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Coupling atomistic accuracy with continuum
effectivity for predictive simulations in materials
research – the Quasicontinuum Method

In this article we present a comparative analysis of different
versions of the quasicontinuum method, which aim at a
seamless transition from the atomistic to the continuum de-
scription of crystalline solids at zero temperature. All ver-
sions of this popular and powerful method exhibit the same
building blocks, namely (i) a coarse-graining of fully atomis-
tic resolution via kinematic constraints, (ii) an approximation
of the energy/forces in coarse-grained regions via numerical
quadrature and (iii) adaptive mesh refinement. The quasicon-
tinuum versions are assessed in an example where a Lomer
dislocation dipole is subject to shear deformation. In a sec-
ond example, the fully nonlocal quasicontinuum method is
used to simulate nanoindentation into an fcc single crystal.
Compared with lattice statics good agreement is achieved
with respect to significant details of the material behaviour
for a small fraction of the computational costs.

Keywords: Multiscale modelling; Quasicontinuum; Nano-
indentation; Dislocation microstructure; Surface effects

1. Introduction

Nearly 100 years have passed since John Milikan’s experi-
ment that determined the charge of an electron and – again
in 1910 – the experimental proof by Ernest Rutherford of
the existence of atomic nuclei. These and other fundamen-
tal insights into atomic matter have set off an avalanche of
research, that has changed the world. One of the great
many, lasting impacts is that in the past decade experiments
on the atomic level are no longer exclusively performed in
real laboratories, but equally and routinely are done in nu-
merical laboratories. There, molecular models and simula-
tion methods have long been an integral part for analyses
in solid state physics and materials science.

Despite the considerable achievements by means of mo-
lecular simulations, which have been sped up by the ever
more increasing computer power, the range of applicability
of atomistic models and methods is still rather limited in
that they have not yet reached the typical time and length
scales of engineering applications. The reason is that quite
disparate time and length scales have to be considered; for
molecular dynamics the maximum time step is dictated by
the frequency of thermal vibrations, hence of the order of
femtoseconds, whereas a process such as, for example,
crack propagation typically occurs on the order of millise-
conds. The spatial problem is not less demanding, since

the length scale at the bottom is in the range of atomic spac-
ings, hence of nanometres, whereas the world of engineer-
ing problems start in the range of some centimetres – and
beyond. For that reason many efforts have been undertaken
to overcome the time scale and length scale dilemma by
coarse-graining approaches. The accurate, at best seamless
information passing from a bottom scale to a corresponding
coarse-grained scale – and eventually backwards – is one of
the key challenges in computational materials science.

In this paper we analyse the quasicontinuum (QC) meth-
od which is the most influential ambassador of the class of
bottom-up, concurrent multiscale methods, that perform a
coarse-graining in space at zero temperature. For the de-
scription of other methods in this family we refer to the ori-
ginal literature [1–5], and for reviews to [6] and [7].

Beyond some differences, which will be analysed in this
article, the versions of the QC method consist of the follow-
ing common building blocks:
(i) a coarse-graining of fully atomistic resolution via ki-

nematic constraints in order to reduce the number of
degrees of freedom. Accuracy of fully atomistic reso-
lution is retained where necessary, the effectivity of
coarse-graining is chosen where possible.

(ii) an approximation of the energy/forces in coarse-
grained regions via numerical quadrature, which
avoids the explicit computation of the site energy of
each and every atom.

(iii) adaptivity, i. e. spatially adaptive resolution, is neces-
sary to automatically balance accuracy and efficiency
and must be directed by a suitable refinement indicator.

The three versions of the QC method are first, the original
version based on Cauchy–Born elasticity as brought forth by
Tadmor, Ortiz and Phillips [8], [9] and extended by contribu-
tions from Miller, Shenoy and Rodney [10]. A second, fully
nonlocal version was proposed by Knap and Ortiz [11], which
is the precursor of the third variant proposed in [12].

2. The Quasicontinuum-Method
based on the Cauchy–Born Rule

To set the stage, we consider a crystal in d-dimensional
space consisting of a setl � Zd of atoms, that are initially
located on a Bravais lattice spanned by lattice vectors
A1; . . .Ad. Their coordinates in the initial configuration
read Xl ¼

Pd
i¼1 l

ðiÞAi; l 2 l � Zd. The corresponding
atomic coordinates in the current configuration are denoted
by vector xl.
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2.1. Upscaling via coarse-graining

In regions of weakly varying elastic deformation it is suffi-
cient to consider the movement of some judiciously se-
lected representative atoms (rep-atoms), lh � l. Only
these atoms keep their independent degrees of freedom,
whereas all other atoms, lh ¼ l=lh, are forced to follow
via kinematic constraints borrowed from the finite element
method, xl ¼

P
j2lh

xjujðXlÞ, l 2 lh. FE shape functions,
uj2lh

, exhibit the properties,
P

j2lh
ðXiÞ ¼ 1 8 i 2 l (par-

tition of unity), and, ujðXj
0Þ ¼ djj 0 8 j; j0 2 l (compact

support). The use of (here: linear) shape functions for inter-
polation requires the generation of a triangulation with re-
presentative atoms as mesh nodes. Figure 1 schematically
displays the discretisation of the crystal into finite elements.
Of course, the interpolation of nodal displacements im-

plicitly introduces a continuum assumption into the QC
method. Notwithstanding, this first approximation is
purely kinematical in nature, no constitutive assumption
is made.

This approximation step of coarse-graining reduces the
number of independent degrees of freedom for the calcu-
lation of the exact total potential E totðfxij i 2 lgÞ !
E totðfxij i 2 lhgÞ ¼: E tot;h and thus reduces the number
of unknowns in the computation.

Both existing QC methods have this approximation step
of (finite element) discretisation in common, but differ in
the way further approximations are made. Next, we focus
on the QC version based on Cauchy-Born elasticity, in Sec-
tion 3 the fully nonlocal QC versions are described.

2.2. Efficient energy/force calculation: the local QC

After thinning-out dispensable degrees of freedom via line-
ar finite-element shape functions, i. e. approximation (i), the
first QC-version accomplishes an efficient energy/force
calculation in the continuum region by recourse to the so-
called Cauchy–Born Rule, hence QC-CBR, resulting in
what is referred to as the local formulation of the QC.

The CBR postulates that when a monatomic crystal is
subjected to a small linear displacement of its boundary,
then all atoms will follow this displacement, see [13–15].
This is illustrated in Fig. 2 for the deformation u : X ! R3

of a crystalline cantilever undergoing elastic bending with
a deformation gradient F ¼ @XuðXÞ and a Jacobian

J ¼ detF > 0, where X designates a material point in the
reference configuration.

This is applied within the QC-CBR in that a – locally –
uniform deformation gradient at the continuum or macro-
scale is directly mapped to the same uniform deformation
on the atomistic or nano-scale. For crystalline solids with a
simple lattice structure the assumption of locally homoge-
neous deformation state implies that every atom in a region
subject to a uniform deformation gradient will be energeti-
cally equivalent. As a consequence, the calculation of the
energy for a specific finite element can be approximated
by computing the energy of only a single atom in the de-
formed state and multiplying this figure by the number of
atoms in the specific finite element. Within the QC-compu-
tational framework, the calculation of the CB energy is
done separately in a subroutine; for a given deformation
gradient F the lattice vectors in a unit cell with periodic
boundary conditions is deformed according to F

ai ¼ FAi ð1Þ

where Ai and ai are the lattice vectors in the undeformed con-
figuration and in the deformed configuration, respectively.
The deformed lattice vectors enter the employed potential
for energy calculation, such that the CBR enables the free en-
ergy of a crystalline body (as a function of lattice vectors) in
its deformed configuration to be expressed alternatively as a
function of the deformation gradient F. The corresponding
strain energy density in the element is then given by

E ¼ E0 ðFÞ
X0

ð2Þ

where X0 is the unit cell volume (in the reference config-
uration) and E0 is the energy of the unit cell when its lattice
vectors are distorted according to F. Now the total energy
of a finite element is this energy density times the element
volume, the total energy of the problem is simply the sum
of all element energies:

E tot;h ¼
XNelement

i¼1

Xi E ðFiÞ ð3Þ

where Xi is the volume of element i.
Linear interpolation functions in tetrahedral finite ele-

ments require only one single Gauss-point for numerical
quadrature and therefore imply a constant deformation gra-
dient F per element as visualised in the right of Fig. 1. As a
consequence, the application of the CBR implies that in the
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Fig. 1. Finite-element discretisation in the QC method of a crystal in
the (left) undeformed and in the (right) deformed state. Atoms within
elements smoothly follow the deformation of the representative atoms
(mesh nodes) by linear interpolation.

Fig. 2. Schematic representation of the CBR assuming a homogeneous
deformation state in small volumes.
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energy calculation the summation over the number of lat-
tice sites N boils down to the number of finite elements
Nelement, see Eq. (3).

Since the crystal is in general subject to inhomogeneous
deformations, the element-wise constant deformation gra-
dient is an approximation and so is the calculated energy
via the CBR. In settings where the deformation is varying
slowly and the element size is adequate with respect to the
variations of the deformation, this type of energy calcula-
tion is sufficiently accurate and very effective.

An analysis on the range of validity of the CBR can be
found in [16] and in [17] where it turns out in the latter re-
ference that the CBR fails for relatively small elastic defor-
mations. An extension of the classical linear CBR to second
order is proposed in [18].

2.3. Nonlocal QC

In nonlocal regions, which can be eventually refined to
fully atomistic resolution, the energy of the atoms residing
on a mesh node (representative atom) is calculated. Specifi-
cally, the new approximate energy takes the form

E tot;h ¼
XNrep

�¼1

n� E� ðuhÞ ð4Þ

The computational saving is that the summation of all the
atoms is replaced by a sum over all representative atoms
Nrep. In the line of numerical quadrature, n� is the weight
function for rep-atom � which requires for consistency

XNrep

�¼1

n� ¼ N ð5Þ

Hence, n� is the number of atoms represented by atom �,
which implies in the limiting case of fully atomistic resolu-
tion n� ¼ 1.

2.4. Mixed Local–Nonlocal QC

Since the nonlocal QC is employed in regions where atomic
scale accuracy is needed, while the local QC has the advan-
tage of computational efficiency in regions where the defor-
mation is changing relatively slowly on the atomic scale, a
scheme is favourable that uses both formulations concur-
rently in a single simulation. For that aim, a framework
has been developed that combines the local QC and the the
nonlocal QC as already described above.

As in the energy-based nonlocal QC, the coupled approach
is based on the ansatz that the energy can be approximated by
computing only the energy of the rep-atoms. In the coupled ap-
proach however, each rep-atom is judiciously selected as being
either local or nonlocal depending on its deformation environ-
ment. Thus, the rep-atoms are divided into Nloc local rep-atoms
and Nnonloc nonlocal rep-atoms (Nloc þ Nnonloc ¼ Nrep). Doing
this, the total energy is approximated as

E tot;h ¼
XNnonloc

�¼1

n� E� ðuhÞ þ
XNloc

�¼1

n� E� ðuhÞ ð6Þ

The weights n� for each rep-atom (local or nonlocal) are de-
termined from a tessellation that divides the body into cells

around each rep-atom. The numerically expensive Voronoi
tessellation can be replaced by an approximate Voronoi dia-
gram. The Voronoi cell of rep-atom � contains a total of n�
atoms. Of these atoms, n i

� reside in element i adjacent to
rep-atom �. The total weighted energy contribution of rep-
atom � is then calculated by use of the CBR within each
element adjacent to �, hence

n�E� ¼
XM
i¼1

n i
� X0 E ðFiÞ n� ¼

XM
i¼1

n i
� ð7Þ

where E is the energy density in element i by the CBR,X0 is
the Wigner–Seitz volume of a single atom and M is the
number of elements adjacent to �.

2.5. The ghost-force problem

The first version of the QC inherently exhibits ghost forces,
defined as spurious forces arising at the interface between
local and nonlocal regions, see Fig. 3. These forces thus fol-
low from the duality in atomic interactions, where the mo-
tion of representative atoms (i. e. finite element nodes) in
the local region subject to CBR will affect the energy of
nonlocal representative atoms, while the converse may not
be true.

There are two different concepts to reduce ghost forces in
QC-CBR:
1. correction by applying a static correction force field,

see [10].
2. correction by continuation, see [16] and [19].
The first remedy against ghost forces is to introduce static
correction forces, which exhibit the drawback that they are
not derivable from a “correction potential energy”, i. e.,
they are nonconservative, see [10]. This may lead to serious
problems with energy conservation during a molecular-dy-
namics simulation, as reported in [19]. In order to cure the
problem of ghost forces without new shortcomings, this re-
ference introduces a buffer layer between the two regions
of space, where atoms are subject to specific rules concern-
ing how they interact with their local and nonlocal neigh-
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Fig. 3. The scale transition scheme in the QC-CBR, where the nonlo-
cal region (A) overlaps in the interface zone (I) with the local conti-
nuum region (C), which is discretised with finite elements and subject
to the CBR.
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bourhood. In a similar spirit is the contribution of [16],
where the approach of local reconstruction schemes is gen-
eralised.

3. The fully nonlocal, cluster-based
Quasicontinuum-Method

A fully nonlocal QC-version as proposed by Knap and Ortiz
in 2001, [11], aims to overcome the aforementioned force
mismatch between local and nonlocal regions in QC-CBR.
For that aim they replace the CBR by a nonlocal theory to be
described and hence avoid incompatibilities of different phy-
sical descriptions at discrete interfaces. The scale transition in
the fully nonlocal QC is realized in a more continuous man-
ner by gradual coarse-graining, enabling a seamless scale
transition, see Fig. 4., whereas in QC-CBR the scale transi-
tion is at the discrete interface where local Cauchy–Born
elasticity as the continuum constitutive model meets nonlocal
atomistics, see Fig. 3. In the above structure of the QC build-
ing blocks in Section 1, properties (i)–(iii), fully nonlocal QC
versions introduce for property (ii) the use of summation
rules for the sampling of forces or the energies in spherical
clusters, which can be seen as representative crystallites.

3.1. Sampling of energy/forces in spherical clusters

Even after coarse-graining, the total energy still depends on the
site energy Ek of each and every atom k, E tot;h ¼

P
k2l Ek.

Due to the prohibitive computational expense of this task,
a second approximation becomes necessary, which is again,
like discretisation, a very standard in classical finite ele-
ment methods: numerical quadrature.

For that purpose [11] proposed to perform force evalua-
tions no longer at each lattice site in the crystal but to re-
strict them to sampling clusters. These sampling clusters
ci are spheres of radius Rc and are chosen to have a mesh
node in its centre, see Fig. 5. Hence, they are defined as
ci ¼ fk : jXk � Xij � RcðiÞg. Note that the sampling clus-
ters may have different positions, e. g. in the interior of the
finite element.

Assuming a pair potential V ¼ VðjrkljÞ with rkl ¼ xk � xl
and omitting here and in the following the contribution of
an external potential V ext, the force acting on node a reads
for force sampling in the cluster

f h
a ¼

X
i2lh

ni
X
k2ci

f kuaðXkÞ

¼ �
X
i2lh

ni
X
k2ci

X
l2l

V 0ðjrkljÞ
rkl
jrklj

" #
uaðXkÞ ð8Þ

The equilibrium configurations of interest are the minimi-
sers of E tot;h, i. e. the solutions of the variational problem:

min
fxag

E tot;h ! f h
a ¼ 0 8 a 2 lh ð9Þ

Energy minimisation physically corresponds to solving for
the configuration for which at every mesh node a the sum
of forces on each degree of freedom is zero. Based on this
fact, Knap and Ortiz [11] search for the equilibrium by di-
rectly working from an approximate expression for the
forces according to Eq. (8) rather than working from the ex-
plicit differentiation of a total energy functional.

In [12] however, we introduced the sampling at the en-
ergy level, thus

EQC ¼
X
i2lh

ni
X
k2ci

Ek � E tot;h ð10Þ

The counterpart to Eq. (8) yields for energy sampling

f h
a ¼ � @EQC

@ xa
¼

X
i2lh

ni
X
k2ci

� 1
2

X
l2l

V 0ðjrkljÞ
rkl
jrklj

½uaðXkÞ � uaðXlÞ�
� �

ð11Þ

It is worth noting that for energy sampling – as opposed to
force sampling – the force expression f ha in Eq. (11) is expli-
citly derived from a well defined total potential EQC,
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Fig. 4. The scale transition scheme in fully nonlocal QC-versions
based on force/energy sampling in spherical clusters: the atomistic-
continuum coupling is realised in a continuous manner by gradual
coarse-graining enabling a seamless scale transition.

Fig. 5. Spherical clusters around mesh nodes for the explicit sampling
of forces or energies. The interaction of sampling atom k inside the
cluster with non-sampling atom l outside the cluster must be symmetric
to fulfill Newton’s third law.
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Eq. (10). The analysis in [12] brought forth that the stiffness
matrix derived from the force expression in Eq. (8) is nonsym-
metric, thus indicating that the forces are not conservative.
Hence, for force sampling the variational structure is lost.

This result was the motivation in [12] to introduce the
sampling at the energy level as described in Eq. (10), which
endows the fully nonlocal QC theory with a variational
structure, since the consistently derived forces are conser-
vative as indicated by symmetric stiffness matrices. For a
detailed analysis we refer to [12].

The cluster based QC variants are abbreviated according
to the sampled quantity, as CQC-F for force sampling, and
as CQC-E for energy sampling.

Cluster weights. In both cases, i. e. for force and energy
sampling, factor ni is the weighting of the force/energy con-
tribution of cluster ci. The cluster weights ni, i 2 lh, are cal-
culated under the requirement that the summation over all lin-
ear interpolation functions must be exact, see [11], henceX
i2lh

ni
X
k2ci

ujðXkÞ ¼
X
k2l

ujðXkÞ 8 j 2 lh ð12Þ

The calculation of the weights implies the assumption that
the quantity subject to sampling can be exactly approxi-
mated if it is linear between the mesh nodes.

3.2. Numerical errors in CQC-E

Each of the two approximations made in the cluster based
QC introduces a numerical error compared with lattice stat-
ics, which will be described for CQC-E.
(I) Discretisation error:

The approximation of coarse-graining, as described in
Subsection 2.1. reduces the number of independent degrees
of freedom for the calculation of the exact total potential

E totðfxi j i 2 lgÞ ! E totðfxi j i 2 lhgÞ ¼ E tot;h ð13Þ

and thus reduces the number of unknowns in the computa-
tion. This error is reduced by adaptive mesh-refinement di-
rected by a refinement indicator.
(II) Error of numerical quadrature:

(A) The energy is sampled in clusters of confined size
ci � l which leads to an approximation of E tot;h by EQC,
see Eq. (10)

E tot;h ! EQC ð14Þ

and the corresponding force error obeys the format

f � ¼ �grad EQC � E tot;h
� �

ð15Þ

(B) Weighting factors are determined such that they are ex-
act, only if the energy is piecewise linear, [11].

In [12] a test was designed to analyse the error in numer-
ical quadrature. An infinite single crystal, modelled as a
crystal of finite size with periodic boundary conditions,
was relaxed into its equilibrium state. Since no external
forces are present, the exact solution is zero displacement
in the entire crystal. The key aspect of this test however is
to check, if CQC based on energy sampling can achieve a
seamless scale transition. For that aim a discretisation was
chosen of fully atomistic resolution in the centre of the crys-
tal and increasingly coarse-grained towards the border of

the crystal. The result of relaxation has shown nonzero dis-
placements as induced by spurious forces. These forces
could be reduced by increasing the cluster size. In the limit,
where the clusters are large enough to capture each and
every atom in the crystal, the spurious forces identically
vanish. This test shows that CQC-E can achieve a truly
seamless scale transition.

Moreover, the test elucidates important properties of the
observed residual forces, which are different from the ghost
forces in QC-CBR by source and nature.

The convergence properties of the residual forces in CQC-
E show that they stem from the approximation made in nu-
merical quadrature. Ghost forces in QC-CBR follow from
the incompatibility of the local and the nonlocal concept.

The aforementioned error in numerical quadrature is de-
scribed in Eq. (15). It reflects that residual forces in CQC-E
are conservative in nature; they are derived from a unified to-
tal potential and as a consequence, they are symmetric. Ghost
forces in QC-CBR however are not conservative, since they
do not derive from a unified potential and consequently, they
are not symmetric, i. e. the motion of rep-atoms in the local
region subject to CBR will affect the energy of nonlocal
rep-atoms, while the converse may not be true.

Moreover, Eq. (15) reflects the inherent property of
CQC-E to estimate the error in numerical quadrature with
arbitrary accuracy. This can be easily done by calculating
the energy twice, but the second time with a larger cluster
size which gives an improved energy approximation.

Summarising, the fully nonlocal cluster QC based on en-
ergy sampling exhibits advantages compared to its precur-
sor based on force sampling: CQC-E preserves the varia-
tional structure of lattice statics leading to conservative
forces as indicated by symmetric stiffness matrices. More
specifically, energy sampling implies the strict symmetry
of atomic interactions in all regions, even across the bound-
ary of clusters, whereas force sampling does not in general.
Energy sampling also exhibits some numerical advantages.
Standard algorithms for the numerical minimisation of
functionals such as CG methods can directly be applied,
since they generally require gradients as well as evaluations
of the functional (the energy) itself. Moreover, a minimiser
can be found if the energy exhibits a minimum.

4. Numerical examples

4.1. Dipole of Lomer dislocations subject to shear force

In this test set, as recently proposed in [7], we will compare
the performance of the versions of the QC method (QC-
CBR and CQC-E) against fully atomistic lattice statics as
reference solution. The test is a block of single crystalline
aluminium with a dipole of Lomer dislocations in its centre,
which is subject to increasing shear strain c ¼ 0� 0:057,
cf. Fig. 6. When the block is increasingly sheared, Peach–
Koehler forces build up and, when large enough, drive the
two dislocation cores into opposite directions. The crystal
is approximately 400 Å · 400 Å in the X–Y plane and peri-
odic in Z (with a periodic length of 2.85 Å). Since the lattice
constant for this model of aluminium is 4.032 Å, this region
contains 27760 atoms. The mesh used for the QC simula-
tions is displayed in Fig. 7. A small band of thickness T is
refined to fully atomistic resolution, namely for
Y ¼ �T Å. Here, we consider T ¼ 10, 20 Å. The Lomer di-
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pole lies on the Y ¼ 0 plane, with the two cores initially lo-
cated at X � �20 Å.

The accuracy of the QC methods against lattice statics
are measured using two physically meaningful criteria.
First, the dislocation motion is tracked in terms of the core
spacing as a function of shear strain. Second, the shear force
is recorded as a function of the shear strain, which includes
the sudden change in the force when the dislocations start to
move for sufficiently large Peach–Koehler forces.

In [7] the displacement error in the initial relaxation
(c ¼ 0) is used as a measure for the intended smooth scale
transition between the fully atomistic core region and the
coarse-grained finite element region. Hence the local error
for atom � is calculated according to

e� ¼ jju�qc � u�exjj ð16Þ

where u�qc and u�ex are the displacements of atom � in the
QC simulation and lattice statics calculation, respectively.

Initial relaxation. The displacements and the corre-
sponding displacement error e� after the initial relaxation
of the crystal are reported in Figs. 8 and 9. Focussing on
the region influenced by the dislocation dipole, as displayed
in Fig. 8, we observe within the strip of fully atomistic reso-
lution an excellent agreement with lattice statics for CQC-E
with 13 sampling atoms per cluster, see Fig. 9. Only in a
narrow band right along the atomistic strip there is a visible
error, which for CQC-E is throughout smaller than 0.14 Å.
For QC-CBR (with ghost force correction, hence GFC) the
error is throughout even smaller, e� < 0:03 Å. In the fully
atomistic strip close to the dislocation dipole, the error is
somewhat larger than in CQC-E.

Note that the loading and boundary conditions according
[7], see Fig. 6, enforce the quasi-uniform deformation of
simple shear in some distance to the dislocation cores. This
is obviously the best case for QC-CBR, since the CBR by
its very construction assumes a uniform deformation state.
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Fig. 6. Test set used to compare the versions of the QC methods. A
Lomer dipole, 40 Å wide, is centred in the model. The dark frame
around the edges of the model is held fixed to various levels of applied
shear strain to force the dislocations to move.

Fig. 7. Finite-element mesh for the Lomer dipole.

Fig. 8. Displacements in (left) X- and (right)
Y-direction (Å) during initial relaxation
(c ¼ 0) for CQC-E with 13 sampling atoms,
strip width T ¼ 20 Å.

Fig. 9. Distribution of the displacement error
e� (Å) according to Eq. (16) for (left) CQC-E
and for (right) QC-CBR-GFC, T ¼ 20 Å.
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Remarkably, this does not only apply for some elements but
for the entire crystal in the simulation box in some distance
to the dislocation cores.

Force-shear curve and dipole motion. We agree with
[7] in that “the curves for the shear load versus applied
shear and core separation as a function of applied shear
strain are the most interesting physical results one may like
to extract”. As it will turn out, both aspects are closely con-
nected. We start with the second relation reported in Fig. 10
and observe that both QC versions capture for various para-
meters the sessile behaviour of the dislocation cores in that
their distance remains constant up to c � 0:045. For strip
width T ¼ 10 Å however, the QC-CBR simulations under-

estimate the load level for dislocation motion which is
equally reflected in the F–c curve of Fig. 11 by a premature
force-drop. For the same strip width CQC-E(13) performs
better, since it predicts quite accurately the load level,
where the dislocations move all at once, but the final posi-
tion of the cores is quite inaccurate. For a larger strip width
of T ¼ 20 Å these problems are overcome; both QC ver-
sions (namely CQC-E(13)-20 and QC-20) correctly predict
the load level of dislocation motion/force drop and they
are in quantitative agreement with lattice statics concerning
the final dislocation core spacing at c ¼ 0:057. The main
conclusion is that the influence of dislocation cores within
a finite distance, viz. Fig. 8, requires for both QC versions
fully atomistic resolution in a sufficiently large neighbour-
hood around the defects.

There is much merit in this benchmark test, but general
conclusions on the overall performance of the QC versions
cannot be drawn from one single test. This is especially
true, since the test does not check at least two important fea-
tures, which versatile and powerful concurrent multiscale
method must provide.
(A) Adaptive spatial resolution in order to keep track of de-

fect evolution like dislocation motion or crack growth
by way of automatic, local mesh-refinement – or even-
tually mesh-coarsening. This feature must balance the
opposite requirements of accuracy and efficiency.

(B) Free surface effects must be accurately described, since
they cannot be neglected at the nanoscale and, naturally,
every material body is finite and thus separated by free
surfaces from the rest of the world.

These two features as well as other aspects of accuracy and
efficiency are assessed in the next example, where the fully
nonlocal 3D software framework for CQC-E, as proposed
in [12], is used for the simulation of nanoindentation.

4.2. Nanoindentation into (001) fcc aluminium

Nanoindentation is a paradigmatic problem for concurrent
multiscale modelling and is of some relevance in materials
science. The simulation results will be validated by compari-
son with lattice statics, which is the QC method’s fully atom-
istic counterpart. In this comparison we focus on the criteria
efficiency and accuracy. For that aim we measure free sur-
face effects and record the characteristic force–depth (F–h)
curve, from the elastic branch up to dislocation nucleation
and beyond. Finally, we compare the evolution of dislocation
microstructure which assesses adaptive mesh-refinement.

The material under consideration is fcc single crystalline
aluminium. The computational box adopted in the compu-
tations comprises 64 · 64 · 64 Bravais-lattice cells. Atoms
on the lateral faces of the box are fixed in normal direction
to the faces, atoms at the bottom are fixed in z-direction
but free to move within the bottom plane. In Fig. 12 the
axes of the coordinate system correspond to <001> direc-
tions. A spherical indenter of radius R is modelled as an ex-
ternal potential V ext of the form

V extðxÞ ¼ A � hðR� rÞ � ðR� rÞ3; r ¼ jx� cj ð17Þ

where parameter A represents the strength of the repulsive
force, h(r) the step function, R the indenter radius and c de-
notes the position of the midpoint of the indentor. In the simu-
lations the values A ¼ 2000 eV Å–3 and R ¼ 16 a0 with lat-
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Fig. 10. Distance between the dislocation cores as a function of the ap-
plied shear strain for lattice statics, for QC-CBR and for CQC-E. Force
F in (eV ·Å–1), strip width T as indicated.

Fig. 11. Applied shear force as a function of the applied shear strain
for the lattice statics simulation, for QC-CBR and for CQC-E. Force F
in (eV ·Å–1), strip width T as indicated.
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tice constant a0 ¼ 4:032 are used. The energy of the crystal is
modelled using the Embedded Atom Method (EAM) poten-
tial. The ball indenter is driven into the [001] oriented single
crystal in small displacement increments Dh, where at each
loading step a new stable equilibrium configuration of the
system is found by a nonlinear version of the conjugate gradi-
ent method.

4.2.1. Surface effects

The very first step in the simulation is an initial relaxation,
where the indentor’s force is not yet present. Hence, the
crystal’s equilibrium configuration is mainly influenced by
the effect of free surfaces.

Since surface atoms exhibit a smaller coordination num-
ber compared with bulk atoms, the bonding to their neigh-
bours is stronger, the relaxed lattice distances are smaller.

CQC-E simulations of the initial relaxation are per-
formed on the mesh in Fig. 12. For the cluster radius two
different values are chosen in distinct computations; first
Rc ¼ 1 a0 corresponding to 18 sampling atoms per cluster,
second Rc ¼ 2

ffiffiffi
2

p
a0 with 381 atoms per cluster. Figure 13

displays the relaxation displacements in z-direction for
CQC-E with Rc ¼ 2

ffiffiffi
2

p
a0 and for lattice statics. When the

cluster contains only 18 atoms, the shrinkage in z-direction
at the cube’s corner is uz ¼ �3:3 Å, which is considerably
larger than that one of lattice statics, uz ¼ �1:3 Å. For a
sufficiently large Rc ¼ 2

ffiffiffi
2

p
a0 however, uz ¼ �1:1 Å is

very close to the reference value of lattice statics.
Hence, for an already moderately large cluster size,

CQC-E can accurately account for relaxation effects at free
surfaces. Since this holds even in coarse-grained regions
such as in the corners of the cubic sample where relaxation
is maximum, the method effectively overcomes the neces-
sity to choose fully atomistic resolution at free surfaces.

The reason for this is that CQC-E is fully nonlocal every-
where along with the choice to locate the sampling region
around the mesh nodes and hence directly to the surface as
the region of interest. For the same physical reason the QC
version based on the CBR rule cannot capture surface ef-
fects by its very composition, cf. [20]. It is the assumption
of local homogeneity inherent in the CBR which makes it
blind for suchlike heterogeneous situations, where surface
atoms are in fact exposed to a highly non-centrosymmetric
neighbourhood. Fully atomistic resolution at free surfaces
can cure this problem within the QC-CBR framework, but
is computationally expensive.

The accurate description of free surface effects is a parti-
cular strength of the fully nonlocal QC method compared to
other concurrent multiscale methods, which generally em-
ploy continuum – hence local – constitutive equations in
the coarse-grained, i. e. finite element regions.

4.2.2. Dislocation nucleation and microstructure evolution

During the deformation process the force–displacement
curve is recorded, see Fig. 14. In the first branch of purely
elastic deformation the force increases continuously. When
a critical value of the indenter force F is reached, the first
dislocation nucleates in the single crystal. This onset of
plastic deformation is marked by a discrete force drop in
the F–h curve.

In the elastic branch CQC-E generally well agrees with
lattice statics. Increasing the cluster size from Rc ¼ 1 a0 to
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Fig. 12. Cross-sectional view of the initial mesh for the CQC-E simu-
lation. The mesh nodes are encircled by atomic clusters in green.

Fig. 13. Displacement component uz (Å) in thickness direction in the
initial relaxation for (left) CQC-E (Rc ¼ 2

ffiffiffi
2

p
a0) and for (right) lattice

statics.
Fig. 14. Force–depth (F–h) curve in nanoindentation. Quasicontinuum
(CQC-E) for various cluster sizes versus lattice statics.
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Rc ¼
ffiffiffi
2

p
a0 already yields quantitative agreement with lat-

tice statics.
Dislocation nucleation occurs in the CQC-E simulations

for the chosen cluster radii throughout at a somewhat smal-
ler load level than for lattice statics. Increasing the cluster
size improves the approximation, for Rc ¼

ffiffiffi
2

p
a0 excellent

agreement with the fully atomistic resolution is achieved,
see Fig. 14.

The overall good accuracy of CQC-E in the F–h curve is
achieved for comparatively small computational costs. For
cluster radius Rc ¼ 1 a0 the number of sampling atoms (la-
belled on the right vertical axis in Fig. 14) increases during
adaptive refinement steps from initially approximately
48000 to approximately 86000, which is still only 8% of
the number of atoms used in the fully atomistic lattice stat-
ics simulation.

The QC simulation for cluster radius Rc ¼ 1 a0 is ap-
proximately 8 times faster than lattice statics. The effi-
ciency can be arbitrarily improved by increasing the size
of the simulation box, since only large elements are added
in lateral and depth direction. In contrast to lattice statics
we may now safely use large simulation boxes without
great loss of efficiency to eliminate any undesirable simula-
tion size effects.

4.2.3. Adaptivity ensures undisturbed dislocation motion

Adaptivity is necessary in concurrent multiscale frameworks
for a well-balanced trade-off between accuracy and effi-
ciency. The discretisation error in the present work is reduced
by an adaptive refinement strategy based on a heuristic re-
finement indicator e(K ), which is defined according to [11] as

eðKÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jIIEðKÞj

p
� hðKÞ

b
ð18Þ

where IIEðKÞ is the second invariant of the Green–Lagrange
strain tensor E in simplex K, and h(K) is the size of K. Since
b denotes the length of the smallest Burgers vector for the
given crystal, the criterion, though heuristic, reflects physical
reasoning, since the current deformation is compared with
the smallest unit of plastic deformation. Elements with eðKÞ
larger than a tolerance are targeted for refinement.

Figure 15 displays some selected meshes as a result of
adaptive mesh refinement during the indentation process.
In the third and forth mesh a localisation of deformation
can be seen in the core region of fully atomistic simulation,
which indicates dislocation motion, first on a single, right
after on a second {111} plane.

Obviously, the 3D process of dislocation nucleation and
microstructure evolution remains mostly hidden behind the
finite element meshes of Fig. 15. This lack of transparency
is not satisfactory but equally applies to standard molecular
simulations. For that purpose an indicator is necessary that
detects defects and visually extracts them from their undis-
turbed surroundings. The so-called centro symmetry
parameter, [21], meets these requirements and enables clas-
sification of characteristic defects. It is defined for each
atom in an fcc crystal according to

P ¼
X6
i¼1

jri þ r�ij2 ð19Þ

where vectors ri and r�i correspond to the six pairs of next
neighbours lying at opposite sites w.r.t. the considered atom
in the lattice. By definition, the centro symmetry parameter
is zero for an atom in the bulk of a perfect material subject
to purely homogeneous elastic deformations. The deviation
of P from zero therefore measures the strength of disturbed
centro symmetry at a lattice site.

The dislocation microstructure after the force-drop is
shown in Fig. 16. The QC solution showing four dislocation
loops slipping on {111} planes is in good agreement with
lattice statics.

B. Eidel: Coupling atomistic accuracy with continuum effectivity for predictive simulations in materials research

Int. J. Mat. Res. (formerly Z. Metallkd.) 100 (2009) 11 1511

FFeature

Fig. 15. Cross-sectional view of the single crystal: Adaptive mesh re-
finement during indentation simulation ensures that dislocations can
expand and move into the bulk of the material. Sequence from top left
to bottom right.

Fig. 16. Dislocation microstructure visualised by centro symmetry
parameter P ‡ 2 Å2 for (top) lattice statics simulation and for (bottom)
CQC-E.



W
20

09
C

ar
lH

an
se

r
V

er
la

g,
M

un
ic

h,
G

er
m

an
y

w
w

w
.ij

m
r.

de
N

ot
fo

r
us

e
in

in
te

rn
et

or
in

tr
an

et
si

te
s.

N
ot

fo
r

el
ec

tr
on

ic
di

st
rib

ut
io

n.

5. Conclusions

In this contribution we have presented a comparative sy-
nopsis of different versions of the QC method and have un-
derlined the assumptions and simplifications made with the
corresponding approximation errors. Numerical errors must
be estimated and reduced by appropriate means to reason-
ably defined tolerances, which is a standard task of numeri-
cal mathematics. As underpinned in the two benchmark
problems, the question what is accurate enough? should
be directly connected to those physical phenomena and pro-
cesses that are of main interest and hence are to be simu-
lated with high fidelity. In the example with the dipole of
Lomer dislocation, the main objective of tracking the dislo-
cation motion was captured by both QC-versions with rea-
sonable accuracy if the dislocations could move within a
sufficiently wide strip of fully atomistic resolution. The
3D nanoindentation simulations have shown the unique
property of the cluster-based fully nonlocal QC to account
for free surface effects as opposed to the QC version based
on the CBR. Moreover, the cluster-based QC has proved
its potential to reduce the prohibitive computational costs
of fully atomistic resolution while faithfully simulating the
material’s response in all relevant aspects.
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