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The finite-strain-viscoelastic membrane model
The spatial deformation of a thin-walled structure φs : ω × (−h

2
, h

2
) → IR3 is decompo-

sed into the motion of the (initially plane) midsurface m : ω ⊂ IR3 7→ IR2 and of the
director (initially) orthogonal to the midsurface,

φs(x, y, z) = m(x, y) + z̺m(x, y) R(x, y).e3 , (1)

where R = polar(F ) ∈ SO(3) is the orthogonal part of the deformation gradient F

with out-of plane component R(x, y).e3. The variable ̺m ∈ IR accounts for a varying
thickness, see [1, 2] for details.
Basic idea: introduce an additional field of independently evolving viscoelastic rota-
tions R ∈ SO(3). These rotations R are thought of as being physical meaningful but
not exact continuum rotations R. With R3 ≡ R(x, y).e3 denoting the corresponding
out-of plane component the dimensional reduction of a three-dimensional continuum
solid to a geometrically exact membrane model results in a deformation gradient of the
form

F = (∇m|̺m R3), (2)

where ∇m ∈ M
3×3 is the deformation gradient of the midsurface with mx =

(m1,x, m2,x, m3,x)
T , my = (m1,y, m2,y, m3,y)

T .
The problem: find the deformation of the midsurface m : [0, T ] × ω 7→ IR3 and the
independent local viscoelastic rotation R : [0, T ] × ω 7→ SO(3, IR) such that

∫

ω

hW (F, R) dω −

∫

ω

〈fb, m〉 dω −

∫

γs

〈fs, m〉 ds 7→ min . , (3)

w.r.t. m at fixed rotation R. The strain energy density W (F, R) in (3) is of the form

W (F, R) =
µ

4
‖F TR + R

T
F − 2I‖2 +

λ

8
tr

(

F TR + R
T
F − 2I

)2

. (4)

Moreover, let W ext(m) be the linear work of applied external forces with fb being the
resultant body forces and fs the resultant surface traction and let gd : ω 7→ IR3 denote
the prescribed Dirichlet boundary conditions for the membrane,

W ext(m) =

∫

ω

〈fb, m〉 dω −

∫

γs

〈fs, m〉 ds ,

m|γ0
(t, x, y) = gd(t, x, y) x, y ∈ γ0 ⊂ ∂ω . (5)

The field of local viscoelastic rotation follows an evolution equation

d

dt
R(t) = ν+ · skew(B) · R(t) with ν+ :=

1

η
ν+(F, R), and B = FR

T
. (6)

Here ν+ ∈ IR+ represents a scalar valued function introducing an artificial viscosity

and η plays the role of an artificial relaxation time (with units [sec]). The evolution
equation (6) and parameter ν+ are introduced into the model to preserve ellipticity of
the force balance. Physically, one may imagine the viscoelastic rotation R as shadowing

the exact continuum rotation in a viscous sense.

Example: rectangular sheet
A hard sheet is loaded by dead load and subjected to in-plane displacement of one
side. The figures show the initial and the deformed state after different time periods of
relaxation:
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Discretization of the model
We consider a fully implizit time discretized version of model (3). Let (mn−1, R

n−1
) be

the given solution for the deformation of the midsurface and the rotations at time tn−1.
Now, compute the new solution (mn, R

n
) ∈ V at time tn such that

∫

ω

h W (F n, R
n
) dω − W ext,n(mn) 7→ min . , (7)

w.r.t. mn at fixed R
n
. The current deformation gradient F n = F (tn) is

F n = (∇mn|̺n
m R

n

3) , (8)

and the current boundary conditions are

mn
|γ0

(tn, x, y) = gd(tn, x, y) , x, y ∈ γ0 ⊂ ∂ω . (9)

The evolution equation for the rotations is mapped by a local exponential up-
date. This implies that R

n
= R

n
(∇mn) solves the following highly nonlinear problem

R
n

= exp
(

∆t ν+
n skew

(

F nR
n,T

))

· R
n−1

with ν+
n =

1

η

(

1 + ‖ skew F nR
n,T

‖
)2

.

(10)

By the properties of logarithmic and exponential mapping it can be shown that (10)
converges to (6) for the limit ∆t → 0, see [1].
The finite element discretization of problem (7) considers discrete subspaces Vh

of the continuous solution spaces V for the membrane’s deformation. We employ

Vh = Po
1(T )3 × P0(T )3×3 , (11)

where Pk(T ) denotes the linear space of T -piecewise polynomials of degree ≤ k, and,
Po

k(T ) are the continuous discrete functions in Pk(T ) with homogeneous boundary
values. Thus, the discrete problem reads: find the deformation of the midsurface
of the membrane and the independent local viscoelastic rotation (mh, Rh) : [0, T ]×Vh

such that,
∫

ω

h W (F (mh), Rh) dω − W ext(mh, Rh3) 7→ min . , (12)

w.r.t. mh at fixed rotation Rh such that Rh satisfies (10).

Example: wrinkling of a thin foil
We apply our model to the problem of a 2 × 2m elastic foil under pressure load.
The foil is 1mm thick, lays on a square obstacle (like a cloths on a table) and on-
ly the unsupported part of it can deform. A pressure of p0 = 0.75 MPa acts from above.

Wrinkling of a soft foil (relaxed state):
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