Sitzung des Arbeitskreises Stoffgesetze am 23.06.2017 in Siegen

Artur-Woll-Haus, Raum AE-A 103, Am Eichenhang 50, 57076 Siegen

08:30 - 08:40	Eroffnung (Zusammenkunft ab 08:00)
08:40 - 09:05	Lukas Bogunia , Universität Siegen, Topologische Einflüsse auf die Schwingungseigenschaften von offenpori- gen Elastomerschäumen
09:05 - 09:25	Monika Gille , Deutsches Institut für Kautschuktechnologie, Erweitertes MORPH-Modell (Model Of Rubber PHenomenology) für Zeit- und Temperatureffekte und deren Anwendbarkeit in Bauteilsimulationen
09:25 - 09:50	Hendrik Donner , TU Chemnitz, Ein anisotropes 2-Fließflächen-Plastizitätsmodell für Nylon-Multifilament- garne
09:50 - 10:15	Kaffeepause
10:15 - 10:35	Daniel Wicht , Karlsruher Institut für Technologie, Thermo-visko-elastische Modellierung von Polypropylen und ungesättig- tem Polyester-Polyurethan-Hybrid Harz
10:35 - 10:55	Stefan Descher , Universität Kassel, Modellierung des Erstarrungsverhaltens teilkristalliner Kunststoffe
10:55 - 11:20	Alexander Lion , Universität der Bundeswehr München, Zur Berechnung spezifischer Wärmekapazitäten in der Kontinuumsme- chanik
11:20 - 11:45	Christoph Naumann , Freudenberg Technology Innovation SE & Co. KG, Simulation polymerer Materialien bei Freudenberg
11:45 - 13:15	Mittagspause & Laborbesichtigung
13:15 - 13:35	Florian Albrecht , HAW Hamburg, Simulation von PTFE Wellendichtungen mit einer Vielteilchenmethode
13:35 - 13:55	Jörn Ihlemann , TU Chemnitz, Ein neues rheologisches Element mit Invarianz gegenüber Zeitskalierun- gen
13:55 - 14:20	Stephan Wulfinghoff , RWTH Aachen, Bedingungen für phänomenologische, anisotrope Schädigungsmodelle - hergeleitet aus mikromechanischen Betrachtungen
14:20 - 14:45	Kaffeepause
14:45 - 15:10	Albrecht Bertram , OvGU Magdeburg, Die finite Gradiententheorie dritter Ordnung
15:10 - 15:30	Zhengkun Liu , OvGU Magdeburg, Phasenfeld-Modellierung des Risswachstums in elastoplastischen Mehr- schichtsystemen
15:30 - 15:55	Artjom Avakian , Universität Kassel, Modellierung multiferroischer Verbundwerkstoffe mittels phänomenolo- gisch oder physikalisch motivierter konstitutiver Modelle
15:55	Schlussbesprechung