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Condensation and Growth of Kirkendall
Voids in Intermetallic Compounds

Kerstin Weinberg and Thomas Böhme

Abstract—A model for the simulation of Kirkendall voiding
in metallic materials is presented based on vacancy diffusion,
elastic-plastic and rate-dependent deformation of the material.
Starting with a phenomenological explanation of the Kirkendall
effect we briefly discuss the consequences on the reliability of
microelectronic components. Then, a constitutive model for void
nucleation and growth is introduced, which can be used to predict
the temporal development of voids in solder joints during thermal
cycling. We present numerical studies and discuss the potential of
the results for the failure analysis of joining connections.

Index Terms—Intermetallic compounds, Kirkendall effect,
plastic deformation, vacancy diffusion, void distribution, void
growth, void nucleation.

I. INTRODUCTION

M ICROELECTRONIC circuit units consist of the func-
tional chip unit itself and its packaging, which includes

several electromechanical connections, e.g., solder joints be-
tween different metal layers. Failure of these metallic compo-
nents is a well established cause of failure of the whole micro-
electronic system. The general setup of a typical microelectronic
system is illustrated in Fig. 1 exemplarily for the flip chip pack-
aging. Solder balls as well as small, nowadays, lead-free joints
which are typically made of Sn-containing alloys (e.g., Sn–Ag
or Sn–Ag–Cu) hold the multilayered unit in position. In addi-
tion, the solder joints provide electrical conductivity between
the coppered layers. “Aging” of the solder alloy, such as phase
separation, coarsening, or the formation of intermetallic com-
pounds (IMCs), as well as the formation and growth of pores
and cracks in the vicinity of heterogeneities significantly effect
the life expectation of the joints and considerably influence the
reliability of the whole component.

During manufacturing, the (molten) Sn-rich solder wets the
copper pad, and IMCs are formed due to an interfacial reac-
tion [9]. In particular, the copper-rich Cu Sn is expected to
grow adjacent to the copper substrate, and Cu Sn will form
adjacent to the Sn-based solder, cf., Fig. 2. However, in prac-
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Fig. 1. Intermetallic compounds at copper–solder interfaces in microelectronic
components. Micrograph courtesy of K. Müller, Neue Materialien Bayreuth,
Germany, 2005.

tice both IMCs form together with further intermetallics to ir-
regular-shaped layers of initially 2–5 m height. Due to the
reflow process and to the thermal cycling during service, the
solder joint ages and the IMCs grow and may reach a thick-
ness of 20 m and more, cf., [12], [19]. Another consequence
of solder joint aging is the condensation and growth of so-called
Kirkendall voids (mainly) within the intermetallic zones. The
physics behind this mechanism may be sketched as follows:
neighboring phases or compounds change in a way that the
volume of one region grows and the volume of the another phase
reduces. In our case such regions are the IMCs in which Cu Sn
compounds grow on the expense of Cu Sn by Cu Sn

Cu Sn Sn, and the three free Sn atoms will attract nine Cu
atoms to form Sn Cu Cu Sn. Moreover, the diffusion of
Cu from the pad via the interface Cu/Cu Sn into Cu Sn is much
slower than the diffusion of Cu from Cu Sn into the Cu Sn
scallops, which also cannot be “corrected” by the inverse dif-
fusion of Sn through the Cu Sn Cu interface. As a conse-
quence of this unbalanced diffusion, vacancies are left which
condense to form Kirkendall voids, cf., Fig. 2. Additional va-
cancies and defects in the crystal lattices are generated by plastic
deformation of the solder material and assist in the process of
void growth and material degradation.

The scope of this paper is to model the condensation and
growth of such voids in IMCs within a continuum mechanical
framework. To this end, we idealize the material as a homoge-
nous medium with arbitrarily distributed vacancies and study
the formation of voids and their growth up to significant size.
In the following section, we outline the constitutive equations
which enables us to model the void condensation and growth
process. Subsequently, we study short-term and long-term ef-
fects and present exemplary results. Finally, the temporal devel-
opment of an ensemble of differently sized voids is investigated
by means of a void size distribution function.
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Fig. 2. First row: Kirkendall voids within the Cu Sn layer; photograph from
[11]. Second row: Crack initiation by void coalescence after 1000 thermal cycles
between �40 C and 125 C; photograph from [19].

II. VOID NUCLEATION BY VACANCY DIFFUSION

To explore the feasibility of void condensation out of the scale
of crystal lattice defects as a void-nucleating mechanism, we
employ here a model of vacancy condensation. To this end,
let us consider a small void possibly just a few atomic spac-
ings in diameter surrounded by a supersaturated background va-
cancy concentration generated, e.g., by unbalanced diffusion
in the sense of Kirkendall. To render the problem analytically
tractable, we idealize the defect to be spherical with character-
istic radius , the diffusion constants to be isotropic, and we as-
sume that a steady-state vacancy concentration profile is main-
tained all times, i.e., , where is the
vacancy flux. This eliminates the time dependence of the so-
lution and confers spherical symmetry to the problem. With
being the (large) radius of the basin of attraction around the void,
cf., Fig. 3, and , the diffusion equation for volume con-
centration reduces to the following boundary value problem
in spherical coordinates:

(1)

subject to the boundary conditions

(2)

Here, the equilibrium vacancy concentration near a free sur-
face is given by

(3)

Fig. 3. Model of vacancy diffusion and model of a single void before and after
deformation.

and the concentration at the void surface follows as above
with due to the Gibbs–Thomson effect. In these
expressions, is the surface tension, the atomic volume,

the Boltzmann constant, and is the free-energy gain/loss
resulting from adding a vacancy into the system. The solution
of (1) and (2) is elementary, namely

(4)

For void growth to take place, there must be a net flux of
vacancies into the void, which requires . This in turn
requires

(5)

For very small values of or this inequality is not satisfied
and voids fail to grow. However, the value of radius which
equals relation (5) at a given value of marks the inception
of void growth, i.e., a critical nucleation size. Furthermore, the
flux density is defined to be the change of volume per unit
area and time, viz.

(6)

Applying additionally Fick’s law to (6)
yields for voids of radius by means of (4)

(7)

where is the vacancy diffusion coefficient. As the void
grows, decreases according to (2) which amplifies the
concentration gradient towards the void and, thus, accelerates
the void growth. The rate of void growth may be computed by
means of (7).
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Following the strategy of Wagner [16] but allowing for an ad-
ditional source term the background vacancy concentration

can be subjected to a “void volume balance” of the form

(8)

Here, denotes a void size distribution func-
tion describing the fraction of voids with a specific size

at time . At this point, we neglect the statis-
tics and consider only one void size , but we will
study different void distributions in Section VI. The source
term in (8) represents a vacancy production rate due to
unbalanced diffusion which is caused, e.g., by the different
diffusion coefficients of the migrating substances. Please note
that (7) has been derived in [5] in a thermodynamic consistent
manner (for a constant number of vacancies). In particular, the
vacancy diffusion coefficient has been identified as the
tracer diffusion coefficient of vacancies.

In addition, we ask for an energetic formulation of the above
vacancy diffusion problem. In particular, we look for a diffusion
rate potential , for which the variational form

(9)

holds. For that reason, we follow the strategy in [4] and multiply
(7) with a characteristic factor . A subsequent integra-
tion w.r.t. finally results in

(10)

III. CONSTITUTIVE MODEL OF VOID GROWTH

Once voids are nucleated, diffusion is not the only mecha-
nism which triggers their growth within the IMCs. To set up a
general variational model for void growth in a deforming mate-
rial, we postulate the existence of a free energy density function
associated with the deformation of expanding voids and embed-
ding material. Additionally we require the time-dependent con-
stitutive equations to derive from power potentials. Thence, we
assume the power of the external forces acting on the material
to be completely compensated by the change of its free energy
and its rate potentials.

Let us now ask, which energy contributions result from the
deformation of one void subjected to 1) the power of a re-
mote pressure . These are: 2) the energy of the free void
surface , 3) the deformation energy of the embedding ma-
terial, and 4) the rate power of creep deformation and diffu-
sion . Additional energy and power contributions may play a
role in specific regimes, e.g., the kinetic energy in case of a very

rapid loading, cf., [18]. Now an action integral can be for-
mulated as sum of all rate of energy and power contributions.
Hamilton’s principle simply requires stationarity of the action
integral , or, equivalently

(11)

In what follows, we imagine the material to be a conglomerate
of (initially very small) spherical voids each at every instance
completely embedded in the material, i.e., we exclude here the
process of coalescence, cf., Fig. 3. Consider now a void sur-
rounded by a sphere of influence of material with radius and
let it expand for some reason. Presuming a volume preserving
deformation it holds for all

(12)

in which the index 0 refers to the initial state, cf., Fig. 3. The
kinematic relation (12) will be employed subsequently to ex-
press functions of radius as functions of current void radius

and the initial geometry. Furthermore, the rate of straining of
the void surrounding material can be defined as

(13)

where is the radius of void surrounding material; see Fig. 3.
In what follows we consider the different energy contribu-

tions 1)–4) in detail.

A. External Power

The external power put into the system by an applied (positive
or negative) pressure reads

and for one void we obtain

(14)

In the solder material under consideration here, the effect of
thermal cycling on the growth of voids is of particular interest.
To this end, temperature cycles are considered to strain the
material and to induce a pressure of the form

(15)

where is the effective bulk modulus and is the thermal ex-
pansion coefficient. Following a classical approach of homoge-
nization, cf., [7] and[10], we obtain for an assemblage of spher-
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Fig. 4. Thermal cycling between �40 C and 125 C, cycles of 60 min with
15-min hold time.

ical voids enclosed in an isotropic material with bulk modulus
and shear modulus the effective bulk modulus as

(16)

The temperature , given in (15), cycles between 40 C
and 125 C within one hour, in which 15 min at up-soak and
low-soak temperature, respectively, see Fig. 4.

B. Surface Energy

The surface energy of one void with radius is written as

(17)

where is the surface energy per unit undeformed area [N/m].

C. Elastic–Plastic Deformation Energy

The deformation energy for the elastic-plastic material
response can be derived as follows. We presume a Ramberg–
Osgood power law

(18)

where and are the effective stress and strain, respectively.
Furthermore, denotes the elastic strain component and

and represent temperature dependent
Young’s modulus and initial yield stress. Exponent
determines the stress-strain curve; in particular pre-
scribes linear elasticity, whereas enforces perfect
(rigid) plasticity. In order to resolve (18), let us assume the
elastic strain to be given and decompose . Then,
the dissipated energy of the deformation per unit volume can
be computed from

(19)

and with reference strain the dissipated deforma-
tion energy for one void with surrounding material follows as

(20)

Let us now refer to the kinematic relation in (13) and assume
that the void radius history grows monotonically from
to , then decreases monotonically from to , and so on.
The integration of (13) with respect to the time gives

(21)

and grouping terms corresponding to increasing and decreasing
intervals yields

(22)

where is the maximum radius attained by voids of the cur-
rent size ,

(23)

i.e., is a monotonically increasing function for every history
of . Then, the expression in (22) can be summarized, viz.

(24)

and with (12) the dissipated deformation energy in a shell sur-
rounding the void is

(25)

It is worth mentioning that the function in (25) is trackable by
analytical means only in the special case of . Moreover,
in moderate hardening materials we know the elastic strain com-
ponent to be . Therefore, we set the last term in brackets
to one but guarantee the energy to be not negative, i.e., .

D. Rate-Dependent Deformation (Creep)

A creep-power potential is formulated in order to capture the
effect of the rate of deformation on the rate of straining. Ex-
perimental observations reported, e.g., in [1], indicate that the
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material near a void is subjected to a state of stress that is likely
to cause power-law creep, i.e.,

(26)

where is the strain rate, is a creep exponent, and is
a material constant. The temperature dependence of the strain
rate is controlled by the thermal activation energy . Here,
we summarize the last terms in (26) to a reference strain rate,

, with small values of corresponding
to creep dominated deformation an to a time inde-
pendent behavior. The creep–power potential per unit volume
is defined by

(27)

For simplicity we assume now a linear rate dependence,
, and by integration over the volume follows the creep potential

for one spherical shell as

(28)

where we again make use of (13).
Setting the external power equal the “sum of the internal

powers” according to ansatz (11) yields an ordinary differential
equation for the void size . In particular, for growing voids
and for in (25) we obtain the expression

(29)

which can be solved (numerically) for all different void sizes of
interest. We will outline selected results subsequently.

IV. NUCLEATION OF VOIDS OUT OF SMALL DEFECTS

At first, we study the nucleation of voids, i.e., the formation
of pores out of vacancy sized defects. It can easily be seen from
(29) that for very small values of the diffusion term dom-
inates. In the initial stages of void growth, the elastic–plastic
material response is of minor influence. As well we neglect the
external loading for a start and the equation of motion reads

(30)

TABLE I
MATERIAL CONSTANTS FOR DIFFUSION

Fig. 5. Condensation and growth of voids with different initial radii � driven
by an interplay of diffusion and surface energy contributions.

Thus, the void condensation process is driven by an interplay
of vacancy diffusion and surface energy contributions. In par-
ticular, for (5) to be satisfied the initial size of the defect must
exceed a critical nucleation radius which is here approximately
2–3 times the vacancy size (0.25 nm). To keep voids growing,
a vacancy production source is required, otherwise the voids ei-
ther collapse or reach a steady state—depending on the mag-
nitude of surface tension. In the material under consideration
here, the vacancy production results from the unbalanced diffu-
sion, cf. [2]. It is known that copper diffuses interstitially in tin
and tin diffuses substitutional in copper and the difference in dif-
fusivity is orders of magnitudes. Therefore, its rate of vacancy
production may be assumed to be a function of the diffusion co-
efficients, i.e., . Moreover, an additional
source of vacancy production is plastic deformation. However,
in this paper we approximate the unknown vacancy production
rate by a constant, cf. Table I.

Although Cu–Sn intermetallics are of great interest for the
electronic packaging industry, the available material data on
such compounds vary considerably, see, e.g., [3], [6], [14] and
references therein. With typical values summarized in Table I,
we obtain for the solution of (30) the results1 displayed in Fig. 5.
Small defects with an initial radius of nm (twice the
size of a vacancy in copper) collapse immediately. Defects of
size slightly greater than nucleation size will grow with a rate
of void growth depending on the vacancy production rate. On
the other hand, big voids, e.g., nm, basically fail to
grow; here, the influence of diffusion is to small for significant
void growth.

Fig. 6 shows the same void growth model but now with ex-
ternal loading, i.e., the voids are subjected to a pressure history

1The ODEs of (30) have been solved numerically using the Matlab solver
ODE45 as well as an explicit second-order Runge–Kutta procedure.
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Fig. 6. Influence of the external load induced by subjecting the material to the
temperature cycles of Fig. 4 on the diffusion-driven void growth of two voids.

TABLE II
ELASTIC–PLASTIC MATERIAL CONSTANTS

Experimental data courtesy of Prof. Müller, Institute of Mechanics,
TU Berlin, Germany.

induced by thermal cycling. On relatively small voids, this pres-
sure has little effect, their growth is in first instance given by dif-
fusional effects. However, if the void size reaches a significant
magnitude the void grows unbounded—a clearly nonphysical
effect—which shows the necessity to incorporate elastic–plastic
deformation into the model. This effect should be considered in
the following section.

V. GROWTH OF VOIDS DUE TO THERMAL CYCLING

The full model of Section III is now studied for medium-sized
and big voids with material parameter given in Table II. Note
that the elastic–plastic deformation energy contribution in (29)
is simplified in order to get an analytical expression; a computa-
tion of the full model requires a numerical integration of (25). In
Fig. 7, we see the different rates of growth for medium-sized and
big voids. Here, we neglect creep effects at first, i.e., .

Both void sizes are subjected to the same thermal cycling of
Fig. 4, but their evolution history depends strongly on the ini-
tial void size. In particular, smaller voids clearly grow slower
than their initially big companions. That supports the experi-
mental observation of several (relatively) large Kirkendall voids
in IMCs. The differences in the void size versus time response
for the two cases of elastic–plastic material behavior
and perfect plastic approximation are small, the final
void size is basically determined by the external loading. There-
fore, a simplified approximation as given in (29) seems to be
justified. Let us point out that the diffusion effects invoke a
“smoothening” of the void growth curves. Even if the under-
lying elastic–plastic theory is time independent, the material re-
sponse has no sharp edges as the load history would suggest.

Fig. 8 displays the void size versus time for different reference
strain rates. Small values of clearly damp the evolution of
voids. However, after enough time has passed the final void size

Fig. 7. Growth of a medium-sized and large void induced by thermal cycling
for two elastic-plastic material laws according to (18): � � � and perfect
plasticity.

Fig. 8. Effect of creep on the growth of voids of size � � ��� nm for different
reference strain rates.

will reach the same value as in the time-independent case as can
be seen from the curves for and in Fig. 8.

VI. EVOLUTION OF A VOID ENSEMBLE

In order to investigate an ensemble of voids with different
initial radii we introduce—as already indicated in Section II—a
void size distribution function . To derive an evolution
equation for the void distribution we make use of a mesoscopic
concept described in detail, e.g., in [13], [17], and [18]. In this
paper, we do not account for a dependence of the void distribu-
tion on the spatial position , and set .
Then, we establish for a constant number of voids a balance
equation for the void size distribution in the following form:

(31)

The value of can be calculated from the constitutive
model introduced in Sections II and III. Moreover, we neglect
the spatial velocity of the material element under consideration

, so that the second term in (31) vanishes.
To solve (31) numerically, the spatial and temporal deriva-

tives were discretized by finite differences. The solution of (29)
is obtained by means of a second-order Runge–Kutta method.
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Fig. 9. Comparison of the numerical solution of (31) and (32) for five different
radii after two thermal cycles.

For ease of computation we also solved the quasi-linear pendant
of (31), viz.

(32)

As is shown exemplarily in Fig. 9, both equations yield almost
identical results. However, to solve the full (31) a significant
finer spatial discretization is required. Therefore, we proceed
here with solutions of (32). Furthermore, for a better under-
standing of the results we neglect any void production, i.e.,

in (8). However, there is no extra effort to include
the production term into the simulations and in (31) and (32).

We start with a discretized Gaussian distribution of 15 dif-
ferent void radii, nm. Within several stages of
thermal cycling, we obtain the temporal development of as il-
lustrated in Fig. 10. The initially symmetric distribution changes
to an asymmetrical distribution in such a way that the fraction
of smaller voids decreases and the bigger voids grow. Such re-
sults are well known from so-called LSW-theories for Ostwald
ripening, [16], where bigger “grains” grow at the expense of the
smaller ones due to the Gibbs–Thomson effect. In our model,
this effect also appears in the first stages of void growth, in
which vacancy diffusion dominates. During proceeding growth
the voids reach a size, for which the evolution is characterized
primarily by elastic–plastic deformation. For such stages, the
distribution function considerably differs from a typical LSW
distribution. In particular, the number of large voids extremely
exceeds the number of small voids.

A different view on the evolution of void size distribution
shows Fig. 11. The first plot displays the size distribution of
small voids in the beginning of thermal loading. In the long
range (second plot in Fig. 11), the growth of the bigger voids
driven by elastic–plastic deformation by far exceeds the growth
of small voids. The final distribution substantially differs from
the initial Gaussian form. In particular, the void regimes pri-
marily consists of large voids, which may allow the assumption
of crack formation by void coalescence in the immediate future
(cf., Fig. 2).

Fig. 10. Development of an initial Gaussian void distribution after 1, 2, 5, and
10 thermal cycles.

Second, we study a distribution of void sizes , which—in
a more realistic manner—accounts for the dominance of small
voids in the initial state. To this end, we assume an exponential
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Fig. 11. First row: short time behavior of ��. Second row: long time behavior
of ��.

distribution of 25 voids with nm. As displayed
in Figs. 12 and 13, we observe again a growth of the fraction of
big voids on cost of the smaller ones. In particular, the void size

reaches large values, and the distribution function is stretched
over a wide range of void sizes. Here, we stopped the simula-
tions after a void volume fraction of 2/3 is reached. Note that
our model does not account for void growth due to coalescence.
Unfortunately, this limits the predictive capabilities of the void
size distribution analysis. However, already a significant amount
of large voids in a material clearly indicates the onset of failure.

VII. CONCLUSION

We presented a constitutive model to predict the condensation
and growth of Kirkendall voids in elastic–plastic metals, in par-
ticular in the IMCs occurring at the interface of microelectronic
solder joints. To this end, the influence of vacancy diffusion,
surface energy, and elastic–plastic and creep deformation on the
evolution of void ensembles during thermal cycling was investi-
gated. It turns out that nano-voids collapse, whereas voids which
are small but exceed a critical radius (of a few vacancies) grow
driven by diffusional effects. On the other hand, the growth of
bigger voids is primarily driven by elastic–plastic deformation
of the void surrounding material. We found that work hardening
plays a minor role and, as expected, creep decelerates the void
growth.

Fig. 12. Development of an initially exponentially decreasing void size distri-
bution after 1, 2, 5, and 10 thermal cycles.

Furthermore, we studied the temporal development of void
ensembles under thermal cycling. Here, the presented model for
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Fig. 13. Compact illustration of the evolution of the distribution function for
different numbers of thermal cycles.

void growth is employed to (numerically) solve the balance of
the void size distribution function. We found that the evolving
distribution initially resembles the ones known from LSW theo-
ries, whereas the distribution during proceeded loading evolves
such that the amount of large voids drastically increases. Such
behavior correlates to experimental studies on Kirkendall voids,
cf. [11], [19] and may indicate failure by void growth and coa-
lescence, cf. [8], [15].

The presented results are applicable to derive the temporal
evolution of the effective properties of intermetallics. The con-
stitutive model shall be incorporated in finite-element analysis
tools on the material point level to study the mechanical be-
havior of IMCs under realistic loading regimes. Such analyses
then allow for a better prediction of live time and strength of
microelectronic joining connections.
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