blades) is 

turned by the fluid flow. Actually, 

the flow velocity is measured but 

a multiplication with the cross-

section yields the volume flow.

Modern method: The energy for turning the wheel is not taken from the fluid flow. Rather it 

is supplied from outside. The pressure drop is feedback controlled to zero. 

Properties: Large measurement range, independent of viscosity, sensitive with respect to 

contamination of the fluid because of moving parts.

3. Measurement of Non-Electrical Quantities

3.7 Flow

meter with axial wings

oval

gear meter

meter with

vertical wings



Prof. Dr.-Ing. 

Oliver Nelles

Page 428

University

of Siegen

C) Float Measurement

A floating body with large cross-section AK is placed inside the fluid flow. It is lifted to a 

height where the force caused by the flow balances exactly the force caused by its weight:

Here v is the flow velocity inside the ring-formed opening A – AK between the tube and the 

floating body. According to the balance of continuity the flow is proportional to the square 

of the height h (~ diameter):

In order to not only display the height but transmit

the signal to the outside world, it is reasonable to 

convert it into an electrical signal. An effective way 

to realize that, is to use a ferromagnetic floating

body as coupling between two coils works like in a 

transformer.

3. Measurement of Non-Electrical Quantities
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D) Magnetic Inductive Measurement

For all conducting fluids, the flow can be measured based on Faraday’s law in a contact-free 

manner. Orthogonally to the flow a magnetic field with density B is generated. Thus, in a 

moving conductor (as such the fluid can be interpreted) orthogonal to the field, a voltage is 

induced. This voltage is generated orthogonal to the magnetic field and to the flow direction 

and amounts to:

The flow can be calculated by multiplication of

velocity v with cross-section A.

Properties: 

– Very good linearity, big measurement range.

– Independent of density, viscosity, pressure, temperature. 

– Also suitable for corrosive fluids and fluids that contain 

solids.

– No internal constructions necessary.

– Minimum conductivity is necessary.

3. Measurement of Non-Electrical Quantities
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D) Remark: Reversal of the Sensor Principle as Actuator

In the movie “The Hunt for Red October” [Sean Connery, Alec Baldwin] a new and silent 

drive system plays an important role. This is no science fiction! The movie refers to a so-

called magneto-hydrodynamic drive, which is constructed without any moving parts. 

However, it works only in salt water because it is based on Faraday’s law and requires a 

conducting medium. 

The magnetic field is generated by a 

superconductive generator. Orthogonal to the 

field an electric current is send through the

water. Together with the current the magnetic 

field results in a force on the water that is 

accelerated orthogonal to field and current. 

This causes the water to shoot outside the 

ship without any propeller!

The picture shows the first ship of this type 

with superconductive magneto-

hydrodynamic drive [Mitsubishi, 1998]. 
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E) Coriolis-based Measurement

A body that rotates with the angular velocity 𝜔

that moves with a speed of v orthogonal to the 

axis of rotation experiences a Coriolis force

orthogonal to this axis and the speed direction

of

This force bends the U-pipe to an angle 𝛼. 

With a sin-type excitation, a phase lag exists

between point A and B. This phase lag is 

proportional to the mass flow. 

Properties:

– No constructions inside necessary. 

– Robust with respect to all fluid properties.

– Suitable for liquids and gases.
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Coriolis-Durchflussmesser in U-Rohr-Anordnung

F/2

F/2

Coriolis flow meter in U-pipe configuration

Coriolis flow meter in straight configuration
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F) Hot Wire Measurement

A hot wire or a hot foil are heated by an electric 

current via a constant voltage or current source. 

The flow that flows around the wire or foil 

decreases its temperature. This temperature drop causes a change in the electric resistance 

that is measured (typically by a bridge circuit). 

Here the mass flow is directly measured because the cooling is proportional to the 

temperature difference between wire/foil and fluid and proportional to the number of 

molecules that impact. Corrections with respect to density or pressure changes are 

superfluous. 

Properties:

– Especially well suited for low velocities.

– Sensitive with respect to dirt and burn-out. 

– Because of aging frequent calibrations are necessary.
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hot wire meter

with bridge circuit

hot wire
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G) Miscellaneous

Beside the approaches discussed more detailed above, many alternatives are worth at least to 

mention briefly: 

• Vortex method: The frequency of a vortex shedding (Karman vortex street) behind a 

body where a fluid flows around is proportional to the velocity of the fluid. 

• Transit time method: Within a short interval a short injection is carried out into a pipe. 

The velocity of the fluid is determined by measuring the time interval and the distances 

between 2 points of the solution clouds.  

• Laser Doppler flow measurement: The frequency shift of laser light that is scattered on 

particles inside the fluid yields a point-wise velocity measurement. 

• Ultrasound flow measurement: a) Transition time method: A sound wave runs inside the 

medium, i.e., the speeds add up (wave + medium). This speed minus the wave speed in 

the resting medium yields the medium (fluid) speed. b) Doppler method: The frequency 

shift of reflecting sound waves is used. It is dependent on the speed of the medium.
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Many other quantities can be measured which are not discussed here. The most prominent 

certainly are: 

• Density: Weighting methods determine the mass and the volume via suppression. The 

density can be calculated by division. For solid materials, the uplift in liquids or gases can 

be used. For liquids, the hydrostatic pressure difference can be used. For gases, Bunsen’s 

law describing the relationship between volume flow and density for exhausting gas 

through a hole can be used. 

• Concentration: A huge number of special methods exist dependent on the kind aggregate 

state of the studied material. Frequently these methods are based on absorption, emission, 

or reflection of radiation. For Chromatography different delays of different 

components inside an intermixture are used. For Spectroscopy different properties of 

atoms or molecules (mass, spin, …) are used for their division. The 

Refractometry uses changes in the optical refractive index and Polarimetry uses 

changes in the polarization level. 
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• Concentration: Changes in the thermal conductivity can be utilized. Of particular

importance are the measurement of:

1. Humidity: Many approaches exist based on changes in the evaporation rate, 

conductivity, permittivity inside a capacitor 휀r. 

2. pH Value: Between electrodes within different liquids a voltage occurs, an effect 

known from a galvanic cell (battery). A diaphragm enables the exchange of ions but 

prevents the mixing of the liquids. 

3. Particle: E.g, the particle-induced couldiness or scattering of light is measured. 

• Light: Photoresistors are resistors whose resistance depends on the amount of light they 

measure. Photodiodes and CCDs (charge coupled devices) convert light (point-, row-, or 

matrix-wise) into electrical current. The sensitivity depends strongly on the wave length of 

the light. 

• Sound: A dynamic microphone works according to Faraday’s law. This means a 

membrane is coupled with a wire that moves though an magnetic field. The induced 

voltage in this wire is proportional to membrane movement. However, Capacitor 

microphones are based on a capacity change dependent on the membrane movement. 
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