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Shock wave induced damage in kidney tissue
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Abstract

In a common medical procedure known as shock-wave lithotripsy hypersonic waves are generated and focused at the

kidney stone. These shock waves are thought to fragment the stone but also lead to injuries of the kidney tissue. To

predict and estimate this damage we develop here a mechanical model for the response of soft tissue to the exposure

of shock waves.

The material model combines shear induced finite plasticity with irreversible volumetric expansion as induced, e.g.,

by cavitating bubbles. Dynamic effects like micro-inertia and rate sensitivity are included. The time-discretized porous-

viscoplastic constitutive updates are described in a fully variational manner. A finite element analysis localizes the dam-

age in the human kidney in good agreement to clinical and experimental studies.

� 2004 Elsevier B.V. All rights reserved.
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1. Introduction

In extracorporeal shock-wave lithotripsy

(SWL)—a non-invasive procedure to comminute

kidney stones—a number of high intensity sound

waves (shock waves) are generated outside the pa-

tient and focused on the stone within the kidney. A

compressive wave with a typical peak pressure of
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30–80MPa (see Fig. 1a), induces cracks and, by

internal reflection, spallation in the stone. Unfor-

tunately, the focused wave front also causes shear-

ing along its way in the kidney tissue which may be

responsible for severe kidney injuries. Moreover,

the compressive front is followed by a ‘‘tension

tail’’, i.e., a negative pressure up to 10MPa. In this

way bubble cavitation is induced which is thought
to assist in stone comminution, cf. [6]. Bubbles

nucleate, expand up to several micrometer in size

and finally collapse emitting ‘‘micro-jets’’. This

yields typical pitting pattern on the surface of the

stone, see Fig. 1b. During bubble expansion the

surrounding vessels and capillaries dilate and
ed.
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Fig. 1. Shock wave, experimentally observed effect of cavitation in tension (pitting) and pressure (no effect), cf. [2], and stresses

computed in two cycles of a uniaxial strain test: (a) typical SWL-pressure wave; (b) pitting; (c) over-pressure and (d) Cauchy stress vs.

elongation.
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may rupture. This mechanism causes irreversible

changes of the kidney tissue material due to hydro-

static tension.

With a view to simulating the SWL-process by

finite element analysis we provide in this paper a

phenomenological material model for kidney tis-
sue. This model accounts for irreversible damage

due to shearing as well as for local damage caused

by hydrostatic tension. Kidney tissue is not well

investigated, therefore one goal of our modelling

was to keep the set of necessary material data as

small as possible. Moreover we do not analyze

the micro-histological changes in detail, this would

require an other scale of modelling. Instead we
summarize the morphological lesions like hemor-

rhage, rupture of small arteries and tearing of

peri-tubular capillaries, as damage in the sense of

irreversible deformations to approach numerically

the high-speed process of SWL.
2. The model

The equilibrium response of the solids consid-

ered in this work is characterized by a free-energy

density per unit undeformed volume of the form

A ¼ AðF; T ;Fp; ep; hpÞ; ð1Þ

where F is the deformation gradient, T is the abso-

lute temperature, ep and #p are internal variables,

Fp is the plastic deformation, and Fe = FFp�1 is

the elastic deformation. The underlying assump-

tion is that (1) attains a minimum at Fe =
Re 2 SO(3), so that the material is stress-free

whenever F = ReFp.

The plastic deformation rate is assumed to obey

the flow rule:

_F
p
Fp�1 ¼ _epM þ _#

p
N ; ð2Þ

where _ep and _#
p

are scalar variables accounting for

irreversible (plastic) deformation subjected to the

constraints

_ep P 0 and _#
p

P 0: ð3Þ

The tensors M and N set the direction of the

deviatoric and volumetric plastic deformation

rates, respectively. Tensor M is assumed to be
trace-free and normalized

j M j2 ¼ 3

2
and trðMÞ ¼ 0; ð4Þ

whereas the tensor N is allowed to take one of two

values,

N ¼ � 1

3
I ; ð5Þ

with the plus sign corresponding to volumetric

expansion and the minus sign to compression.

The tensors M and N are otherwise unknown

and are to be determined as part of the solution.
The constraints (4) and (5) may be regarded as

defining the assumed kinematics of plastic

deformation.

It is useful to note that for purely volumetric

deformations the flow rule (2) reduces to
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d

dt
log Jp ¼ trðNÞ _#p ¼ � _#

p
: ð6Þ

From (6) we find upon integration

#pðtÞ ¼ #pð0Þ þ
Z t

0

d

dn
log JpðnÞ

����
����dn ð7Þ

i.e., the variable #p is a measure of the accumu-

lated irreversible volumetric deformation. Evi-

dently, #p and log Jp coincide up to a constant

for monotonic expansion as given here, but the

distinction between the two variables becomes

important for arbitrary loading programs.

In order to formulate a complete set of constitu-

tive relations, the free-energy density and appro-
priate rate equations for the internal variables ep

and #p must be specified. Using a relatively simple

dilute distribution of (empty) spherical bubbles we

link the mechanism of bubble expansion causing

irreversible damage to the macroscopic material

parameter. To this end we consider a material of

volume V and determine the local volume fraction

of bubbles in the deformed configuration as

f ¼ N
V 0

V
4pa3

3
; ð8Þ

where here and subsequently the subindex 0 desig-

nates fields defined on the reference configuration;
a is current average bubble radius and N is the ref-

erential bubble density, i.e., the number of bubbles

per unit volume. The volumes V0 and V are related

through V = JV0 where

J 	 detF ¼ detðFeFpÞ ¼ detFe detFp 	 J eJp ð9Þ
is the local Jacobian of the deformation and Je and

Jp are the corresponding elastic and plastic compo-

nents. Using these relations we have

Jp ¼ V ðJ eV 0Þ�1 ¼ ð1 � f0Þ=ð1 � f Þ; ð10Þ
i.e., Jp is the ratio of the volumes of infinitesimal

material neighborhoods in the intermediate, or

plastically-deformed, configuration and in the ref-

erence configuration. This allows f to be computed

from Jp and, using (8), (10) may be recast in terms

of the bubble radius, with the result

Jp ¼ 1 � f0 þ
V

J eV 0

f ¼ 1 � N
4pa3

0

3
þ N

4pa3

3J e :

ð11Þ
It is worth to note that the volumetric plastic

deformation depends on the ‘‘rigid-plastic’’ radius,
�a ¼ J e�1=3a, representing a cavity size in the inter-

mediate configuration. In terms of �a (11) simplifies

to

Jp ¼ 1 þ 4p
3
Nð�a3 � a3

0Þ and

�a ¼ 3

4p
1

N
ðJp � 1Þ þ a3

0

� �1=3

ð12Þ

which allows �a to be computed from Jp. The dis-

tinction between a and �a becomes important in

the presence of volumetric elastic deformations
but may easily be neglected here.

The free-energy density (1) is assumed to

decompose additively into elastic and stored plas-

tic energy densities, W(Fe,T) and Wp(T, ep,hp),

respectively. Due to material-frame indifference,

We can only depend on Fe through the correspond-

ing elastic right-Cauchy Green deformation tensor

C e ¼ FeT
Fe ¼ Fp�T

C Fp�1
: ð13Þ

Without loss of generality, the elastic strain-en-

ergy density may alternatively be expressed in

terms of the logarithmic elastic strain

�e ¼ 1
2
logðC eÞ, i.e., We =We(Ce,T) =We(�e,T).

We denote by r the stress conjugate to �e, namely,

r ¼ oW e

o�e
ð�e; T Þ: ð14Þ

The first Piola–Kirchhoff stress tensor P follows

from Coleman�s relations as P = oA/oF and can be
evaluated by

P ¼ oW e

oF
¼ oW e

o�e

 o�

e

oC

 oC
oF

: ð15Þ

We note that, whereas the dependence of We

and, correspondingly, of r on �e is material-spe-

cific, the transformations required to convert r to
P are material-independent. Further stress contri-

butions may result from viscosity.

In our calculations we specifically takeWe to be

quadratic and isotropic in the logarithmic elastic

strains and consider the process to be isotherm,

i.e.,

W e ¼ W eðFeÞ ¼ j
2
½log J e�2 þ l

4
kdevð�eÞk2

; ð16Þ
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where j and l are a reference bulk and shear mod-

ulus. The stress relations follow from (16) by an

application of (15). In particular, the pressure in

the tissue is linear in the elastic logarithmic volu-

metric strain.
A simple stored plastic energy function may be

formulated by an additive decomposition into vol-

umetric and deviatoric components. The latter, so-

lely a function of the effective deviatoric plastic

strain ep, follows a conventional power-law of

hardening

W pðepÞ ¼ nr0e
p
0

nþ 1
1 þ ep

ep
0

� �ðnþ1Þ=n

� 1

" #
; ð17Þ

where r0 is the yield stress, n is the hardening expo-

nent and ep
0 is a reference parameter. The volumet-

ric part of the dissipated energy function is

attributed directly to the bubble growth. In the di-

lute limit, the total energy stored by expanded

bubbles is the sum of the energy dissipated by each

individual bubble. For empty spherical cavities
(voids) in a power-law hardening material the

stored energy has been determined by Ortiz and

Molinari [4]. This equals the plastic work of defor-

mation attendant to the expansion of bubbles. Fol-

lowing these considerations and referring it to the

unit volume by the Jacobian Jp lead to the stored

energy function

W pðep; #pÞ ¼ W pðepÞ þ nr0e
p
0

ðnþ 1ÞN
4p�a3

3

2

3ep
0

� �ðnþ1Þ=n

�
Z 1

1

log
x

x� 1 þ ½1 þ ðe#p � 1Þ=f0��1

( )ðnþ1Þ=n

dx:

ð18Þ

Aside of conventional Newtonian viscosity we

consider two types of rate effects: rate sensitivity

in the plastic deformations and micro-inertia due

to rapidly expanding bubbles. To ensure a varia-
tional structure we postulate the existence of a

dual kinetic potential w�ð_ep; _#
p
; JpÞ such that the

thermodynamic forces conjugate to _ep and _#
p

may be derived from w*. The modelling of rate

sensitivity follows analogous to the plastic work

function, cf. [7]. Micro-inertia as a dissipative en-

ergy term is a somewhat non-standard feature of

the present model, it renders the equations of mo-
tion for the growth of the bubbles of second order
in time. In a dilute model the total micro-inertia

attendant to the growth of the bubble ensemble

is the sum of the kinetic energies due to the expan-

sion of each individual bubble and can be com-

puted readily with the result

Kð�a; _�aÞ ¼ 2pN.0�a
3 _�a

2
; ð19Þ

where .0 is the mass density per unit volume. In

order to formulate updates possessing a variational

structure, the time-discretization of the equations

of motion must itself possess an incremental varia-
tional structure. By a change of variables function

(19) may be transformed adequately, cf. [7].

For implementation we start by discretizing the

flow rule in time using an exponential mapping

technique with the result

Fp
nþ1 ¼ expðDepM þ D#pNÞFp

n : ð20Þ

Clearly, the update (20) is consistent with the

flow rule (2) by virtue of the identity

d

dt
exp½tð_epM þ _#

p
NÞ�

� �
t¼0þ

¼ _epM þ _#
p
N : ð21Þ

We update the internal state variables, ep
nþ1 and

#p
nþ1, and simultaneously determine the incremen-

tal direction of plastic flow, M and N, for the time

step by recourse to the variational formulation of

Ortiz and Stainier [5]. To this end, we introduce

in every time interval Dt = tn+1 � tn the incremen-

tal objective function

fnðFnþ1; e
p
nþ1; #

p
nþ1;M ;NÞ

¼ W eðC e
nþ1Þ þ W pðep

nþ1; #
p
nþ1; J

p
nþ1Þ

þ Kð#p
nþ1;

_#
p

nþ1; J
p
nþ1Þ

þ Dtw�ðMep=Mt;M#p=Mt; Jp
nþ1Þ: ð22Þ

We emphasize that this function includes the

free energy of the material, as well as the stored en-

ergy, the micro-kinetic energy and the dual kinetic
potential. These contributions compete in ener-

getic terms, and the optimal internal process is that

one which minimizes the function fn. This may be

expressed in variational form as

W nðFnþ1Þ ¼ min
ep
nþ1

;#
p

nþ1
;M;N

fnðFnþ1; e
p
nþ1; #

p
nþ1;M ;NÞ

ð23Þ
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subject to the constraints (4) and (5). Note that

(23) acts as a potential for the stress–strain rela-

tions, the tangent moduli are consequently

symmetric.

Fig. 1d shows the computed axial Cauchy stress
in a uniaxial bar subjected to cyclic elongation. By

constraining (5) to a positive sign, we only allow

for irreversibility in tension. This is motivated by

experimental observations [2].
X

Y

Z

(a)

Fig. 2. Anatomically correct finite element mesh of the

Fig. 3. Typical bruising observed in an animal experiment from [1] and

kidney, (b) exterior view and (c) meridional section.
3. Numerical simulation

For finite element analysis we build an anatom-

ical correct mesh of a human kidney using geomet-

rical data from image processing (Fig. 2). The
kidney is modelled without a stone. This approach

is backed by experimental studies showing that

injuries are caused by SWL treatment and hardly

influenced by stone fragmentation [1]. For a first
X

Y

Z

(b)

kidney. (a) Meridional section and (b) full model.

the computed field of irreversible volumetric expansion: (a) pig
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computation we only distinguish regions of func-

tional (sensitive) kidney tissue and non-functional

tissue (as, e.g., the ureter and main blood vessels),

modelled with the presented material and a non-

linear elastic material law, respectively. Material
parameters available from experiments are homog-

enized for ‘‘the kidney’’ disregarding the interior

structure, (cf. [1,3,8] and references therein). We

use here: E = 0.1MPa, j = 250MPa, r0 = 80Pa,

exponents m = n = 10, q = 1050kg/m3 and viscos-

ity g = 0.005Pas.

The unsupported kidney was subjected to a 1ls

pressure wave modelled as distributed force on the
boundary and then released. For time integration

we apply an explicit Newmark scheme over a per-

iod of 100ls [7].

Common evidence of shock wave induced mor-

phological lesions are kidney enlargement, bruising

and hemorrhage in the pre-focal area, see the pho-

tograph of a SWL subjected pig kidney in Fig. 3.

The location of injuries correlates to the area of
peak negative pressure and greatest cavitation [6].

This effect is captured by our kidney model. Fig.

3 shows the computed field of irreversible volumet-

ric dilatation on the boundary and in the focal area

(meridional section). The irreversible volumetric

expansion is induced by hydrostatic tension follow-

ing the shock front and additionally caused by

reflection of the applied pressure wave.
We observe an encouraging agreement of local-

ized damaged. Further research is ongoing to

study the influence of the surrounding body tissue

and the effect of varying material data.
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