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Abstract

Microelectronic systems consist of the functional chip unit itself and a surrounding package which includes several
electro-mechanical connections, e.g., solder joints between different metal layers. Experimental observation shows that
aging of the solder alloy as well as the formation and growth of so-called Kirkendall voids significantly contributes
to the degradation of the joining capability.

Starting with a phenomenological explanation of the Kirkendall effect we present in this contribution a constitutive
model for void nucleation and growth. The model accounts for the effects of vacancy diffusion, surface tension and rate-
dependent plastic deformation on ensembles of spherical voids. It can be applied to predict the temporal development
of voids in solder joints. Numerical simulations on the material point level provide inside into the (not yet completely
understood) mechanisms of failure by formation and growth of Kirkendall voids and show the potential of the
model for the failure analysis of joints.
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1. Introduction

The functional unit of Micro-Electro-Mechanical-
Systems (MEMS) is typically a Si-chip, however, dif-
ferent metallic joints are required to provide electri-
cal and mechanical connections. If such connections,
e.g., solder joints and plated through holes, fail this
will typically cause failure of the whole MEM. The
setup is illustrated exemplarily in Figure 1 for a Flip
Chip packaging. Solder balls as well as small joints,
which are typically made of Sn-containing alloys
(e.g., Sn-Ag or Sn-Ag-Cu), hold the multi-layered
unit in position and provide electrical conductivity
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between the coppered layers. “Aging” of the solder
alloy, such as phase separation, coarsening and the
growth of InterMetallic Compounds (IMCs), as well
as the formation and growth of pores and cracks sig-
nificantly effects the life expectation of the joints and
considerably influences the reliability of the MEMS.

Initial IMCs develop due to interfacial reactions
when, during manufacturing, the (molten) Sn-rich
solder wets the copper pad. In particular, Cu3Sn
and Cu6Sn5 will form to irregular shaped layers of
initially 2-5 µm height together with further inter-
metallics. As a consequence of thermal and mechan-
ical loading during service the IMCs grow and may
reach a thickness of 20 µm and more. Addition-
ally, Kirkendall voids nucleate and grow (mainly)
within the IMCs. The Kirkendall effect can be de-
scribed as follows: neighboring phases or compounds
change in a way that the volume of one region grows
and the volume of the another phase reduces. In
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Fig. 1. Voids in intermetallic compounds at copper-solder
interfaces in MEMS (micrograph from [8]).

case of Sn-based solders such regions are typically
the IMCs Cu3Sn and Cu6Sn5 from where the dif-
fusion of Cu into the Sn-rich solder is much faster

than the inverse diffusion of Sn. Because of the un-
balanced Cu-Sn diffusion vacancies are left behind
which coalesce to form Kirkendall voids. Addi-
tional vacancies and defects in the crystal lattices
are generated by plastic deformation of the solder
material and assist in the process of void growth and
material degradation.

2. Model of void nucleation and growth

To model void condensation out of the scale of
crystal lattice defects as a void-nucleating mech-
anism we idealize the material as a homogenous
medium with arbitrarily distributed vacancies and
employ a model of vacancy condensation.

Let us consider a small void possibly just a few
atomic spacings in diameter surrounded by a super-
saturated background vacancy concentration cb. We
assume a steady state vacancy concentration pro-
file, i.e., ∂cvac/∂t � ∂J/∂x, where c is the vacancy
fraction and Jvac is the vacancy flux. With b being
the (large) radius of the basin of attraction around
the void with characteristic radius a, cf., Figure 2,
and b/a → ∞, the diffusion equation simplifies to:

∂

∂r

(

r2 ∂c

∂r

)

= 0 , (1)

with boundary conditions c(r = a) = ca and c(r =
b) = cb. The equilibrium vacancy concentration near

a free surface is given by

c0 = e−EV /kT (2)

and the concentration ca at the void surface follows
from the Gibbs-Thomson effect as

ca = c0e
d/a with d =

2γVV

kT
. (3)

In these expressions γ is the surface tension, VV the
atomic volume, k the Boltzmann constant and EV

is the free-energy gain/loss resulting from adding a
vacancy into the system. The solution of (1)-(3) is
elementary, namely

c(r) = cb − (cb − ca)
a

r
. (4)

For void growth to take place there must be a net
flux of vacancies into the void, which requires cb >
ca. For very small values of a0 or cb this inequality
is not satisfied and voids fail to grow. The value
of radius a0 in expression (3) which equals a given
value of cb marks the inception of void growth, i.e.,
a critical nucleation size.

The vacancy flux J is defined to be the change of
volume per unit area and time, viz.

J(r) = −
1

4πa2

d

dt

(

4

3
πa3

)

= −ȧ(r) . (5)

Applying Fick’s law J(r) = −DV
∂c
∂r to Eq. (5)

yields for voids of radius a by means of Eq. (4):

ȧ(a) =
DV

a

(

cb − c0e
d/a

)

, (6)

where DV is the vacancy diffusion coefficient, more
precisely, the tracer diffusion coefficient of vacancies,
cf., [5].

The background vacancy concentration cb can be
subjected to a “void volume balance” of the form:

vacancy diffusion

deformation

void growth
area of attraction
of a central void

a0

r

b0

b

a

Fig. 2. Model of vacancy diffusion and model of a single void
before and after deformation.
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ċ(t) = s(t) −

amax
∫

avac

d̃(a, t) ȧ(a) 4πa2 da

= s(t) −

amax
∫

avac

d̃(a, t)DV

(

cb − c0e
d/a

)

4πa da . (7)

Here d̃(a, t) denotes a void size distribution function

describing the fraction of voids with a specific size
a ∈ [avac, amax] at time t, cf., Section 3. The source
term s(t) in Eq. (7) represents a vacancy production

rate due to unbalanced diffusion which is caused by
unbalanced diffusion in the sense of Kirkendall

or by plastic deformation.
Once voids are nucleated diffusion is not the only

mechanism which triggers their growth within the
IMCs. To set up a general variational model for

void growth we require the time-dependent consti-
tutive equations to derive from rate potentials. Fur-
ther we assume the power of the external forces act-
ing on the material to be completely compensated by
the rate potentials associated with void growth. Fur-
thermore we imagine that the (initially very small)
voids remain at every instance spherical and com-
pletely embedded in the material. Consider now one
void surrounded by a sphere of material with ra-
dius b and let it expand for some reason. We neglect
the elastic contribution to void growth and, thus,
presume a volume preserving deformation. Then it
holds for all r ∈ [a, b], cf., Figure 2:

d

dt

4π

3
(r3 − a3) = 0 ⇒ b =

(

b3
0 − a3

0 + a3
)

1
3 , (8)

where the index 0 refers to the initial state. The kine-
matic relation (8) will be employed subsequently to
express functions of radius b as functions of current
void radius a and the initial geometry. Furthermore,
the rate of straining of the void surrounding mate-
rial can be defined as

ε̇
(def)
=

∂ṙ

∂r
=

∂

∂r

(a2

r2
ȧ
)

=
2a2

r3
ȧ . (9)

The external power put into the system by an
applied (positive or negative) pressure p(t) is given
by

d

dt

∫

V

p(t) dV

and for one void we obtain

P (ȧ, a) = p(t) 4πa2ȧ. (10)

In the solder material under consideration here the
effect of thermal cycling is of particular interest.
Therefore, temperature cycles T (t) are considered

to strain the material and to induce a pressure of
the form

p(t) = κ∗(a) 3α [T0 − T (t)] (11)

where κ∗ is the effective bulk modulus of the mate-
rial and α is the thermal expansion coefficient. Fol-
lowing a classical approach of homogenization, cf.,
[7], we obtain for an assemblage of spherical voids
enclosed in an isotropic material with bulk modulus
κ and shear modulus µ the effective bulk modulus
κ∗ as

κ∗ = κ

(

1 −
a3

b3

3κ + 4µ

3κ + 4µb3/a3

)

. (12)

The rate of surface energy of one void is written
as

Γ(a, ȧ) =
d

dt

(

4πa2γ
)

= 8πaγȧ , (13)

where γ is the surface energy per unit area [N/m].
The creep-rate potential is derived to account

for the deformation of the material in which the void
is embedded. Experimental observations reported in
[1] indicate that the material near a void is subjected
to a stress state that causes power-law creep, i.e.,

ε̇ =
( σy

σ0(T )

)m

ε̇c exp(−Qc/RT ) , (14)

where ε̇ and σ are is the strain rate and the effective
stress, respectively, σ0 is the yield stress, m is a creep
exponent and ε̇c is a material constance. The tem-
perature dependence of the strain rate is controlled
by the thermal activation energy Qc. We summa-
rize the last terms in Eq. (14) to a reference strain

rate, ε̇ref = ε̇c exp(−Qc/RT ), with small values of
ε̇ref corresponding to creep dominated deformation
and ε̇ref → ∞ to a time independent behavior. The
creep-rate potential per unit volume is given by

∫ ε̇

0

σy d ¯̇ε =
mσ0ε̇

m + 1

[

(

ε̇

ε̇ref
+ 1

)

m+1

m

− 1

]

. (15)

For simplicity we assume here a linear rate depen-
dence, m = 1. By integration over the volume and
with Eq. (9) the creep-rate potential for one void
follows as

Ψ(ȧ, a) =

∫ b

a

σ0

2ε̇ref

(

2a2|ȧ|

r3

)2

4πr2 dr (16)

=
2σ0

ε̇ref

4πa3

3

∣

∣

∣

ȧ

a

∣

∣

∣

2
(

1 −
a3

a3 + b3
0 − a3

0

)

.

The diffusion rate potential is derived from Eq.
(6) as

Φ(ȧ, a) =
EV ȧ2

2DV
−

EV ȧ

a

(

cb − c0e
d/a

)

. (17)
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With all details at hand we can now formulate
an action integral I(ȧ) as sum of all rate of energy
contributions associated with the growth of voids.
Hamilton’s principle simply requires stationarity
of the action integral, δI(ȧ) = 0, or, equivalently,

δ

δȧ

(

−P + Γ + Ψ + Φ
)

= 0. (18)

This ansatz yields an ordinary differential equation

for void size a(t),

0 = − 4πp(t)a2 + 8πaγ +
16σ0π

3ε̇ref
aȧ

(

1 −
a3

b3

)

+
EV ȧ

DV
−

EV

a
(cb − ca) , (19)

which can be solved (numerically) for all different
void sizes of interest.

3. Numerical simulations of void ensembles

The available material parameter for IMCs vary
considerably. With typical values (from literature,
c.f., [3,6,8] and references therein and own measure-
ments, no temperature dependence assumed) sum-
marized in Table 1 and 2 we obtain for void conden-
sation and growth the results outlined subsequently.
The ODEs (19) have been solved numerically using
the Matlabr solver ODE45.

Table 1
Material constants for diffusion

DV [m2/s] c0 cb d [m] s [1/s] γ [N/m]

10−17 10−6 10−4 5 · 10−6 10−7 1
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Fig. 3. Condensation of voids with different initial radii a0

driven diffusion and surface energy contributions.

The beginning of void growth is the condensation
of pores out of vacancy sized defects. It can easily be
seen from Eq. (19) that for very small values of a0 the

last diffusion term dominates. If we initially neglect
the external loading the void condensation process
is driven by an interplay of vacancy diffusion and
surface energy contributions. In particular, for the
condition cb > ca to be satisfied the initial size of the
defect must exceed a critical nucleation radius which
is here approximately 2-3 times the vacancy size, see
Eqs. (2)-(4). Results for diffusion dominated void
growth with different initial radii a0 are displayed
in Figure 3. Small defects with an initial radius of
a0 = 0.5 nm (twice the size of a vacancy in copper)
collapse immediately. Defects of size greater than
nucleation size will grow with a rate of void growth
depending on the vacancy production rate. On the
other hand, big voids, e.g., a0 = 500 nm, basically
fail to grow, here the effect of diffusion is too small for
significant void growth within the time considered.
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Fig. 4. Influence of vacancy production rate s(t) on the
condensation of voids driven by diffusion and surface energy
contributions.

To keep voids growing a vacancy production
source is required, otherwise the voids either col-
lapse or reach a steady state — depending on the
magnitude of surface tension. In the material under
consideration the vacancy production results from
the unbalanced diffusion, i.e., the different diffusion
coefficients of the migrating substances, [2]. In a
first approximation its rate is assumed to be pro-
portional to the ratio of the diffusion coefficients:

s(t) =
cK(t)

tref

DCu

DSn
, (20)

where DCu and DSn are the diffusion coefficients of
copper into tin and vice versa, tref is the total process
time and cK is a weighting factor which accounts for
progressive IMC growth. Note that plastic deforma-
tion is an additional source of vacancy production
and the factor cK may also depend on the effective
plastic straining. The influence of a given vacancy

4



production rate on void growth is illustrated by Fig-
ure 4 for voids of initial size a0 = 5 nm.

To study the void growth for medium sized and
big voids we subject the material to an external
power resulting from temperature cycles between
−40◦C and 125◦C within one hour, with 15 min-
utes dwell time at high and low peak temperature,
respectively. Note that the external pressure com-
puted from Eq. (11) must be understand as an upper

bound of the real pressure acting in the solder as a
consequence of thermal cycling of the whole micro-
electronic unit.

The evolution history of the voids strongly de-
pends on the initial void size. Smaller voids clearly
grow slower than then initially large ones. Compar-
ing different void sizes in the same loading regime we
find, e.g., within 500 min a/a0 ≈ 1.5 for a0 = 50 nm
and a/a0 ≈ 10 for a0 = 500 nm. That supports the
experimental observation of few (relatively) large
Kirkendall voids in IMCs.

Table 2
Elastic-plastic material constants

E [GPa] κ [GPa] µ [GPa] σ0 [MPa] α [1/K]

100 80 50 450 19 · 10−6

Figure 5 displays void size vs. time for different ref-
erence strain rates. Small values of ε̇ref clearly damp
the evolution of voids. However, after enough time
has passed the final void size will reach the same
value as in the time-independent case. This final void
size is determined by the external loading. Reference
strain rates of ε̇ref > 10−3 reflect a time-independent
material behavior. This is in correspondence with
experimental observations of creep in IMCs which
has typical strain rates of ε̇ref = 10−5 . . . 10−4/s.
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Fig. 5. Effect of creep on the growth of voids of initial size
a0 = 500nm for different reference strain rates within 50
temperature cycles.

4. Evolution of a void ensemble

In order to investigate an ensemble of voids with
different initial radii we introduce – as already in-
dicated in Section 2 – a void size distribution func-
tion d̃(a, x, t). To derive an evolution equation for
the void distribution we make use of a mesoscopic
concept described in detail, e.g., in [9,11]. Here we
do not account for a dependence of the void distri-
bution on the spacial position x, and put d̃(a, x, t) =
d̃(a, t) ≡ d̃ and dd̃/dx = 0. Then we establish a bal-
ance equation for the void size distribution d̃ in the
following form:

∂d̃

∂t
+ +

∂

∂a

[

d̃ ȧ(a)
]

= ΠV , (21)

where the production term ΠV summarizes the total
and the mesocopic void sources, cf., [12]. The value
of ȧ(a) can be calculated for given initial radii a0

from Eq. (19).
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Fig. 6. Development of an initial Gaussian void distribution
after 1, 3 and 5 thermal cycles.

We start with a discretized Gaussian distribution
of 15 different void radii, a = 10 . . . 150 nm. For a
better understanding of the results we neglect any
void production, i.e., s(t)

.
= 0 in Eq. (7). Within

several steps of thermal cycling we obtain the tem-
poral development of d̃ as illustrated in Figure 6.
The initially symmetric distribution changes to an
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asymmetrical distribution in such a way that the
fraction of smaller voids decreases and the bigger
voids grow. Such results correspond to the well es-
tablished LSW-theories for Ostwald ripening, [10],
where bigger “grains” grow at the expense of the
smaller ones. In the vacancy diffusion dominated
first stages of our model the Gibbs-Thomson ef-
fect has a similar result void growth. Then, during
proceeded growth the voids reach a size, for which
their growth is characterized primarily by plastic de-
formation. (To reduce the computational time the
reference strain rate is set to ε̇ref = 1 in this sec-
tion which corresponds to an immediate plastic re-
sponse). In the long time behavior the size distri-
bution function differs considerably from a typical
LSW distribution. In particular the fraction of large
voids extremely exceeds the fraction of small voids.
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Fig. 7. Evolution of void distribution d̃ in the long range,
1st row : initially Gaussian distribution. 2nd row : initially
exponential distribution.

Figure 7 shows a different view on the evolution
of d̃ and it can be seen how the final void size dis-
tribution differs from the initial Gaussian form (1st
row). Moreover, in an attempt to model a more re-
alistic initial distribution with a dominance of small
voids in the initial state Figure 7 (2nd row) dis-
plays the evolution of d̃ starting from an exponential
distribution of 25 voids within a = 10 . . . 250 nm.
Again we observe a growth of the big voids at the

cost of the smaller ones. In particular, the void size a
reaches large values and the distribution function is
stretched over a wide range of void sizes. The simula-
tions has been stopped after a void volume fraction
of≈ 2

3 was reached since our model does not account
for damage due to void coalescence. Unfortunately
this limits the predictive capabilities of the void size
distribution analysis. However, already a significant
amount of large voids in a material clearly indicates
the onset of failure.

The presented results are applicable to derive
the temporal evolution of the effective properties
of voided materials. The constitutive model shall
be incorporated on the material point level in FEA
tools to study the mechanical behavior of IMCs
under realistic loading regimes. Such analyzes then
allow for a systematic prediction of live time and
strength of joining connections in MEMS.
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