A geometrically exact membrane model
for Isotropic foils and fabrics
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The finite-strain-viscoelastic membrane model

The spatial deformation of a thin-walled structure ¢y : w X (—%, %) — IR? is decompo-
sed into the motion of the (initially plane) midsurface m : w C IR? — IR? and of the

director (initially) orthogonal to the midsurface,

Os(,y, 2) = m(x,y) + zom(®,y) Bz, y).c3, (1)

where R = polar(F') € SO(3) is the orthogonal part of the deformation gradient F
with out-of plane component R(x,vy).e3. The variable o, € R accounts for a varying
thickness, see [1, 2] for details.

Basic idea: introduce an additional field of independently evolving viscoelastic rota-
tions R € SO(3). These rotations R are thought of as being physical meaningful but
not exact continuum rotations R. With Ry = R(x,y).e3 denoting the corresponding
out-of plane component the dimensional reduction of a three-dimensional continuum
solid to a geometrically exact membrane model results in a deformation gradient of the

form

F = (Vm|om R3), (2)

where Vm € M?*3 is the deformation gradient of the midsurface with m, =
(ml,xa ma z, m3,:c)T; My, = (ml,ya 2 4, m3,y>T-
The problem: find the deformation of the midsurface m : [0, 7] X w + IR? and the

independent local viscoelastic rotation R : [0, 7] x w + SO(3,IR) such that
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w.r.t. m at fixed rotation R. The strain energy density W (F, R) in (3) is of the form
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W(F,R) :% HFTR+RTF—21H2+§tr (FTR+RTF—21) L@

Moreover, let W' (m) be the linear work of applied external forces with fj, being the
resultant body forces and f; the resultant surface traction and let gq : w — IR? denote
the prescribed Dirichlet boundary conditions for the membrane,

W) = [ () do / {fum) s,

my, (L2, y) = galt,z,y) 2,y €7 C Ow. (5)

The field of local viscoelastic rotation follows an evolution equation

d— — 1 _ _

~R(t) = v -skew(B) - R(t) with v":= v (FR), and B= FR'. (6
n

Here vt € IR™ represents a scalar valued function introducing an artificial viscosity

and 7 plays the role of an artificial relaxation time (with units [sec|). The evolution

equation (6) and parameter v are introduced into the model to preserve ellipticity of

the force balance. Physically, one may imagine the viscoelastic rotation R as shadowing

the exact continuum rotation in a viscous sense.

Example: rectangular sheet

A hard sheet is loaded by dead load and subjected to in-plane displacement of one
side. The figures show the initial and the deformed state after different time periods of
relaxation:
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Discretization of the model

We consider a fully implizit time discretized version of model (3). Let (m™ !, En_l) be
the given solution for the deformation of the midsurtace and the rotations at time ¢,—.
Now, compute the new solution (m™, R') € V at time ¢, such that

/ AW (F", R") dw — W™ (m™) — min ., (7)

w.r.t. m” at fixed R". The current deformation gradient F" = F(t,) is
F" = (Vm"|g), Ry), (8)
and the current boundary conditions are

mﬁm(tnax)y) — gd(tnaxay)a x,y € C Ow . (9)

The evolution equation for the rotations is mapped by a local exponential up-
date. This implies that B = R’ (Vm") solves the following highly nonlinear problem

n —1

R = exp (At v skew (F”RR’T>) ‘R

with v = — (1 + || skew F" R ||) .
Ui
(10)
By the properties of logarithmic and exponential mapping it can be shown that (10)
converges to (6) for the limit At — 0, see [1].
The finite element discretization of problem (7) considers discrete subspaces Vy,

of the continuous solution spaces V for the membrane’s deformation. We employ
Vh = PO1<T>3 X PQ(T)SXS, (11)

where Py(7) denotes the linear space of 7-piecewise polynomials of degree < k. and,
P°r(T) are the continuous discrete functions in Py(7) with homogeneous boundary
values. Thus, the discrete problem reads: find the deformation of the midsurface
of the membrane and the independent local viscoelastic rotation (my, Ry) : [0, 7] x Vy,
such that,

/ h W(F(mh), R}J dw — WeXt<mh,Eh3> — min . , <12)
w.r.t. my at fixed rotation Ry, such that Ry, satisfies (10).

Example: wrinkling of a thin foil

We apply our model to the problem of a 2 x 2m elastic foil under pressure load.
The foil is Imm thick, lays on a square obstacle (like a cloths on a table) and on-
ly the unsupported part of it can deform. A pressure of py = 0.75 MPa acts from above.

Wrinkling of a soft foil (relaxed state):
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