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Abstract

Pyramidal microindentation into the (00 1) surface of an face-centered cubic (fcc) single crystal made of a Ni-base superalloy is ana-
lyzed in experiment and crystal plasticity finite-element simulations. The resultant material pile-up at the surface reflects the material’s
symmetry and turns out to be insensitive to different loading scenarios as induced by (i) different azimuthal orientations of the pyramidal
indenter, (ii) different indenter shapes (sphere or pyramid) and (iii) the elastic anisotropy. Experiments and simulations are in agreement
and suggest that pile-up deformation patterns merely depend on the geometry of discrete slip systems but are invariant to different aniso-
tropic stress distributions as induced by (i)–(iii). The local adaption of pile-up to the pyramidal indenter leads to convex or concave
indent shapes corresponding to the indenter orientation. We contrast the present findings for curved indent shapes of fcc single crystals
to similar, well-known observations for quasi-isotropic polycrystals. Although phenomenologically similar in kind, the driving mecha-
nisms are different: for the single crystal it is the discrete and anisotropic nature of plastic glide in certain slip systems; for isotropic poly-
crystals it is the rate of strain-hardening caused by the cumulative response of dislocations.
� 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Indentation into single-crystalline material has attracted
interest in the experimental, modeling and computational
branches of materials science for several reasons. One rea-
son is that the simple, homogeneous microstructural com-
position enables identification of elementary deformation
mechanisms without the complexity of heterogeneous,
polycrystalline or multiphase systems. An important aspect
of such indentation experiments is the possibility to draw
inferences from surface deformation phenomena, such as
pile-up or sink-in, to material properties and processes in
the bulk of the material. Early studies used etch-pitting
to measure densities of dislocations in the bulk of the mate-
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rial. This information, along with slip-line studies at
indented surfaces, provides information on active slip sys-
tems (e.g. [1]). Based on this type of slip-line analysis, novel
techniques have been developed to identify the orientation
of an fcc single crystal (cf. [2]).

The study of single crystals in indentation has been
boosted by the development of advanced methods of
microscopy along with image processing and visualization.
Details of surface topographies have been studied with
high fidelity down to the nanoscale. Scanning tunneling
microscopy (STM) has been used [3] to discuss mechanisms
of plastic flow based on pile-up pattern around Vickers
indents and to study the indentation size effect (ISE) for
micron-sized body-centered cubic (bcc) single crystals.
Atomic force and orientation imaging microscopy has been
applied to analyze slip step formation around indents and
hence to provide information on active slip systems and
dislocation reactions [4]. Scanning electron microscopy
(SEM) was applied to investigate anisotropic surface
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topographies in (001), (110) and (111) oriented NiAl via
spherical indentation [5]. For the same set of orientations,
pile-up patterns were analyzed for nanoindentation into fcc
single-crystalline copper by means of both electron back-
scatter diffraction (EBSD) techniques and simulation [6].
Rotation patterns below nanoindents were measured by
EBSD tomography in Ref. [7].

In order to avoid symmetries different from those of the
crystal, spherical or conical indenters have been used in the
majority of cases to study pile-up in fcc single crystals [6–
14]. For the same reason the use of sharp indenters for ana-
lyzing pile-up formation is rather rare [15–17], and simula-
tions in this direction have had a focus rather on hardness,
force–depth curves for prestrained and annealed crystals
[18,19], but not on surface topographies in particular.

The main thrust of the present work is to investigate
explicitly the complementary case, where the indenter is
not isotropic and where the indenter’s symmetries do not
necessarily coincide with those of the crystal. With that
aim, a pyramidal indenter is used for indentation into
(001) fcc single crystal in order to answer the following
questions:

(i) How does an indenter’s pyramidal shape, which is
accompanied by corresponding stress concentrations,
influence the elastoplastic pile-up deformations of an
fcc single crystal? How does the variation of the
indenter’s azimuthal orientation influence the results?

(ii) Can the asymmetry imposed by a pyramidal indenter
break the material symmetries of the crystal leading
to pile-up pattern different from geometrically iso-
tropic spherical indentation?

Apart from the indenter’s geometry, it is in the first
place the elastic anisotropy which governs the stress
response of the material. For strong anisotropy in the elas-
ticity law, measured in terms of the Zener anisotropy ratio
AR = 2c44/(c11 � c12), the material subject to (indentation)
strain will attract stress in the directions of higher stiffness.
Hence, it is a completion of the above questions to ask:

(iii) Is the indentation pattern invariant with respect to
variations of stress as induced by different elasticity
laws?

In order to answer question (iii) we single out the influ-
ence of the anisotropy in the elasticity law simply by apply-
ing isotropic elasticity while maintaining the anisotropy of
plastic slip in the crystal plasticity model.

In summary, measurements (i)–(iii) systematically vary
the stress distribution in the indented single crystal while
the orientation of the crystal’s slip systems is kept fixed.
Hence, the simulation and experimental study of this work
aims to analyze the importance of mechanical stress in fcc
single crystals for pile-up formation during indentation.

With these aims in mind, the paper is structured as fol-
lows. To put things into perspective we summarize in Sec-
tion 2 the basics of the crystal plasticity model used in the
finite-element analysis. Next, we address aspects of model-
ing the two-phase Ni-base superalloy concerning its com-
position and hardening behavior. Section 3 describes the
post-processing of the indentation experiment along with
experimental techniques to obtain a 3-D picture of the
indentation topographies. In Section 4 we present the crys-
tal plasticity finite-element analysis of pyramidal–and for
comparison spherical–indentation into the (001) fcc single
crystal for various indenter orientations. Simulation and
experiment are compared in Section 5. Based on these data
we conclude in Section 6 on the driving mechanism behind
the surface deformation patterns and its sensitivity with
respect to indenter orientation, indenter shape and to the
anisotropy of the elasticity law. Since quasi-isotropic poly-
crystals have shown similar indent shapes as the (00 1) fcc
single crystal, we conclude the present analysis by contrast-
ing the two, different driving mechanisms, which lead to
strikingly similar phenomena.

2. The constitutive model

We will first consider the kinematics and constitutive
equations of the single-crystal plasticity model used in the
simulations. Next, we address aspects of modeling the pres-
ent single-crystalline material, a Ni-base two-phase super-
alloy, concerning its composition and hardening behavior.

The foundations of single-crystal plasticity may be
traced back to Refs. [20–26]. The computations presented
are performed with the finite-element program Abaqus
[27] with a user-material subroutine UMAT for single-crys-
tal plasticity written by Ref. [28] as modified in Ref. [29].
The formulation in the UMAT follows the theoretical
framework in Refs. [25,30].

2.1. Kinematics and the crystal plasticity model

We consider a crystalline body X � R3 undergoing an
elastoplastic deformation u : X! R3 with a deformation
gradient F = oXu(X) and a Jacobian J = detF > 0, where X

designates a material point in the reference configuration.
The multiplicative decomposition of the total deforma-

tion gradient

F ¼ FeFp; ð1Þ
as proposed in Ref. [31,32] is assumed to hold. Fp repre-
sents plastic simple shears that do not change the lattice
geometry, Fe represents stretching and rotation of the lat-
tice. The decomposition in Eq. (1) along with the definition
of the velocity gradient L ¼ _FF�1 implies an additive
decomposition of L in the format:

L ¼ Le þ FeLpFe�1; ð2Þ
with Le ¼ _FeFe�1, Lp ¼ _FpFp�1 the elastic and plastic distor-
tion rates, respectively. A superposed dot refers to a mate-
rial time derivative. The elastic and inelastic stretching and
spin tensors are defined as:
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De ¼ sym Le; We ¼ skw Le;

Dp ¼ sym Lp; Wp ¼ skwLp;
ð3Þ

such that the decompositions Le = De + We and
Lp = Dp + Wp hold.

It is assumed that plastic flow is mediated by the move-
ment of dislocations on well-defined slip systems
a = 1,2, . . . ,N in the crystal lattice with the slip direction
sa

0 and slip plane normal na
0 in the ath slip system, where

sa
0 � na

0 ¼ 0, jsa
0j ¼ jna

0j ¼ 1, sa
0; na

0 ¼ constant. For fcc single
crystals there are N = 12 octahedral slip systems, referred
to as (111) h110i slip systems.

Introducing the Schmid tensor with symbol � as the
dyadic product of two vectors:

Sa
0 ¼ sa

0 � na
0; ð4Þ

the plastic distortion rate which sums up the shearing rates
on all slip systems can be written as:

Lp ¼ _FpFp�1 ¼
XN

a¼1

_caSa
0; ð5Þ

where _ca is the plastic shear strain rate in the ath slip sys-
tem. Hence, the plastic stretching Dp and the plastic spin
Wp can be represented as:

Dp ¼
XN

a¼1

_caPa; with Pa ¼ symSa
0;

Wp ¼
XN

a¼1

_caWa; with Wa ¼ skwS
a
0:

ð6Þ

The Cauchy stress tensor r induces the resolved shear stress
sa on the ath slip system according to:

sa ¼ Sa
0 : r: ð7Þ

In the elastoviscoplastic approximation of the rate-inde-
pendent model, the shearing rate _ca can be expressed as a
rate-dependent power-law [26]:

_ca ¼ _c0

sa

sa
r

����
����
1=m

sgnðsaÞ; ð8Þ

where 1/m is the rate sensitivity exponent, _c0 is the shear
strain rate at a reference condition and sa

r denotes the cur-
rent shear strength of the ath slip system. The rate-indepen-
dent limit is achieved for m ? 0. sa

r develops with the
evolution of slips on active slip systems due to the accumu-
lation of dislocations in a crystal, i.e. work-hardening.
Since work-hardening of slip systems depends on inelastic
shear deformations, the rate of sa

r is calculated by:

_sa
r ¼

XN

b¼1

habjcbj; ð9Þ

where matrix [hab] describes the increase of the deformation
resistance on slip system a due to shearing on system b. The
diagonal components (a = b) describe self-hardening, the
off-diagonal components (a – b) represent latent-
hardening.
For hyperelasticity, the Cauchy stress r is related to the
elastic strain-rate De by:

r
re ¼ Ce : De � rtrðDeÞ ¼ Ce : ðD�DpÞ � rtrðDÞ; ð10Þ
see, for example, Ref. [33], where Ce is the tensor of elastic
moduli with three independent elasticity constants, c11, c12

and c44, for crystals with cubic symmetries. The Jaumann
rate r

re is the co-rotational stress rate in the coordinate sys-
tem that spins with the lattice:

r
re ¼ r

rþWp � r� r �Wp; ð11Þ
where r

r ¼ _r�W � rþ r �W is the co-rotational stress rate
on axes that spin with the material. Inserting Eqs. (10) and
(6) into Eq. (11) and solving for r

r
results in:

r
r ¼ Ce : D� rtrðDÞ �

XN

a¼1

Wa � r� r �Wa þ Ce : Pað Þ½ � _ca:

ð12Þ
The elastoplastic deformation of the crystal manifests in
lattice rotation and distortion, which results in slip direc-
tions and slip normals in the current configuration accord-
ing to: sa ¼ Fe � sa

0 and ma ¼ ma
0 � F

e�1.
Hence, they follow the evolution equations:

_sa ¼ Le � sa
0; _ma ¼ �ma

0 � L
e: ð13Þ

Evolution Eqs. (9), (12) and (13) are cast into a time-
discrete format for time integration.

2.2. Hardening law

The first model, which incorporates both linear isotropic
hardening and self-hardening, was proposed in Ref. [34]
(see also Ref. [25]). In this case, the hardening matrix
[hab] in Eq. (9) is of the format:

hab ¼ h½qþ ð1� qÞdab�: ð14Þ

Herein, 1 6 q 6 1.4 describes the amount of off-diagonal
latent hardening, i.e. q is the ratio of non-coplanar harden-
ing to coplanar hardening. The isotropic hardening part in
Eq. (14) was extended to a saturation-type response in [35]:

h ¼ h0sech2 h0c
ss � s0

����
����; ð15Þ

where h0 is the initial hardening modulus, s0 is the yield
stress which equals the initial value of current strength
sa

r ðc ¼ 0Þ, ss is the (saturated) stage I stress, where rapid
hardening commences, and c is the Taylor cumulative
shear strain on all slip systems, i.e.:

c ¼
XN

a¼1

Z t

0

_caj jdt: ð16Þ

The hardening law in Eq. (15) does not account for rapid
hardening (stage II) and parabolic hardening (stage III)
in the work-hardening characteristics for fcc single crystals.
In the present work, however, it is sufficient to fit the
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crystal plasticity hardening model to the experimental
stress–strain curve of the considered single crystal.

2.3. Aspects of mechanical modeling of CMSX-4 at room

temperature

2.3.1. Material composition

The material in the indentation test is CMSX-4, a two-
phase Ni-base superalloy, where semicoherent, ordered
Ni3Al precipitates of L12 type (c0-phase) are embedded in
a Ni-matrix of fcc structure (c-phase). The volume fraction
of the precipitates is approximately 70%. On account of its
considerable creep resistance at high temperatures, the sin-
gle-crystalline alloy is used for turbine blades in aircraft
turbines and in industrial gas turbines for power generation
(for a comprehensive overview, see e.g. [36]).

The pyramidal indent diameter of �d � 60 lm–as a char-
acteristic length of the present mechanical setting–is well
above the size of a single precipitate, dp � 0.4–0.5 lm, as
the characteristic microstructural length. Two conclusions
can be drawn. (1) The material is expected to exhibit a
homogenized response concerning the overall deformation
behavior, where the two-phase composition can be
neglected in modeling. (2) The applied load level during
indentation (max F = 4.905 N) along with the indent diam-
eters (>50 lm) suggest that ISEs play a subordinate role
[15]. Consequently, modeling the plastic behavior of
CMSX-4 in the present investigation does not require the
incorporation of a constitutive internal length by means
of, for example, plastic strain gradients or the density of
geometrically necessary dislocations.

2.3.2. Elastoplastic material parameters

Table 1 lists the material data for CMSX-4 at room tem-
perature. The elastic constants c11, c12 and c44 are taken
from [37]. The Young’s moduli in Table 1 quantify the ori-
entation dependence of elastic stiffness of the alloy. Effec-
tive elastic moduli are maximum in the h11 1i directions
and minimal in the h001i directions. The Zener anisotropy
measure AR = 2c44/(c11 � c12) for CMSX-4 equals 2.85
(isotropy AR = 1), thus indicating an elastic anisotropy
Table 1
Material data of CMSX-4 at room temperature.

Parameter Symbol Value Unit

Elastic moduli c11 252 GPa
c12 161 GPa
c44 131 GPa

Young’s moduli in [i j k] direction E[111] 347 GPa
E[110] 253 GPa
E[100] 139 GPa

Reference strain rate _ca
0 0.001 1/s

Initial slip resistance s0 260 MPa
Saturation slip resistance ss 775 MPa
Power law exponent m 20 1
Initial hardening modulus h0 350 MPa
Hardening ratio q 1.4 1
of intermediate strength compared with other fcc crystals
(Pb: 4.14, Cu: 3.21, Au: 2.85, Ni: 2.51, Al: 1.22, data taken
from [38]). Elementary mechanical reasoning tells us that
stress is attracted by stiffness, i.e. that directions of high
elastic stiffness attract the load. Imagine the case of a
roughly uniform strain distribution. Plastic yielding will
then start first in the stiff h111i directions, next in the
h1 10i directions, and finally in the h100i directions. This
aspect will come into play during the subsequent analysis,
where the driving mechanism that governs anisotropic
pile-up formation during indentation will be identified.

The hardening behaviors in different crystallographic
directions generally differ from one another (e.g. [39]).
Ref. [40] has reported for a Ni-base single-crystalline super-
alloy in tension that the hardening rate in the h111i direc-
tions is much larger than in the h10 0i directions and that in
the h110i directions there is virtually no hardening
capacity.

In the present analysis the data for plastic yielding in
Table 1 are chosen to fit the stress–strain curve as reported
in Ref. [12] (see Fig. 1). In that reference, compression tests
of [001] oriented cylindrical samples were performed at
room temperature. Here, parameter m = 0.02 in Eq. (8) is
chosen at a small value to ensure material behavior close
to rate-independence.

3. Indentation experiment and surface reconstruction

In Ref. [41], a Vickers-indenter made of diamond was
pressed into an (001) oriented CMSX-4 specimen with a
maximum applied load of 4.905 N (500 g). The angle
between the pyramid’s opposite faces was 136�. Azimuthal
orientations / between the indenter’s diagonal and the
h0 01i direction were systematically varied in order to
obtain Vickers hardness as a function of this orientation.
true strain
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st
re
ss
[M
Pa

0 0.1 0.2 0.3 0.4
0

500

1000

present simulation
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Fig. 1. Stress–strain curve for a compression test of [001] oriented
cylindrical samples at room temperature. The reference data follow from
experiments reported in Ref. [12].
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Force–displacement curves, however, were not recorded in
these indentation experiments.

The material sample of Ref. [41] is used in the present
work to experimentally obtain 3-D data of the pile-up dis-
tribution and shape of the pyramidal indents by SEM
(commercial JEOL and Hitachi S520a microscopes). The
reconstruction of a digital elevation model (DEM) of the
indentation craters from electron backscatter diffraction
(EBSD) images (commercial version of Point Electronic)
was realized by advanced algorithms in an image-process-
ing software system (commercial version of Alicona).

It is worth pointing out a particular difficulty in data
acquisition for surface reconstruction and its solution in
the present work. If conventional stereographic images
are employed, the successful surface reconstruction in a
digital elevation model critically depends on sufficient opti-
cal heterogeneity (points, lines, etc.) of the specimen’s sur-
face. Since the third dimension is recovered by a
comparison of identical material points in different stereo
images, the reconstruction fails for two types of objects:
(i) if the surface does not provide enough texture on the
surface and (ii) if the surface has a recurrent structure.

Here, the indented specimen of CMSX-4 was polished
prior to indentation. As a consequence, the surface did not
provide sufficient heterogeneity as landmarks for the
image-processing software. This applied both for stereo
images from light-microscopy as well as for conventional
SEM. In the present work the problem was solved by feeding
the image-processing software with images obtained from
the simultaneous acquisition of four single frames generated
by separate signals from a backscatter electron detector.
4. Finite-element simulations

In the finite-element simulations we consider three dis-
tinct cases for the azimuthal orientation of the pyramidal
indenter, / = 0�, 22.5�, 45�, where / is the angle between
the indenter’s diagonal and the h001i direction (cf. Fig. 2).

In order to check whether the finite-element solutions
preserve the material symmetry during elastoplastic defor-
mations, the simulations for azimuthal orientations / = 0�
Fig. 2. Azimuthal orientations of the indenter in the simulations, for / = 0�, /
element analysis exploiting all existing symmetries.
and / = 45� are performed for a quarter system, thus
exploiting only two of the total of four symmetry planes
(see Fig. 2). For orientation / = 22.5� the symmetries of
the indenter do not coincide with the material’s symme-
tries, such that full discretization of the indented half-space
must be considered in this case.

Finite-element simulations are conducted by means of
an 8-node brick-type element (C3D8) in the commercial
software system [27]. The indented half-space is modeled
as a cylinder of radius r = 660 lm and thickness
t = 630 lm. The non-uniform discretization a priori reflects
the region of indentation exhibiting large gradients in plas-
tic deformations (see Fig. 3).

The chosen finite-element meshes are well-suited to
describe the surface deformation patterns with high resolu-
tion and avoid locking effects, i.e. artificial stiffening effects.
Low-order displacement-type finite elements generally
exhibit undesired effects such as these for coarse discretiza-
tions and for incompressible material laws (volume lock-
ing). In the present study, tests on different discretizations
have ensured that the final results obtained on fine meshes
as in Fig. 3 do not suffer from locking and are close to the
converged solution.

The computational box is supported in the z-direction at
the bottom and is free at the cylindrical outer face. In the
implicit finite-element simulations a unilateral contact for-
mulation with the penalty-method is applied. The Vickers-
indenter made of diamond is modeled to be rigid, the influ-
ence of friction is neglected.
5. Simulation versus experiment

5.1. Pile-up pattern and indent shape

The experimental results reveal the formation of four
distinct pile-up hillocks, each in the h110i directions, which
reflects the material’s 4-fold symmetry of the fcc crystal in
the plane of indentation. The distribution of material pile-
up remains hidden in the 2-D view of the experiment (see
Fig. 4, left column), but becomes apparent via the contour
lines of the simulation results (Fig. 4, right column).
= 45� and / = 22.5�. The shaded sector is the minimal region for finite-
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Fig. 3. Cross-sectional view of the finite-element mesh for indentation simulations. The zoomed area in the frame shows the deformed mesh around the
indentation crater upon release of the load for orientation / = 45�.
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The simulations predict maximum pile-up in the h110i
directions for / = 0�, 22.5�, 45� thus being independent
of the azimuthal orientation of the pyramidal indenter.
Note that the contour lines are cut-off in the interior of
the indents. Table 2 reports the maximum values of pile-
up and the maximum indentation depth for the applied
load.
Pile-up increases the contact area at the indenter’s faces;
for / = 0�, the contact area is locally extended in h110i
directions leading to a convex contact rim or a barrel-shape
(Fig. 4, first row). For / = 45�, when the pyramid’s diago-
nals align with h110i directions such that pile-up is maxi-
mum at the corners, a concave shape or pin-cushion

shape of the indent is observed (Fig. 4, third row). For



Fig. 4. Pyramidal indentation experiments into (001) fcc CMSX-4. Left: experiment (SEM); right: simulation with isolines of height, uz (lm), for
azimuthal orientation angle / = 0�, 22.5�, 45� in row 1–3. In the coordinate system, X-, Y-, Z-axes each represent h001i directions. The white stains in the
experimental indentation craters is debris from sputtering.

Table 2
Geodesy of the indentation crater in terms of maximum pile-up, max uz

and indentation depth, min uz for different azimuthal orientations /.

Azimuthal orientation / = 0� / = 22.5� / = 45�

max uz (lm) 1.59 1.51 1.10
min uz (lm) �10.15 �8.95 �9.77
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the azimuthal orientations, / = 0� and 45�, the symmetries
of the indenter coincide with the symmetries of the crystal
in the indented (001) plane. For the azimuthal orientation
of / = 22.5�, however, each edge of the contact zone exhib-
its a change in curvature, from convex in the h110i direc-
tions to concave. In conclusion, the curvature of the
contact rim reflects the local adaption of the emerging
pile-up to the indenter faces.

The different indent shapes in the crystal plasticity sim-
ulation agree well with the experiments. The high density of
contour lines at the indent’s rim in Fig. 4, right column,
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highlights the locally extended contact zones. Summariz-
ing, simulation and experiment are in qualitative agreement
with respect to the crystallographic pile-up topography,
which is constantly maximum in the h110i directions,
and with respect to the local adaption of pile-up to the
(a)

(b)

(d)

XY

Z

disp Uy: -15.00 -11.47 -7.94 -4.41 -0.88 2.66 6.19 9.72

Fig. 5. Spherical indentation into (001) fcc single crystal: (a) micrograph from
elasticity versus (c) isotropic elasticity, (d) perspective view on the indent in e
indenter faces, leading to a corresponding curvature of
the contact boundaries each. No matter what the azimuthal
orientation of the indenter may be, pile-up is mainly depen-
dent on the sample’s crystallographic orientation, i.e. pile-
up forms in the h1 10i directions.
(c)

XY

Z

disp Uy: -15.00 -11.25 -7.50 -3.74 0.01 3.76 7.51 11.26

experiment [41], simulations with isolines of height, uy (lm), for (b) cubic
xperiment (left) and simulation (right).
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6. Discussion: is the driving mechanism purely

crystallographic?

6.1. The role of indenter orientation

The fact that the pile-up distribution does not critically
depend on the azimuthal orientation of the indenter sup-
ports the idea that pile-up formation is determined by crys-
tallographic processes rather than by the stress distribution
pattern, induced under the non-isotropic pyramidal
indenter.

6.2. The role of indenter shape

This conclusion is even fostered by a comparison with
the results of spherical indentation into (00 1) oriented
CMSX-4 in experiment and simulation (see Fig. 5), where
the indenter radius is R = 1.25 mm, force F = 490.25 N
and the X-, Y-, Z-axes each align with h001i directions.

The observed pile-up hillocks emerging equally in the
h110i directions prove the invariance of the driving process
with respect to stress distributions induced by different
indenter geometries and orientations.

As a consequence, the driving process for pyramidal
indentation can be illustrated similarly for spherical inden-
tation (see Fig. 6 and its caption).

6.3. The role of elastic anisotropy

The relative invariance of pile-up with respect to (i) the
azimuthal orientation of the pyramidal indenter and (ii) the
geometrical shape of the indenter (pyramidal or spherical)
does not strictly prove that pile-up is purely crystallo-
graphic, i.e. merely dependent on the specific geometry
[010]

Fig. 6. Pile-up pattern and discrete slip traces at the surface indicate that th
octahedral {111} glide planes with the h110i slip directions. One of these glide
of material transport up to the surface.
and orientation of discrete slip systems. The influence of
the anisotropy in the elasticity law on the overall elasto-
plastic material response is not yet clear. As already
pointed out in Section 2.3.2, directions of large elastic stiff-
ness attract stress. Hence, in view of the elastic anisotropy
in terms of the Young’s moduli E[i j k] in Table 1, plastic
yielding is expected to commence first in the stiff h111i
directions, next in the h1 10i directions, and last in the
h100i directions; this order may influence the observed
pile-up formation, which is strongest in the h110i
directions.

In order to quantify the influence of elastic anisotropy
on pile-up, we single out its influence by combining isot-
ropy in the elastic law (AR = 1) while maintaining the
anisotropy of plastic flow. Elastic constants of this ficti-
tious comparison solid are chosen such that the isotropic
Young’s modulus equals that of CMSX-4 in the h111i
direction, E: = E[111] = 347 GPa; Poisson’s ratio is set to
m = 0.3.

The result of the isotropic simulation yields a final sur-
face deformation pattern which is even quantitatively very
close to the one applying anisotropic elasticity (cf. Fig. 5b
and c). Data to substantiate this fact; for isotropic elasticity
we obtain: max uz = +12.2 lm, min uz = �50.5 lm; for
cubic elasticity: max uz = +10.6 lm, min uz = �52.9 lm.

In conclusion, pile-up is purely of crystallographic nat-
ure, and the direction-dependent stress distribution gov-
erned by elastic anisotropy is also negligible.

6.4. Similar phenomena due to different driving mechanisms

Indents of a convex barrel-shape and pin-cushion-shape
as in the present analysis of fcc single crystals are well-
known phenomena of a different class of material, namely
e driving mechanism for pile-up in the h110i directions is plastic slip in
planes is highlighted; arrows in activated slip systems indicate the direction
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Fig. 7. Pyramidal indentation into quasi-isotropic polycrystals exhibits (left) for a low strain-hardening rate a convex shape due to material pile-up along
with locally extended contact zones (dcontact > dz = 0); and (right) for a high strain-hardening rate a concave shape due to sink-in along with locally reduced
contact zones (dcontact < dz = 0).
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quasi-isotropic polycrystals [42–44]. Although–from bird’s
eye view–the indents in both materials look similar, com-
pare Fig. 7 with Fig. 4 (first row and third row), the corre-
sponding surface topography and the underlying driving
mechanism are completely different.

Quasi-isotropic polycrystals in general exhibit pile-up
for a small hardening rate, which leads to a convex
bulge-out (barrel-shape) in case of pyramidal indentation
(Fig. 7, left). A high strain-hardening rate, in contrast, gen-
erally exhibits sink-in, leading to a concave bow-in (pin-
cushion-shape) of the decreased contact surface (Fig. 7,
right). Put differently, the driving mechanism which shapes
the indents of quasi-isotropic polycrystals is the cumulative
response of a large number of interacting dislocations thus
living on a mesoscopic length scale.

For fcc single crystals, in contrast, it is the discrete nat-
ure of plastic slip in certain glide systems existing on the
length scale of atomic spacing. As such, the latter mecha-
nism is invariant across the scales and the 4-fold symmetry
in pile-up of (001) fcc single crystals is equally observed on
quite different length scales; in the present work for indent
diameters of 400 lm, of 1 lm in [6], and of 0.1 lm in [45].

The overlap of both driving mechanisms, the work-
hardening rate with the crystallographic plastic flow, has
been analyzed in Ref. [11] for (001) fcc single-crystalline
material subject to spherical indentation. The finite-
element simulations predict that it is, in the first place, a
considerable increase in the rate of work-hardening, that
shapes the anisotropy of the surface pattern in terms of
direction-dependent pile-up and sink-in.

7. Conclusions

The present contribution has analyzed pyramidal inden-
tation into (001) fcc single crystal in experiment and in
crystal plasticity finite-element simulations. The main find-
ings and conclusions can be summarized as follows:
(i) The indents reflect the material’s cubic symmetry in
that for different azimuthal orientations of the pyra-
mid, pile-up patterns invariantly emerge in the
h110i directions. If a pyramid’s diagonal is aligned
with a h1 10i direction, the contact zone at the inden-
ter faces is concave. If a diagonal is aligned with a
h100i direction, the contact zone at the indenter faces
exhibits a convex bulge-out. In between these orienta-
tions a contact rim of mixed, convex–concave curva-
ture is induced. Thus, the geometrically non-isotropic
pyramidal indenter locally breaks the cubic symmetry
of the crystal for azimuthal orientations of the diago-
nal, which are different from h100i and h110i. Not-
withstanding, apart from these local effects, where
the adaption of the indenter’s geometry to the pile-
up hillocks leads to different indent shapes, pile-up
pattern invariantly emerge in h110i directions.

(ii) Observations (i), seen in experiment and simulation,
along with the slip traces at the indented surfaces, indi-
cate that pile-up is induced by glide on {111} h110i
slip systems. It is mainly the geometry of the slip
systems in the (001) oriented crystal which govern
pile-up, whereas stress concentrations introduced by
different indenter shapes, by the azimuthal orientation
of a pyramidal indenter and also by the characteristics
of the elasticity law, have no significant influence.

(iii) Although phenomenologically very similar in kind,
the driving mechanism behind the curved indent
shapes are completely different from those in quasi-
isotropic polycrystals. In the fcc single crystal case,
the process is primarily driven by crystallographic
slip on specific slip-planes. For quasi-isotropic poly-
crystals, in contrast, it is a high strain-hardening rate
of the material inducing sink-in accompanied by a
pin-cushion indent shape and a low strain-hardening
rate inducing pile-up accompanied by a barrel indent
shape.
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(iv) The crystal plasticity model accounting for glide in
octahedral {11 1} h110i slip systems for fcc crystal-
line material predicts in finite-element simulations
the pile-up pattern formation and the material’s local
accomodation to the indenter.
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[19] Alcalá J, Casals O, Očenášek J. J Mech Phys Solids 2008;56:3277.
[20] Taylor GI. J Inst Metals 1938;62:307.
[21] Hill R. J Mech Phys Solids 1965;13:89.
[22] Theodosiu C. In: Simmons JA, editor, Proceedings of the conference

on fundamental aspects of dislocation theory, US National Bureau of
Standards; 1970. p. 837.

[23] Rice J. J Mech Phys Solids 1971;19:433.
[24] Hill R, Rice J. J Mech Phys Solids 1972;20:401.
[25] Asaro RJ. J Appl Mech 1983;50:921.
[26] Asaro RJ, Needleman A. Acta Metall 1985;33:923.
[27] ABAQUS/Standard, 2009. Theory and user’s manual, Version 6.9,

ABAQUS Inc.
[28] Huang Y. Mech. report 178, Cambridge (MA): Division of Applied

Sciences, Harvard University; 1991.
[29] Kysar JW. Addendum to ’A user-material subroutine incorporating

single crystal plasticity in the ABAQUS finite element program’.
Mech. report 178, Cambridge (MA): Division of Applied Sciences,
Harvard University; 1997.

[30] Asaro RJ, Rice JR. J Mech Phys Solids 1977;25:309.
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