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Abstract The present work on the molecular dynamics method cov-
ers the theoretical background of the method and gives practical ex-
amples to demonstrate its capabilities and limitations. The work
focusses on topics which reveal fundamental mechanisms associated
with fracture processes. Moreover, promising hybrid methods based
on a concurrent atomistic/continuum coupling are reviewed since
they combine accuracy and efficiency in a most favorable manner.

1 Introduction

For many engineering questions connected to the mechanical properties of
materials, one can of course profitably apply continuum mechanical descrip-
tions of materials behaviour. However, when it comes to describing small
specimens or when material specific questions need to be addressed, it is
usually indispensable to investigate defect properties. For plastic defor-
mation, discrete dislocation simulations (see (Kubin et al., 1992; Devincre
and Roberts, 1996; Deshpande et al., 2003; Weygand et al., 2002; Weygand
and Gumbsch, 2005) or the article by V. Mohles in this collection) can
be applied. In these simulations the interaction of dislocation with inter-
faces determines the influence of the microstructures. These discrete defect
based methods, however, require governing laws for the individual defect
properties and more detailed descriptions for the short range interaction
of defects. Such properties are difficult to obtain experimentally and are
therefore usually investigated by atomistic methods.

Therefore, atomistic modelling is essential in advancing our understand-
ing of the mechanical properties of materials. This is most obvious for
the investigation of fracture processes. Materials behaviour with respect to
fracture is of course ultimately determined by events on the atomic scale.
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In the case of brittle fracture this connection is obvious, since the crack in
a perfectly brittle material must be atomically sharp at its tip. The crack
moves by breaking individual bonds between atoms and can therefore be re-
garded as a macroscopic probe for the atomic bonding. The transition from
perfectly brittle to ductile behaviour similarly relies on atomistic processes
since the multiplication or nucleation of dislocations at the crack tip is an
indispensable ingredient of any modelling of the brittle to ductile transition.
Atomistically the nucleation or multiplication of dislocations at the crack
tip is identified with bond shearing events, which compete with the bond
breaking events at crack extension.

The interaction of multiple defects, like cracks and dislocations, is still
not routinely studied even with the simplest atomistic simulation methods
since such studies necessarily require models that significantly extend in
all three dimensions and consequently require the handling of millions of
atoms. Since the application of atomistic techniques has great potential (Li
et al., 2003; Kassner et al., 2005) but is still not widespread in the inves-
tigation of the mechanical properties of materials, it is probably advisable
to give a short overview on the applicable methods and then to provide a
few examples of successful application of atomistic modelling techniques to
explain experimentally observed phenomena.

In the following section we give a general overview of the different de-
scriptions for the atomic bonding, because they are the basis for all atomistic
modelling. The next section describes the molecular dynamics method in
some detail, also including the boundary conditions and visualisation of de-
fects. This part is intended to give the reader, who is not familiar with
atomistic simulation methods a feeling for the versatility of this approach.
The capabilities and limitations of atomistic methods are not just related
to the available description of the atomic bonding but also to the handling
of boundary conditions and the analysis of the results. The subsequent
section 4 deals with concurrent multiscale methods, which couple atomistic
and continuum descriptions in a rather seamless manner, hence enabling
the description of crystalline solids with atomistic accuracy but at smaller
computational costs. The Finite Element Atomistic Method (FEAt) and
variants of the Quasicontinuum (QC) method are reviewed and compared.

After this methods-oriented part, in Section 5 the phenomenology of
fracture is discussed in the light of atomistic modelling. First, brittle frac-
ture is put in the spotlight, which is the domain of the atomistic methods,
as we have seen above. Second, it is shown that the analysis of the plastic
zone around a crack tip is now within the scope of large scale atomistic
simulations.

It is noted here that this article can neither provide a practical guide
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for the use of atomistic methods nor can it claim to give an exhaustive
overview of all the work where these methods provide insight into atomistic
processes of fracture. It is rather meant to be a first introduction into the
topic, highlighting a few illustrative examples and showing the possibilities
and limitations of the most frequently used methods. Interested readers
should also consult recent overviews on the subject (Li et al., 2003; Kassner
et al., 2005) for more details and for additional references.

In order to limit the references to a useful number, we restrict ourselves
to citations concerning models and numerical simulations to the literature
dealing with fracture, where adequate. Furthermore, if the same authors
published a number of articles on similar topics in fracture, the most recent
work is usually given here since it will often provide guidance to previous
work.

2 Description of Interatomic Bonds

In this section the different atomistic methods that have been used to model
fracture processes are briefly introduced. The scope of this section is to give
a general introduction into the basic idea behind the atomistic, i.e. non-
continuum, method being used to model fracture of materials, to introduce
the essential terms, and to provide the basic literature for further read-
ing. No attempt is made to provide cooking recipes enabling the reader to
implement such methods solely based on this text.

Before presenting the different methods to describe the atomic interac-
tion, it is worth mentioning that atomistic modelling may be applied with
very different intentions. In some cases, the atomistic simulations are used
as testing grounds for ideas about the behaviour or energetics of defects.
It may then be perfectly justified to use the simplest generic form of the
interaction model. Alternatively, the goal may be to make quantitative or
semiquantitaive predictions about the properties of specific materials. In
this case one has to resort to materials-specific models or even quantum
mechanical ab initio methods.

2.1 Quantum Mechanics Based Descriptions of the Atomic Bond-
ing

The most fundamental description of interatomic bonds that may have
ionic, covalent, metallic or van-der-Waals character, or any mixture of these
pure bond types, is given by explicitly dealing with all the electrons involved
in the formation of the atomic bonds. The quantum mechanical description
of a crystalline material is a classical problem of solid state physics and
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appropriate tools have been developed there, which today are available for
the use in many different application areas. In all these codes, the many-
body problem of atomic nuclei and electrons must be solved for different
geometries. Lattice periodicity is usually imposed. The solution is generally
approached in three steps:

1. Within the Born-Oppenheimer approximation the motion of the atomic
nuclei is (adiabatically) decoupled from the motion of the electrons.
Since the mass and the inertia of the atomic nuclei is orders of magni-
tude larger than the mass of the electrons, the electronic quantum gas
follows the motion of the nuclei almost instantaneously. Furthermore
the electrons are always assumed to remain in their ground state with
respect to the momentary position of the nuclei.

2. The quantum mechanical ground state of the inhomogeneous electron
system in the system of the nuclei is determined then in an external
electrostatic potential, given by the charge at the instantaneous po-
sition of the nuclei. In practical calculations, the many particle state
of the interacting electrons is usually constructed from single particle
states of non-interacting electrons in an effective (mean) field of all
the other electrons. These single particle states are self consistently
determined by iteratively solving the coupled set of single particle
problems for all the electrons. The most successful approach to this
problem has been density functional theory (DFT) (Hohenberg and
Kohn, 1964; Kohn and Sham, 1965). Within the local density ap-
proximation (LDA) it is assumed that the exchange correlation of the
electrons can be calculated based purely on the local electron density.
This is sometimes not enough and generalised gradient approximations
(GGA) have been introduced.

3. In the last step we now reintroduce the motion of the atomic nu-
clei. The ground state energy of the electron gas can be regarded as
the potential energy for the nuclei in their configurational space. The
atomic motion can then be simulated in this adiabatic potential. Local
minima in this adiabatic potential reflect statically stable structures
for the solid while saddle points are the static barriers for structural
transformations. With the knowledge of the adiabatic potential, it is
possible to determine kinetic, dynamic or statistical materials proper-
ties (e.g. phonon properties, transport properties, or phase equilibria)
either by classically solving Newtons equations of motion, by minimis-
ing the total energy of a structure or by solving quantum mechanical
problems for the nuclei (e.g. for zero point vibrations of light ele-
ments).
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The main task of electron theory is to solve for the electronic ground
state, the second step above, in a numerical way. There are several successful
methods available to do so, based on plane waves, localised orbitals or a
mixture of them. The Cambridge (Serial) Total Energy Package CASTEP,
the Vienna Ab-initio Simulation Package VASP or the Mixed Basis Pseudo-
Potential Code MBPP are standard packages for this task.

Since these quantum mechanical methods do not require any adjustable
parameters and are therefore often termed ab initio or first priciples tech-
niques. Their results provide highly accurate and predictive results on ma-
terials properties.

However, the methods are computationally very demanding and often
require periodic structures, which are constructed by defining a unit cell
comprising the atoms to be considered and repeating this unit cell periodi-
cally in all directions. This procedure is identical to the periodic boundary
conditions that are used extensively in molecular dynamics simulations, as
will be described below. However, the periodic cells in molecular dynamics
simulations may contain several million atoms, while ab initio methods, due
to their mathematical complexity are restricted to hundreds of atoms within
the unit cells. This limitation is rather severe for applications in mechanical
problems, because the generation of defects or the driving force on a defect,
like the energy release rate during crack advance, all depend on the total
elastic energy stored within the volume. Hence, if the volume under consid-
eration is extremely small, the elastic strains in the volume have to be close
to their theoretical limits in order to store sufficient elastic energy to drive
the defects. Therefore, ab initio simulations of defect behaviour must always
be carefully checked for size effects and artifacts caused by the restrictions
on the effective volume. Notwithstanding these words of warning, it must
be stated again that ab initio methods are the most fundamental methods
available to describe behaviour of materials and thus possess the most pre-
dictive power. There are also some interesting and potentially fruitful ideas
to combine ab initio methods with molecular dynamics simulations which
will be described in section 4.6.

Before leaving this section it is worth mentioning that ab initio methods
are not just applied to study some specific fracture problem, they also play
an important role in the verification and the adjustment of simpler models
of the atomic interaction. To develop material-specific (semi-) empirical
interaction models, various adjustable parameters and sometimes even the
functional form of the interaction model has to be chosen to reproduce
available data. However, experiment will usually only provide data close to
mechanical and thermodynamic equilibrium, whereas the interaction mod-
els will be used at grain boundaries or even in the highly strained region near
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crack tips. Therefore it is advisable to adjust the parameters of the interac-
tion models so that they perform well under these circumstances. Because
of the lack of experimental data, ab initio calculations of large deformations
or structural energy differences are often used instead. It therefore turned
out to be very useful to build up extensive ab initio data bases for the de-
velopment of simpler interaction models. While the first such data bases
for aluminium (Ercolessi and Adams, 1994) or the intermetallic nickelalu-
minide B2-NiAl (Ludwig and Gumbsch, 1995) still constituted demanding
calculations, such databases can today be generated routinely and very sys-
tematically.

2.2 Atomic Interaction Models, Potentials

While it is generally possible to use ab initio methods to study the dy-
namic evolution of an atomistic system, the computational burden is usually
too high and (semi-)empirical potentials are therefore applied in molecular
dynamics (MD) simulations. The atomic interaction as described by semi-
empirical potentials always depends on the distance of interacting pairs of
atoms and, for the more elaborate potentials, also on the bond angles and
the local electron density. All these distance or angle dependent functions
are represented either analytically or as tabulated functions of these pa-
rameters. The most simple pair potentials, like Lennard-Jones or the Morse
potential, have just two or three free parameters that are used to change
the characteristic properties of the potential like the lattice parameter, the
bulk elastic modulus or the cohesive energy. More sophisticated potentials
have a number of free parameters that yield much better results for mate-
rial specific properties like lattice constant, sublimation energy, anisotropic
elastic constants, vacancy formation energy, stacking fault energy, or what-
ever is felt necessary for a certain investigation. The free parameters of the
potentials are usually fitted to material properties by calculating exactly
these properties on rather small atomic ensembles and then varying the
potential parameters until a reasonable match to experimental or ab initio
data is reached. The interatomic potentials can roughly be categorized into
three classes according to their level of approximation of the ”real” quantum
mechanical atomic interaction:
• angularly-dependent tight-binding or bond-order potentials
• multibody or embedded atom method (EAM) potentials
• pair potentials

The properties and characteristics of the different potentials are given in
some detail below. For application purposes, the choice of a potential will
usually involve a trade-off between the accuracy of the description of the
atomic interaction from first principles calculations over semi-empirical po-
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tentials to simple pair potentials and the size of the system that can be
studied, i.e. the number of atoms that can be explicitly treated in the
sample. The decision, whether higher accuracy in the description of the
interatomic forces or larger system size, has to be made for each problem
under consideration. For example, during fracture of covalently bonded sys-
tems like silicon, polymers or biological matter the behaviour of the entire
system depends critically on the behaviour of the individual atomic bonds
immediately in front of the crack tip (see Section 5.1). Here it becomes
necessary to accurately evaluate the interatomic forces in order to obtain
meaningful results. In contrast, for rather generic investigations of dynamic
crack stability as a function of crack driving force, where the energy release
rate and the stored elastic energy in the solid are decisive, it may be essen-
tial to have a reasonably large system (Gumbsch et al., 1997; Buehler et al.,
2003). Even in these cases, however, materials-specific questions must again
be treated with the more accurate DFT descriptions or coupled methods
(Kermode et al., 2008).

Pair potentials. Pair potentials are the simplest form of interatomic po-
tentials. This approach limits the interaction between two atoms to a depen-
dence on their mutual distance, thus excluding completely any information
about neighbouring atoms. Pair potentials in their most general form are
written as

Utot =
1

2

∑
i,j �=i

Vij(rij) + U(Ω) (1)

where Vij is the pair potential, rij is the separation between atoms i and
j and U(Ω) is a contribution to the cohesive energy which depends on the
average volume per atom Ω. This latter term may mainly determine the
cohesive energy, while the pair potential always determines the structural
dependence.

Often, however, it is not attempted to mimic the properties of a partic-
ular material but more generic atomistic questions are of interest. Then,
potentials like the Lennard-Jones potential or the Morse potential are ap-
plied. These have only few adjustable parameters, which are fitted to the
nearest neighbour distance and the binding energy or the bulk modulus.
Despite their simplicity and the lack of materials specificity, pair poten-
tials can contribute significantly to our understanding of material behaviour
and fracture in particular. Their simple structure permits investigation of
generic effects, e.g. of the atomic size or of the role of elastic properties
for a certain phenomenon. Other examples are when the consequences of
the discrete crystal structure of solids shall be compared to predictions of
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continuum models or when the influence of non-linearities in the elastic be-
haviour shall be mentioned that can ideally be compared with linear-elastic
solids described by a harmonic pair potential (Buehler et al., 2003). In these
examples use is made of the simplicity of pair potentials that allows clean
studies of single effects, while excluding all other influences that render the
behaviour of ”real” materials so much more complex.

Of course, pair potentials cannot be used to describe situations where
directional bonds or bond angles play a role. They are also not well suited
to describe metals because the well established dependence of bond strength
on coordination cannot be represented. Furthermore, simple pair potentials
result in extremely low stacking fault energies, because they fail to distin-
guish the energy difference between face centred cubic (fcc) and hexagonal
close-packed (hcp) structures.

Embedded atom method (EAM) potentials. The most widely used
interaction models for metals are the EAM potentials. In this scheme the
volume-dependent term from Equation (1) is expressed as a local density-
dependent contribution to the total potential energy

Utot =
1

2

∑
i,j �=i

Vij(rij) +
∑

i

F (ρi) (2)

with
ρi =

∑
j �=i

ρij(rij) (3)

where ρij can be viewed as the contribution from atom j to the total elec-
tron density at atom i and F is the embedding energy associated with
placing atom i in this environment. Finally, Vij is the pair potential contri-
bution to the potential energy of atom i. Different physical interpretations
of the terms are possible and consequently the functional forms and the
way in which the various parameters are determined may differ. Usually
the functions are adjusted to reproduce at least the lattice parameter, the
cohesive energy and the anisotropic elastic constants of the metal under
consideration. For alloys it is additionally necessary to adjust structural
energy differences of intermetallic phases and heats of solution (Ludwig and
Gumbsch, 1995). As mentioned above, it is also desirable to not only adjust
to such equilibrium crystal properties, but to also compare to some ab initio
data from atomic structures far from equilibrium or for large deformations.
Reliable and well tested potentials are available for the noble metals and
nickel as well as for some aluminium alloys (e.g. (Ercolessi and Adams,
1994; Ludwig and Gumbsch, 1995; Mishin et al., 2001)).
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The main advantage of EAM potentials is that they can be applied to
inhomogeneous systems such as surfaces or cracks, since these potentials
approximately incorporate the variation of bond strength with coordina-
tion. Decreasing the coordination (density) at an atom usually increases the
strength of each of its bonds and decreases the bond length. In particular
for fcc materials it has been easily possible to reproduce anisotropic elastic
constants, sublimation energy, vacancy formation energy, surface and stack-
ing fault energies with EAM potentials and EAM potentials can be applied
to many different types of simulations. For body centred cubic (bcc) metals
the method may still give a sufficiently precise description. For some of
these metals, however, it has been shown that the EAM fails to give a valid
description of the core structure of dislocations (Mrovec et al., 2004) and
thus the Peierls stress to move the dislocation through the lattice. There-
fore, these potentials cannot be used reliably to model plasticity in these
materials. This may be seen as an indication of the importance of angular
bonding characteristics and one may consequently resort to tight binding
or bond order descriptions (Pettifor and Oleinik, 1999; Mrovec et al., 2004,
2007a).

Tight binding and bond order potentials. The need for material spe-
cific models and for accuracy in atomistic simulations implies that a quan-
tum mechanical description of the atomic interaction is required. The semi-
empirical tight binding scheme is such an approximate quantum mechanical
description of the energetics of systems of atoms (Harrison, 1980; Pettifor,
1995). The total energy of a system is given by:

Utot = Urep + Ubond (4)

where Urep is a repulsive energy, generally given as a sum of pair potentials
and Ubond is the bonding part of the energy. The latter is obtained by
solving the eigenvalue problem for a given Hamiltonian, which is assumed
to be fixed and not evaluated self-consistently as in the ab initio methods.

The Hamiltonian matrix elements are usually assumed to be rapidly
decaying functions of the atomic separation, which have to be empirically
adjusted to experimental data or results of ab initio calculations to give a
material-specific model. The least clear but most important question in this
context is the transferability of these matrix elements from ideal structures
to highly distorted atomic environments.

The semi-empirical tight-binding scheme is in principle applicable to
materials with various types of bonding but is most naturally suited to
covalently bonded insulators and semiconductors as well as the transition
metals and intermetallics .
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The key computational aspect in solving a tight-binding model is the
diagonalisation of the eigenvalue problem. This can of course be attempted
in reciprocal space, where a whole set of very efficient methods is available,
which however usually scale to the third power with the number of atoms in
the system. Linear scaling can be achieved with real space methods of which
the density matrix method for semiconductors and insulators and the bond
order approach for metals and alloys are the most promising approaches. In
the simplest approximations the latter can even be formulated analytically
within the framework of bond order potentials (Pettifor and Oleinik, 1999)
where the energy of the system is written as

Utot =
1

2

∑
i,j �=i

Vij(rij) +
∑
iα,jβ

Hiα,jβΘiα,jβ (5)

where Vij is the pair potential, depending on the type of atom and rij is the
separation between atoms i and j. H is the Slater Koster hopping integral,
which also depends on distance rij and where the Greek indices stand for
the type of orbital. Θ is the bond-order matrix which gives the difference
in the number of electrons in the bonding and antibonding states. Modern
bond order potentials for carbon (Mrovec et al., 2007b) and some transition
metals (Mrovec et al., 2004, 2007a) are just becoming available.

In the same spirit as the bond-order potentials, several simplified angularly-
dependent potentials of Tersoff and Brenner-type have been developed for
silicon and the hydrocarbons (see for example (Pastewka et al., 2008)).
These potentials have seen continuous improvements but were notoriously
difficult to adjust to bond breaking problems. Despite recent success with an
explicit screening formulation for the hydrocarbons (Pastewka et al., 2008)
giving up specific bonds in a way which does not require a self-consistent for-
mulation of the electronic configuration remains an important and difficult
problem.

3 The Molecular Dynamics Method

To continue we describe the pertinent methods used in atomistic simula-
tions with some focus on the application in fracture processes and related
problems. We start out in the present section with the Molecular Dynamics
(MD) method. A short overview of the main ingredients like time integra-
tion and relaxation is given, furthermore the role of boundary and initial
conditions is described and illustrated for mechanical problem sets in ma-
terials science. Section 3.6 gives a brief account of the visualisation and
analysis of defects in atomistic simulations, which plays an ever more im-
portant role in computational materials science. Some popular and powerful
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defect indicators are described. In Section 4 we analyse and compare two
concurrent multiscale methods.

The main ingredients of an MD simulation are basically threefold:

(i) A model is needed for the interaction between the system constituents
(e.g. atoms or molecules).

(iia) Time integration is required to advance the particle trajectories (posi-
tions and velocities) from time t to t + Δt.

(iib) Alternatively one may want to solve a stability problem which in an
atomistic system requires an algorithm to relax the atomic coordinates to
positions of vanishing forces.

(iii) An ensemble has to be chosen, for which boundary conditions and ther-
modynamic quantities like temperature, pressure or the number of particles
are controlled.

3.1 Force Calculation

Forces are derived from the potential energy U that depends on the
positions of all atoms. The description for the calculation of the energy
can be based on different physical approximations as described above. The
force acting on an atom i is given by taking the derivative of the potential
energy with respect to the position vector xi of atom i

f i = −
dU(x)

dxi

, (6)

where x denotes the coordinates of all atoms. Once the force vector f i

acting on all atoms is known, the Newtonian equation of motion

f i = mi

d2xi

dt2
, (7)

can be integrated in time t to yield the motion of the atoms in space. The
mass of the atom is given by mi.

3.2 Integrating the Equations of Motion

Equation (7) constitutes a set of second-order ordinary differetial equa-
tions (ODEs), which can be strongly nonlinear. By converting them to
first-order ODEs in the 6N -dimensional space of {xN , ẋN}, general numer-
ical algorithms for solving ODEs such as the Runge-Kutta method could
be applied. However, these general methods are rarely used in practice,
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because the existence of a Hamiltonian allows for much simpler and even
more accurate integration algorithms.

To represent other thermodynamic ensembles than the micro-canonical
ensemble for which Equation (7) can be integrated directly, requires that
Equation (7) is modified to create a dynamics in phase space that has the
desired distribution density of e.g. a canonical or a grand-canonical ensem-
ble (see e.g. (Frenkel and Smit, 2002)). The time-average of a single-point
operator on such a trajectory then approaches the thermodynamic average.

An integrator serves the purpose of propagating particle positions and
velocities over small time increments Δt.

x3N (t0)→ x3N (t0 + Δt) → ...→ x3N (t0 + L Δt) (8)

The time step Δt has to be chosen such that the thermal oscillations of the
atoms around their equilibrium positions are resolved in time. A typical
frequency of this oscillation is the Debye frequency νD = ct/a, where ct

is the speed of transverse sound waves and a is the lattice parameter. A
typical value for metals is νD ≈ 1013 Hz. This implies that the typical time
step for MD simulations has to be on the order of femtoseconds (=10−15 s),
which generally limits the method to simulations of fast processes such as
brittle fracture or high-strain-rate plastic deformation.

Some popular time integration algorithms are the central difference al-
gorithms: Verlet, velocity Verlet or leap-frog. They are shortly introduced
below.

•Verlet algorithm. Assuming that the x3N (t) trajectories are smooth,
one may perform a third-order Taylor expansion of the positions xi(t0) for-
ward (xi(t0 + Δt)) and backward (xi(t0 −Δt)) in time; their sum yields

xi(t0 + Δt) + xi(t0 −Δt) = 2xi(t0) + ẍi(t0)(Δt)2 + O((Δt)4). (9)

Since ẍi(t0) = f i(t0)/mi can be evaluated given the atomic positions at
t = t0, x3N (t + Δt) in turn may be approximated by,

xi(t0 + Δt) = −xi(t0 −Δt) + 2xi(t0) +
1

m
f i(t0)(Δt)2 + O((Δt)4). (10)

Neglecting the O((Δt)4) term, we obtain a recursion formula to compute
x3N (t0 + Δt). Although velocities are not needed in the recursion, they are
often calculated since they are required for analysis of ensemble properties.
They can be approximated by

vi(t0) ≡ ẋi(t0) =
1

2Δt
[xi(t0 + Δt)− xi(t0 −Δt)] + O((Δt)2). (11)

12
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This algorithm is not only one of the simplest, but also a good choice in
general. It is fast, but not particularly accurate for long time steps, such
that the forces on all particles must be computed rather frequently. It
requires about as little memory as is at all possible. This is useful when
very large systems are simulated. Verlet’s short-term energy conservation
is fair but, more important, it exhibits little long-term energy drift. This
is related to the fact that the Verlet algorithm is time reversible and area
preserving. In fact, although the Verlet algorithm does not conserve the
total energy of this system exactly, strong evidence indicates that it does
conserve a pseudo-Hamiltonian approaching the true Hamiltonian in the
limit of infinitely short time steps.

•Velocity-Verlet algorithm. It starts with v3N (t0) and x3N (t0). One
then evaluates

xi(t0 + Δt) = xi(t0) + vi(t0)Δt +
1

2

f i(t0)

mi

(Δt)2 + O((Δt)3), (12)

with f3N (t0 + Δt) evaluated from xi(t0 + Δt) one gets

vi(t0 +Δt) = vi(t0)+
1

2

[
1

mi

f i(t0) +
1

mi

f i(t0 + Δt)

]
Δt+O((Δt)3), (13)

and has advanced by one step. This algorithm requires a little more com-
puting but is very popular since it gives x3N and v3N simultaneously.

•Leap-frog algorithm. In the leap-frog algorithm, position and velocities
are calculated with the same accuracies but are offset by Δt/2. It starts
with v3N (t0 −Δt/2) and x3N (t0). Time integration is then first done on v

vi(t0 +
1

2
Δt) = vi(t0 −

1

2
Δt) +

1

mi

f(t0)Δt + O((Δt)3), (14)

followed by integration of x,

xi(t0 + Δt) = xi(t0) + vi(t0 +
1

2
Δt) + O((Δt)3). (15)

It can be shown that the leap-frog algorithm produces identical trajectories
to the Verlet algorithm besides numerical rounding errors. It therefore has
similar properties than the Verlet algorithm but of course provides coordi-
nates and velocities at once.

For the description of Predictor-Corrector Algorithms and Symplectic Inte-
grators we refer to standard text-books (Frenkel and Smit, 2002; Schlick,
2002; Rapaport, 2004).
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3.3 Relaxation Algorithms

Mechanically stable configurations or thermally activated processes are
extremely difficult if not impossible to assess with MD methods. Examples
for such difficult-to-study processes in the context of fracture would be void
formation and coalescence or motion of dislocations in lattices with high
Peierls barriers (Marian et al., 2004). For these cases it is usually advisable
to map out the energy landscape using relaxation algorithms and then to
perform a metadynamics on the basis of such an energy landscape.

Mechanically stable equilibrium configurations correspond to minima of
the total energy. Hence it is a most common task in computational mate-
rials science and solid state physics to find local or global minima of the
potential energy, where a given initial configuration is the point of depar-
ture. To solve this task a variety of well-established optimisation methods
are available (see e.g. in (Nocedal and Wright, 2006; Leach, 2001; Schlick,
2002)). The optimisation methods generally can be classified according
to the highest order derivative used to minimise the (energy) functional.
Hence, a non-derivative minimisation method like the simplex method can
be considered as zeroth-order method. Zeroth-order methods are rarely
used in molecular modelling since first derivatives of the energy (i.e. forces)
are usually available and these methods then do not exploit all the avail-
able information. In first-order minimisation methods, the gradient of the
energy indicates the direction to a minimum, its magnitude measures the
steepness of the local slope. These methods are frequently used in molecular
modelling. Prominent examples are the steepest descent method and vari-
ants of the conjugate gradient (CG) method. For a nice overview we refer to
(Shewchuk, 1994). Most recent MD integration-based methods that also fall
into this category are described below. Second order methods additionally
use the second derivatives and thus the information of the local curvature
to locate a minimum. Current state-of-the-art methods like the limited-
memory version of the Broyden-Fletcher-Goldfarb-Shanno scheme (l-BFGS)
(Nocedal and Wright, 2006) explicitly use only first order derivatives but
accumulate information to obtain some approximate representation for the
Hessian matrix to determine line search directions. Second order methods
are by far not as robust as first order methods and can therefore only be
used in molecular modelling if no structural changes occur.

MD-based methods, FIRE. Within the realm of molecular simulations,
some methods have been proposed that serve the purpose of energy min-
imisation, that start out with MD and proceed in removing kinetic energy
from the system, termed ’quenching’. This strategy has been successfully
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applied in local minimisation as well as in global minimisation. In (Bitzek
et al., 2006) a simple, yet powerful MD scheme for structural relaxation was
proposed which belongs to this family of minimisers. Different from exist-
ing schemes this new algorithm crucially relies on inertia, it has therefore
been named the Fast Intertial Relaxation Engine (FIRE). In the original
paper the method’s functional principle was explained by means of a blind
skier searching for the fastest way to the bottom of a valley in an un-
known mountain range described by the potential energy landscape E(x)
with x = (x1, x2). Assuming that the skier is able to retard and steer, the
recommended strategy for the skier is to follow an equation of motion given
by:

v̇(t) = 1/m F (t)− γ(t)|v(t)|[v̂(t)− F̂ (t)], (16)

with the mass m, the velocity v = ẋ, the force F = −∇E(x), and hat
denoting unit vector. The recommended strategy is that the skier introduces
acceleration in a direction that is ’steeper’ than the current direction of
motion via the function γ(t), if the power P (t) = F (t) · v(t) is positive,
and in order to avoid uphill motion he simply stops as soon as the power
becomes negative. γ(t) must be chosen appropriately but should not be too
large, because the current velocities carry information about the reasonable
’average’ descent direction and energy scale. A discretised version of this
equation in combination with an adaptive time step results in a minimisation
scheme for multidimensional functions E(x1; . . . xM ) which is competitive
in speed with the fastest optimisers currently available (Bitzek et al., 2006),
but has also other important features as we shall demonstrate.

The numerical treatment of the algorithm is simple. Any MD integrator
can be used as the basis for propagation of the trajectories due to the
conservative forces. The MD trajectories are continuously readjusted by
two kinds of velocity modifications: (a) the above-mentioned immediate
stop upon uphill motion and (b) a simple mixing of the global velocity and

force vectors v → (1 − α)v + αF̂ |v| resulting from an Euler-discretisation
of the last term in Equation (16) with time step Δt and α = αstart. Both,
Δt and α, are chosen adaptively on the fly.

The propagation rules for the FIRE algorithm can be summarised as
follows (given: initial values for Δt, α = αstart and the global vectors x

and v = 0):

1. MD integrator: calculate x, F = −∇E(x) and v using any common
MD integrator; check for convergence.

2. calculate P = F · v.

3. set v → (1 − α)v + α|v|F̂ .

15
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4. if P > 0 and the number of steps since P was negative is larger than
Nmin, increase the time step Δt→ min(Δtfinc, Δtmax) and decrease
α → αfα.

5. if P ≤ 0, decrease time step Δt → Δtfdec, freeze the system v → 0,
and set α back to αstart.

6. Return to MD.

In relaxation an accurate calculation of the atomic trajectories is not
necessary, and the adaptive time step allows FIRE to increase Δt until either
the largest stable time step Δtmax is reached, or an energy minimum along
the current direction of motion (P < 0) is encountered. In the latter case
the system is instantly frozen (v → 0) and the time step is substantially
reduced in order to have a smooth restart. A short ’latency’ time of Nmin
MD steps before accelerating the dynamics is important for the stability of
the algorithm.

In (Bitzek et al., 2006) it is shown in several benchmark sets that FIRE is
very competitive with sophisticated algorithms like the l-BFGS scheme and
easily beats even advanced versions of the CG method (e.g. Polak-Ribière).
The key advantage of the FIRE algorithm, however, is its extreme robust-
ness. It finds the (local) minima even for extreme structural rearrangements
like molecular folding and rotation or for atomic reconstructions in the core
of crystalline defects and therefore lends itself ideally as a general purpose
minimiser.

3.4 Boundary and initial conditions

Initial conditions. The integration of Newton’s equations of motion re-
quires an integrator and initial conditions (IC), namely x3N (t = 0) and
ẋ3N (t = 0), the initial particle positions and velocities.

Generating x3N (t = 0) for crystalline solids is easily done by a structure
generator setting up a perfect crystal or an interface between two crystalline
phases. Generating suitable velocity distributions or structures for a liquid
or an amorphous solid is significantly more difficult. It can, however, often
be circumvented by running the system from an artificial set-up for an ex-
tended equilibration time. One can for example melt a crystal and obtain
the IC for an amorphous configuration then by quenching from the liquid.

Boundary conditions. Boundary conditions can be classified into two
major types: periodic boundary conditions (PBC) and isolated (or free)
boundary conditions (IBC). IBC, in which surface atoms exhibit dangling
bonds due to a lack of neighbours, are chosen for the analysis of surfaces,
clusters and molecules. In addition, there can be extra forces or displace-
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ments acting on the boundary atoms, resulting in so-called mechanical
boundary conditions.

PBC are intended to mimic bulk solids or liquids, or the cores of very large
systems, which are much larger than the simulated number of particles. The
particles are contained within a primary simulation volume. This volume is
sometimes referred to as the simulation box, unit cell or supercell.

When a particle leaves one side of this volume, it re-enters from the op-
posite side keeping the number of atoms in the central box constant. Atoms
sitting in the vicinity of one side of the box, through periodic repetition of
the box, are connected to the atoms on the other side of the box. The
simulations therefore proceed as if the primary volume was surrounded in
all directions by identical copies of itself to form a quasi-infinite volume.
PBC for the two-dimensional case are illustrated in Figure 1. If PBC are
used, the case that the cutoff radius is less than half the diameter of the
periodic box is of special interest since in that case only the interaction of a
given atom with the nearest periodic image of any other atom needs to be
considered (minimum image convention). This case is displayed in Figure
1, where the dotted box comprises all nearest images of any other atom.

Figure 1. Periodic boundary conditions: the basic simulation volume
(drawn in black) is repeated in all dimensions. Here, particles in neighbour
volumes are drawn in gray. Interactions of one atom with its neighbours
are indicated with arrows.

The cubic cell is the simplest geometry of an unit cell to visualise and
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to program. Of course, any other shape can be chosen provided it fills all
of space by translation operations. Five shapes satisfy this condition: the
cube (and its close relation, the parallelepiped), the hexagonal prism, the
truncated octahedron, the rhombic dodecahedron and the elongated dodec-
ahedron, see e.g. (Leach, 2001).
Using PBC, surface effects can be eliminated from the simulation, but some
inherent limitations dictate rules in applying them, see (Pöschel and Schwa-
ger, 2005).

(i) Since each particle or defect has an infinite number of images, there
is always an infinite number of interactions with each other particle
or defect.

(ii) If the chosen primary volume is too small, there appear correlations
between opposite edges of the primary volume. If the spatial struc-
tures are of the same characteristic size as the system itself, a particle
may interact directly or indirectly with itself across the primary vol-
ume. It is therefore not possible to achieve fluctuations that have a
wavelength greater than the length of the cell.

The first item causes problems when long-range forces, such as elec-
trostatic interactions or elastic defect-defect interactions are involved. So-
phisticated techniques have been developed, such as Ewald-summation to
simulate systems of charged or gravitating particles. For long-range electro-
static interactions it is frequently accepted that some long-range order will
be imposed upon the system. Hence, the range of the interactions between
particles in the system must generally be taken into account while planning
a simulation. No problems will arise if the periodic box is large compared
with the range over which the atomic interaction (e.g. of an EAM potential)
acts. A box size greater than three times the cut-off radius of the potential
is always sufficient. Specific measures have to be taken in the calculation of
the forces if shorter box lengths shall be realized.

The second complication listed above is more substantial, since it is
inherent to the system and cannot be solved by improved algorithms. Con-
sequently, the basic volume size has to be chosen large enough to avoid
undesired artificial correlations. Size scaling studies have to be performed
to assess such effects. In favourable cases, the long range interactions of
periodic arrays of defects are known and can be subtracted from the total
energy of the unit cell.

Boundary conditions that mix IBC and PBC can be required in case that
the simulated structure exhibits periodicity in some directions, but not in
the others. Typical examples are one-dimensional structures like very long
slabs or wires and systems where loads are applied in certain directions.
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Mechanical loading through boundary conditions. For the study of
the mechanical behaviour of solids like e.g. in fracture processes, a proper
definition of boundary conditions and their adequate application are nec-
essary. A simple approach to apply displacement boundary conditions is
realized via a domain decomposition, in that a domain is added at the
boundary with prescribed stress or displacements. In these domains, atoms
are not subject to the dynamics of Newton’s equation of motion in an MD
simulation; instead, they follow prescribed displacements of the boundaries,
see e.g. (Buehler, 2008). Figure 2 schematically displays this approach
for the simulation of fracture. A crystalline slab is strained by means of
rigid, sufficiently thick boundary layers which are subject to prescribed dis-
placements, whereas the atoms in the interior follow Newton’s equations of
motion.

X

Y

V

V

Figure 2. Application of displacement boundary conditions: Atoms in
boundary domains (gray-shaded) follow prescribed boundary conditions and
are not subject to the equations of motion.

The application of pressure – or generally stress – instead of displace-
ment boundary conditions can be realized by utilizing appropriate ensem-
ble schemes such as the Parinello-Rahman scheme (Parinello and Rahman,
1980).

Since time steps in typical MD simulations are of the order of fem-
toseconds to keep track of thermal vibrations, the velocity of applied dis-
placement boundary conditions during dynamic straining is necessarily very
high. To apply increased mechanical loading, a linear velocity gradient can
be established prior to simulation to avoid shock wave generation from the
boundaries, see Figure 2, right. However, studying processes at low load-
ing rates is difficult. Sometimes, stress boundary conditions may allow to
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simulate somewhat slower loading.
For well controlled loading situations, however, one has to resort to the

application of constant displacement boundary conditions and study the
system as it evolves in a given field. In the example of Figure 2, the appli-
cation of a constant displacement u provides a constant (energetic) driving
force for the propagation of the crack. With such boundary conditions one
can reach the desired case of studying crack propagation at constant energy
release rate G.

Since a propagating crack is expected to generate heat, a local temperature
control (Finnis et al., 1991), resembling an electronic heat bath for the ions,
is applied there. At the outer border of the model the coupling (damping)
parameter is gradually increased to prevent reflections from the borders.
The model is then first equilibrated at an applied strain corresponding to
the Griffith load G0 = 2γ. During the equilibration time the crack re-
mains stationary. Thereafter the model is instantaneously strained further
to a defined overload ΔG by scaling all displacements. For small overloads
ΔG = 0.03−0.10 G0 a short acceleration phase can be detected immediately
after loading. This suggests that the crack has finite but very small inertia.
After this acceleration phase the crack runs at constant velocity.

3.5 Stable Defects under Load

For the investigation of discrete defects like an individual crack or an
individual dislocation one wants to supply the defect with the natural stress
and strain fields it also would experience in a realistically large system. This
is of course not possible with the rigid straight boundary conditions sketched
in Figure 2. Instead a finite size model must be supplied in the border
region with the forces or displacements determined from the continuum
mechanical stress and strain fields of the defect. For the case of a sharp
crack, the model is loaded by first applying the anisotropic linear elastic
continuum solution (Sih and Liebowitz, 1968) for a fixed value of the stress
intensity factor K to all atoms in the model. As a starting value for K
the stress intensity factor KG (Griffith load) is used. Then all atoms are
relaxed to their equilibrium positions by a relaxation algorithm, except for
the outermost atoms, which are held fixed at their initial positions. This
configuration is then used for further incremental loading or unloading of the
model, which is achieved by scaling all displacements and relaxing the whole
model at each incremental step. Changes in the atomic configurations at the
crack tip are determined by visual inspection of the relaxed configurations.
The load at which one or more bonds are broken upon loading is taken as
the upper critical stress intensity K+

c . (See (Kohlhoff et al., 1991; Gumbsch,

20



Atomistic Simulation Methods and their Application on Fracture 21

1995) for details about the loading procedure, size scaling tests and the
comparison to other methods.) Often periodic boundary conditions are
applied along the crack front.

3.6 Visualisation and Analysis of Defects

A key issue in large-scale atomistic simulations is the automatic identi-
fication and visualisation of defects and microstructures.

For that purpose algorithms have been developed to identify, highlight
and classify typical defect types, see e.g. (Li, 2007). Hence, pictures or
movies based on these indicators realize the interface between experiments
in the virtual laboratory and the scientist. They enable a transformation of
vast data sets to structured information. Since visualisation criteria allow
the judicious selection of regions of interest, they also serve a similar purpose
as concurrent multiscale methods, namely to compress or reduce large data
sets. In the following some of these visualisation criteria are put forward.

Energy method. One way to extract crystal defects from their undis-
turbed neighbourhood is the energy method. In this method, atoms with
an energy value larger than a defined threshold – or within a specified in-
terval – are targeted for display, which exploits the fact that defects exhibit
high-energy. The energy method has been successfully applied to visu-
alise microcracks, dislocations, nanovoids and the like. For nanoindentation
into (001) fcc aluminium the energy method selects dislocation loops slip-
ping on (111) planes as visualised in Figure 3. Moreover it can be seen
that the energy method accounts for the energy difference between free sur-
faces and bulk material. In order to avoid free surfaces preventing analysis,
a subregion of interest is chosen for visualisation. A shortcoming of the
energy-method is that it cannot be applied at elevated temperatures. Fur-
thermore, crystalline defects like stacking faults are hard to see using the
energy method. In these cases it is favorable to use defect-indicators which
take into account the structure of the crystal lattice and its symmetries.

Centrosymmetry parameter. The centrosymmetry parameter (CP) as
introduced by (Kelchner et al., 1998) is defined for an fcc atom according
to

P =

6∑
i=1

|ri + r−i|
2

, (17)

where vectors ri and r−i correspond to the six pairs of next neighbours
lying at opposite sites with respect to the considered atom in the lattice. By
definition, the CP is zero for an atom in the bulk of a perfect material subject
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Figure 3. Simulation of nanoindentation into (001) fcc Al at zero tem-
perature: the internal energy criterion extracts the free surface and the
dislocation loops.

to purely homogeneous elastic deformations. The deviation of P from zero
therefore measures the strength of disturbed centrosymmetry at a lattice
site. Opposed to the Energy Method, the CP enables identification and
classification of defects like free surfaces, partial dislocations and stacking
faults by a certain number.

Since the CP – opposed to the Energy-Method – is related to the crystal’s
structure, it is invariant to thermal fluctuations and hence also applicable
at finite temperatures.

Slip vector analysis. The slip vector analysis (SVA) was proposed by
(Zimmerman et al., 2001) in the context of MD simulation of nanoindenta-
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Figure 4. Simulation of nanoindentation into (001) fcc Al: the centrosym-
metry parameter extracts the free surface and the dislocation loops.

tion; the slip vector of atom α is defined as

sα = −
1

ns

nα∑
β �=α

{
rαβ −Rαβ

}
, (18)

where ns is the number of slipped neighbours, nα is the number of nearest
neighbours, rαβ and Rαβ are the vector differences between atom α and
atom β in the current and the reference configuration, respectively.

The particular advantage of the SVA over CP is, that Burgers vectors
are directly accessible and thus, SVA realizes the bridge to crystallography.
Furthermore, the slip vector approach can be applied to very different types
of defects in crystalline solids, whereas CP measures only disturbed centro-
symmetry.
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Figure 5. Simulation of nanoindentation into (001) fcc Al: The slip vector
analysis, L2 norm of sα, extracts the dislocation loops.

Other criteria to identify and visualise defects in crystalline solids are
the common neighbour analysis (Honeycutt and Andersen, 1987) and the
Bond Angle Analysis (Ackland and Jones, 2006). The bond angle analysis
is particularly useful to determine the local coordination, distinguishing fcc,
hcp, bcc, and other relatively close-packed structures.

4 Concurrent Multiscale Methods

4.1 Introduction and Classification of Multiscale Methods

Despite the considerable achievements by means of molecular simula-
tions, which have been sped up by the ever more increasing computer power,
the range of applicability of atomistic models and methods is still rather lim-
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ited in that they have not yet reached the typical time and length scales of
engineering applications. The reason is that quite disparate time and length
scales have to be considered; for MD the maximum time step is dictated
by the frequency of thermal vibrations, hence in the order of femtoseconds,
whereas a process like e.g. crack propagation may occur in the order of sec-
onds. The spatial problem is not less demanding, since the length scale at
the bottom is in the range of atomic spacings, hence of nanometres, whereas
the world of engineering problems lives in the range of some centimetres -
and beyond. For that reason many efforts have been undertaken to overcome
the time scale and length scale dilemma by coarse-graining approaches. The
accurate, at best seamless information passing from a bottom scale to a cor-
responding coarse-grained scale –and eventually backwards– is one of the
key challenges in computational materials science.

In the following we will consider only the coupling of length scales and not
time scales, and doing this, we will moreover restrict to the atomistic-to-
continuum scale-coupling at zero temperature. Multiscale methods can be
generally separated into two main categories, hierarchical/sequential and
concurrent.

• Hierarchical or sequential multiscale methods. In this concept, ma-
terial information on the atomic scale is generated and passed to a
larger length scale. A simple example of this concept is the atomistic
calculation of material parameters like elastic constants, thermal ex-
pansion coefficients, hardening moduli which are then used as input
in continuum constitutive equations. The embedded atom method
(EAM) itself can be seen as an example of a hierarchical multiscale
method, since the parameters of EAM are determined in ab-initio
calculations. Another instance is the identification of parameters in
traction-separation laws of atomic debonding, which are employed in
cohesive zone finite elements.

This concept of information-passing from a small-scale model to a
larger scale model is relatively simple and cheap. Since the material’s
small-scale response is parametrised for a fixed set of tests to feed
the larger-scale model, the larger-scale model cannot account for the
full complexity of the material’s behaviour in situations far from the
test bed, where the model parameters were calibrated. In order to
overcome these limitations a second branch of multiscale methods has
emerged.

• Concurrent multiscale methods. Opposed to the aforementioned class
of methods, concurrent multiscale methods explicitly couple models
on different length scales. Corresponding computational frameworks
allow the running of simulations on disparate length scales in parallel,
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i.e. concurrently. For that aim the simulation domain is decomposed
into different regions, where fully atomistic resolution is retained in
critical regions, where deformation strongly varies and where inelastic
deformations occur. In regions with weakly varying, purely elastic de-
formations, continuum constitutive laws are typically employed along
with a coarse-graining as realized by the finite element method. The
overall goal is to achieve a result as accurate as necessary and as ef-
fective as possible.

Concurrent multiscale methods are typically used for problem sets
where inelastic deformations localise in regions of confined size. These
regions typically are embedded into other regions, which deform elas-
tically and which form the largest portion of the entire simulation
domain. Since crack propagation is a prominent example in this class,
research in the mechanics of fracture has driven the development of
concurrent multiscale models and methods, and vice versa.

A number of review articles for concurrent multiscale methods coupling
different length scales is available, see e.g. (Ortiz and Phillips, 1999; Miller
and Tadmor, 2002; Curtin and Miller, 2003; Miller and Tadmor, 2009), and
with a special focus on fracture processes, (Abraham et al., 2000).

In the following we describe two prominent concurrent multiscale meth-
ods, the Finite Element Atomistic Method (FEAt) and the Quasicontinuum
(QC) Method.

4.2 The Finite Element Atomistic (FEAt) Method

The Finite Element Atomistic (FEAt) Method as introduced in (Kohlhoff,
1990; Kohlhoff et al., 1991) is based on the decomposition of a crystal into
generally three different domains as visualised in Figure 6:

A : a lattice region with fully atomistic resolution, where interatomic
potentials are employed.

C : a continuum region, discretized by finite elements, where a local,
but nonlinear continuum constitutive law of anisotropic elasticity is
employed.

T : a transition region in between A and C, where the coupling between
the local continuum and the nonlocal lattice is mediated. In this region
the framework of Kröner’s nonlocal elasticity theory is used. It is a
continuum theory, which takes the finite range of internal forces into
account and therefore can be seen as a continuation of the lattice,
(Kröner, 1963).
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A CT

I IVII III

Figure 6. Scale transition scheme in FEAt.

Coupling conditions. The coupling between the atomistic and contin-
uum regions in FEAt is in the first place based on the (i) strong kinematical
compatibility and on (ii) stress/force compatibility.

Kinematical coupling. The kinematical compatibility in the transition
T region is realized as follows; the transition region where the lattice and the
continuum overlap is divided into two zones, II and III, Figure 6. Each zone
provides the displacement boundary conditions for the other zone. Zone II,
which reduces to a surface in a three-dimensional model, supplies the bound-
ary conditions for the continuum, region IV. The FE nodes on this surface
coincide with the atoms of the lattice and move with them. Conversely, in
zone III the atoms, which constitute the outer shell of the lattice, are made
to move in accord with the FE nodes with which they coincide. A one-to-
one correspondence of nodes and atoms throughout the transition region is
obtained in this way. This is why this coupling is generally termed strong
compatibility in the classification of domain decompositions in multiscale
models.

The width of zone III must be at least equal to the cut-off length of
the potentials used to describe the atomistic core region. Note that the
transition zone III must be 2Rcut thick when the underlying atomistic model
is of the EAM type, and thus atomic forces (derivatives of energy) depend
on the electron-density at an atom and at an atom’s neighbour Rcut away,
the latter of which depends on a neighbour’s neighbour, up to another Rcut

away.
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Force coupling. The design of the model ensures equality of the dis-
placement fields in the lattice and the continuum throughout the transition
region, and thus equality of strains at the interface. However, since the
use of forces has been explicitly avoided in this coupling scheme, any direct
interaction between the stress fields of the two media is prevented. This
means that force equilibrium or equality of stress between the lattice and
the continuum is not established a priori. Additional conditions are neces-
sary. In FEAt, the coupling condition is on the force level, whereas other
concurrent multiscale methods perform the coupling on the energy level. To
define these coupling conditions in a consistent fashion, the elastic energy
E = Ê(ε) is expanded into a Taylor series about the state of zero strain
under the assumption of zero stress,

E(ε) = E(0)+
∂E

∂εij

∣∣∣∣
0

+
1

2

∂2E

∂εij∂εkl

∣∣∣∣
0

εijεkl+
1

6

∂3E

∂εij∂εkl∂εmn

∣∣∣∣
0

εijεklεmn+. . . .

(19)
For the equality of stresses, the strains and all coefficients in this series

must be equal in the atomistic region and in the continuum. Since the
strains have been made equal by means of the strong compatibility of dis-
placements, equality of the stresses amounts to the requirement, that the
elastic constants of the continuum equal those defined by the interatomic
potential in the atomistic region:

Cij =
∂E

∂εij

∣∣∣∣
0

, Cijkl =
∂2E

∂εij∂εkl

∣∣∣∣
0

, Cijklmn =
∂3E

∂εij∂εkl∂εmn

∣∣∣∣
0

. (20)

Since the reference state of the series in Equation (19) is a homogeneous
deformation, ε = 0, it is indeed permissible to assign to the continuum
the second- and higher order elastic constants as defined by Equation (20)
and which are derived from the interatomic potential. The first-order elas-
tic constants in the continuum are zero by definition, which imposes the
restriction on the potential that it must provide zero stress in a perfect lat-
tice. Within the framework of local and linear elasticity theory, equilibrium
between the lattice and the FE continuum is fulfilled, if terms up to the
second order are matched. FEAt accounts for elastic nonlinearity in that,
additionally, elastic constants of third order, are adapted as well.

Two approximations in this coupling scheme are made. First, that the
series in Equation (19) has to be cut off at some stage. Second, that there
is a transition at the discrete interface from interatomic and hence finite-
range forces to continuum Cauchy-type stresses. The latter approximation
introduces a discontinuity in the nonlocal part of the stress tensor whenever
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the strain gradient at the interface does not vanish. As a consequence, the
magnitudes of the strain and of the strain gradient at the atomic-continuum
influences the quality of the approximation in the model and the applica-
bility to various situations.

Since in the transition region, II and III, finite element mesh nodes and
lattice sites as well as their degrees of freedom coincide by virtue of strong
compatibility, dispensable degrees of freedom are elimininated by conden-
sation before the solution process. In (Kohlhoff, 1990) it was observed, that
the global finite element stiffness matrix is not symmetric, which indicates
that the forces are not conservative and hence that the governing equations
are not derived from a variational principle. This is due to the fact, that
the FEAt model does not start out from a well-defined total energy for the
entire coupled problem but rather effects the coupling between the atomistic
and continuum domains on the force/stress level as described above.

The fundamental difference between force coupling and energy coupling,
its implications and consequences, are analyzed in Section 4.4 where we
compare two variants of the QC method.

Application to fracture simulation. The method was used in (Kohlhoff
et al., 1991) to analyse crack propagation on cleavage and non-cleavage
planes in bcc crystals, using potentials for iron and tungsten as examples.
The results explain why both, the {100} and {110} planes, are cleavage
planes in bcc metals and why cleavage on {100} is easier than on the close-
packed {110} planes.

4.3 The Quasicontinuum-Method Based on the Cauchy-Born Rule

The quasicontinuum method is a prominent example of a bottom-up,
concurrent multiscale method aiming at a seamless link of atomistic with
continuum length scales. This aim is achieved by three main building blocks
which are common to each of the existing QC-versions, the QC based on
Cauchy-Born elasticity, (Tadmor et al., 1996), (Shenoy et al., 1999), and
two variants of a fully nonlocal QC method, (Knap and Ortiz, 2001), (Eidel
and Stukowski, 2009):

(i) a coarse-graining of fully atomistic resolution via kinematic constraints
in order to reduce the number of degrees of freedom. Full atomistic
resolution is retained where necessary.

(ii) an approximation of the energy/forces in coarse-grained regions via
numerical quadrature which avoids the explicit computation of the
site energy of all the atoms.

(iii) adaptivity, i.e. spatially adaptive resolution, is necessary to automati-
cally balance accuracy and efficiency. It must be directed by a suitable
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refinement indicator.

Figure 7. Finite-element discretisation of a crystal in the QC-method in
the (left) undeformed configuration and (right) in the deformed configu-
ration. Atoms within elements smoothly follow the mesh nodes by linear
interpolation.

To set the stage, we consider a crystal in d-dimensional space consisting
of a set L ⊂ Zd of atoms, that are initially located on a Bravais lattice
spanned by lattice vectors A1, . . . ,Ad. Their coordinates in the initial con-
figuration read Xl =

∑d

i=1 l(i)Ai, l ∈ L ⊂ Z
d. The corresponding atomic

coordinates in the current configuration are denoted by vector xl.

Upscaling via coarse-graining. In regions of weakly varying elastic
deformation it is sufficient to consider the movement of some judiciously
selected, representative atoms (rep-atoms), Lh ⊂ L . Only these atoms
keep their independent degrees of freedom, whereas all other atoms, Lh =
L \Lh, are forced to follow via kinematic constraints borrowed from the fi-
nite element method: xl =

∑
j∈Lh

xjϕj(Xl), l ∈ Lh. FE shape functions,
ϕj∈Lh

, exhibit the properties,
∑

j∈Lh
ϕj(Xi) = 1 ∀ i ∈ L (partition of

unity), and, ϕj(Xj
′) = δjj′ ∀ j, j ′ ∈ Lh (compact support). The use of

(here: linear) shape functions for interpolation requires the generation of a
triangulation with representative atoms as mesh nodes. Figure 7 schemati-
cally displays the discretisation of the crystal into finite elements.

The interpolation of nodal displacements implicitly introduces a contin-
uum assumption into the QC method. Notwithstanding, this first approx-
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imation is purely kinematical in nature, since no constitutive assumptions
are made.

The approximation step of discretisation or coarse-graining reduces the
number of arguments in the exact total potential, Etot({xi| i ∈ L }) →
Etot({xi | i ∈ Lh}) =: Etot,h, and thus reduces the number of unknowns
in the computation. Both existing QC methods have this approximation
step in common, but differ in the way further approximations are made.

Next, we focus on the QC version based on Cauchy-Born elasticity, in
Section 4.4 the fully nonlocal QC versions are described and compared.

Efficient energy/force calculation: the local QC. After thinning-
out dispensable degrees of freedom via the kinematic constraints in terms
of linear finite-element shape functions, the first QC-version as proposed by
(Tadmor et al., 1996) accomplishes an efficient energy/force calculation in
the continuum region by recourse to the so-called Cauchy-Born (CB) Rule
-hence QC-CBR- resulting in what is referred to as the local formulation of
the QC.

The CBR postulates that when a monatomic crystal is subjected to a
small linear displacement of its boundary, then all atoms will follow this
displacement, see (Born and Huang, 1998), (Ericksen, 1983), (Zanzotto,
1996). The CBR is schematically illustrated in Figure 8 for a crystalline
cantilever undergoing elastic bending deformation.
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Figure 8. The Cauchy-Born-rule assuming a homogeneous deformation
state in small representative volumes.

The CBR is applied in the QC method in that the continuum defor-
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mation gradient as a macro-scale quantity is directly mapped to a uniform
deformation of a small volume on the atomistic or nano-scale. For crystalline
solids with a simple lattice structure the assumption of locally homogeneous
deformation state implies that every atom in a region subject to a uniform
deformation gradient will be energetically equivalent. As a consequence,
calculating the energy within a specific finite element can be approximated
by computing the energy of only one single atom in the deformed state and
multiplying this figure by the number of atoms in the specific finite element.
Within the QC-computational framework, the calculation of the CB energy
is done separately in a subroutine; for a given deformation gradient F the
lattice vectors in a unit cell with PBC is deformed according to F

ai = FAi , (21)

where Ai and ai are the lattice vectors in the undeformed configuration
and in the deformed configuration, respectively.

The deformed lattice vectors enter the employed potential for energy
calculation, such that the CBR enables the free energy of a deformed crys-
talline body (as a function of lattice vectors) to be expressed alternatively as
a function of the deformation gradient F . The corresponding strain energy
density in the element is then given by

E =
E0(F )

Ω0
, (22)

where Ω0 is the unit cell volume (in the reference configuration) and E0 is
the energy of the unit cell when its lattice vectors are distorted according
to F . Now the total energy of a finite element is this energy density times
the element volume, the total energy of the problem is simply the sum of
all element energies:

Etot,h =

Nelement∑
i=1

ΩiE(F i) , (23)

where Ωi is the volume of element i.
Linear interpolation functions in tetrahedral finite elements require only

one single Gauss-point for numerical quadrature and therefore imply a con-
stant deformation gradient per element as visualised in the right of Figure
7. Note, that the locally constant deformation gradient in the finite element
matches the assumption of a locally constant deformation gradient in the
CBR. As a consequence, the application of the CBR implies that in the en-
ergy calculation the summation over the number of lattice sites boils down
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to the number of finite elements Nelement, see Equation (23). Since the crys-
tal is in general subject to inhomogeneous deformations, the element-wise
constant deformation gradient is an approximation and so is the calculated
energy via the CBR. In settings where the deformation is varying slowly
and the element size is adequate with respect to the variations of the de-
formation, this type of energy calculation is sufficiently accurate and very
effective.

For a mathematical analysis on the range of validity of the CBR we
refer to (Friesecke and Theil, 2002), where it is found that the CBR fails
for relatively small elastic deformations. An extension of the classical linear
CBR to high order is proposed in (Sunyk and Steinmann, 2003).

Nonlocal QC. In nonlocal regions, which can be eventually refined to
fully atomistic resolution, the energy Eα of an atom residing on a mesh node
α is calculated by numerical quadrature. Specifically the new approximate
energy takes the form

Etot,h =

Nrep∑
α=1

nαEα(uh) , (24)

where uh represents the finite element nodal displacements. The computa-
tional saving is that the summation of all the atoms is replaced by a sum
over all representative atoms Nrep. In the line of numerical quadrature, nα

is the weight function for repatom α which requires for consistency

Nrep∑
α=1

nα = N . (25)

Hence, nα is the number of atoms represented by atom α, which implies in
the limiting case of fully atomistic resolution nα = 1.

Mixed local-nonlocal QC. In order to combine the high accuracy of the
nonlocal formulation with the efficiency of the local formulation, the former
is employed in critical regions, where atomic scale accuracy is required,
where the latter formulation is employed in regions where the deformation
is changing relatively slowly on the atomic scale. As a result, the QC-CBR
runs both formulations concurrently in a single simulation.

As in the energy-based nonlocal QC, the coupled approach is based on
the ansatz that the energy can be approximated by computing only the
energy of the repatoms. In the coupled approach however, each repatom
is judiciously selected as being either local or nonlocal depending on its
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deformation environment. Thus, the repatoms are divided into Nloc local
repatoms and Nnonloc nonlocal repatoms (Nloc + Nnonloc = Nrep). Doing
this, the total energy is approximated as

Etot,h =

Nnonloc∑
α=1

nαEα(uh) +

Nloc∑
α=1

nαEα(uh) . (26)

The weights nα for each repatom (local or nonlocal) are determined from
a tessellation that divides the body into cells around each repatom. The
numerically expensive Voronoi tessellation can be replaced by an approxi-
mate Voronoi diagram. The Voronoi cell of repatom α contains a total of
nα atoms. Of these atoms, ni

α reside in element i adjacent to repatom α.
The total weighted energy contribution of repatom α is then calculated by
use of the CBR within each element adjacent to α, hence

nαEα =

M∑
i=1

ni
αΩ0E(F i), nα =

M∑
i=1

ni
α , (27)

where E is the energy density in element i by the CB rule, Ω0 is the Wigner-
Seitz volume of a single atom and M is the number of elements adjacent to
α.

The scale transition from fully atomistic resolution to a coarse-grained
description is visualised in Figure 9.

The ghost-force problem. QC-CBR inherently exhibits so-called ghost
forces, defined as spurious forces arising at the interface between local and
nonlocal regions. These forces thus follow from the fact that the motion of
rep-atoms in the local region subject to the CBR will effect the energy of
nonlocal rep-atoms, while the converse may not be true. Hence, this force
mismatch stems from different physical assumptions on how atoms interact,
which is a compatibility-problem.

There are two different concepts to reduce ghost forces in QC-CBR:

1. Correction by applying a static correction force field.
This remedy against ghost forces proposed in (Shenoy et al., 1999)
exhibits the drawback that static correction forces are not derivable
from a ’correction potential energy’, i.e., they are nonconservative.
This may lead to serious problems with energy conservation during
a molecular-dynamics simulation as reported in (Shimokawa et al.,
2004).

2. Correction by continuation.
In order to cure the ghost force problem without new shortcomings
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nonlocal
region

local
region

A CI

Figure 9. The scale transition scheme in the QC-CBR, where the nonlocal
region (A) overlaps in the interface zone (I) with the continuum region (C),
which is discretised with finite elements and subject to the CBR.

(Shimokawa et al., 2004) introduced a buffer layer between the two
regions of space, where atoms are subject to specific rules concern-
ing how they interact with their local and nonlocal neighbourhood.
In a similar spirit is the contribution of (E. et al., 2006), where the
approach of local reconstruction schemes is generalised.

Application to fracture. In (Miller et al., 1998a) and (Miller et al.,
1998b) the QC-CBR method has been applied to crack tip deformation
and is shown to account for both brittle fracture and crack tip dislocation
emission. The analysis of a crack propagating into a grain boundary revealed
both, migration of the boundary and that the boundary is a source for the
emission of dislocations.

4.4 The Fully Nonlocal Cluster-Based Quasicontinuum-Method

A fully nonlocal QC-version (QC-FNL) as proposed by (Knap and Ortiz,
2001) aims to overcome the aforementioned force mismatch between local
and nonlocal regions in QC-CBR. For that aim they replace the CBR by a
unified nonlocal theory to be described in the following and thus avoid in-
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Figure 10. The scale transition scheme in fully nonlocal QC-versions based
on force/energy sampling in clusters: the atomistic-continuum coupling is
realized in a continuous manner by gradual coarse-graining enabling a seam-
less scale-transition.

compatibilities of different physical descriptions at discrete interfaces. This
then enables the seamless scale transition between fully atomistic resolution
and coarse-grained continuum regions. The scale transition in QC-FNL is
realized in a continuous manner by gradual coarse-graining, see Figure 10,
whereas in QC-CBR it is realized at the discrete interface where different
physical models meet, see Figure 9. In the above structure of QC building
blocks, (i)–(iii), fully nonlocal QC versions introduce for property (ii) the
use of summation rules for the sampling of forces or energies in spherical
clusters, which can be seen as representative crystallites.

Force versus energy sampling in clusters. Even after coarse-graining,
the total energy still depends on the site energy Ek of each and every atom
k, Etot,h =

∑
k∈L

Ek. Due to the prohibitive computational expense of
this task, a second approximation becomes necessary, which is again, like
discretisation, a very standard in classical finite element methods: numerical
quadrature.

For that purpose Knap and Ortiz (2001) proposed to perform force eval-
uations no longer at each lattice site in the crystal but to restrict them to
sampling clusters. These sampling clusters Ci are spheres of radius Rc and
are chosen to have a mesh node in its centre, see Figures 10 and 11. Hence,
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they are defined as Ci = {k : |Xk −Xi| ≤ Rc(i)}. Note, that the sam-
pling clusters may have different positions, e.g. in the interior of the finite
element.

Assuming a pair potential V = V (rkl) with rkl = xk −xl and omitting
here and in the following the contribution of an external potential V ext, the
force acting on node a reads for force sampling in clusters

fh
a =

∑
i∈Lh

ni

∑
k∈Ci

fkϕa(Xk) = −
∑

i∈Lh

ni

∑
k∈Ci

[∑
l∈L

V ′(|rkl|)
rkl

|rkl|

]
ϕa(Xk) .

(28)
The equilibrium configurations of interest are the minimisers of Etot,h,

i.e. the solutions of the variational problem:

min
{xa}

Etot,h → f
h
a = 0 ∀ a ∈ Lh . (29)

Energy minimisation physically corresponds to solving for the configuration
for which at every mesh node a the sum of forces on each degree of freedom
is zero. Based on this fact, Knap and Ortiz (2001) search for the equilibrium
by directly working from an approximate expression for the forces according
to Equation (28) rather than working from the explicit differentiation of a
total energy functional.

In Eidel and Stukowski (2009) however, the sampling is introduced at the
energy level, thus

EQC =
∑

i∈Lh

ni

∑
k∈Ci

Ek ≈ Etot,h , (30)

which yields for energy sampling in clusters to the force expression

fh
a = −

∂EQC

∂xa

= −
∑

i∈Lh

ni

∑
k∈Ci

1

2

∑
l∈L

[
V ′ (|rkl|)

rkl

|rkl|
[ϕa (Xk)− ϕa (Xl)]

]
,

(31)
which is the counterpart of Equation (28).

It is worth to note that for energy sampling – as opposed to force sam-
pling – the force expression fh

a in Equation (31) is explicitly derived from
a well defined total potential EQC, see Equation (30).

Calculation of the weighting factors. In both cases, i.e. for force and
energy sampling, factor ni is the weighting of the force /energy contribution

37



38 B. Eidel, A. Hartmaier and P. Gumbsch

of cluster Ci. The cluster weights ni, i ∈ Lh, are calculated under the
requirement that the summation over all linear interpolation functions must
be exact, see Knap and Ortiz (2001), hence∑

i∈Lh

ni

∑
k∈Ci

ϕj(Xk) =
∑
k∈L

ϕj(Xk) ∀ j ∈ Lh . (32)

The calculation of the weights implies the assumption that the quantity
subject to sampling can be exactly approximated if it is linear between the
mesh nodes.

When the clusters shrink to the size of the rep-atoms, i.e. Ci = {i} ∀ i ∈
Lh, it holds that ϕa(Xk) = δak, and the cluster summation rule boils down
to a node-based summation rule fh

a =
∑

k∈Lh
nkfkϕa(Xk) = nafa. In

this case the weighting factor nk is the number of atoms represented by rep-
atom k, thus nk =

∑
l∈L

ϕk(X l) ∀ k ∈ Lh, which implies nk = 1 for fully
atomistic resolution, i.e. l ∈ L , and which ensures that

∑
k∈Lh

nk = |L |
is fulfilled.

Figure 11. Spherical clusters around mesh nodes for the explicit sampling
of forces or energies. The interaction of sampling atom k inside the cluster
with non-sampling atom l outside the cluster must be symmetric to fulfill
Newton’s third law.

Is Newton’s third law of motion preserved? A critical issue in con-
current multiscale modelling is the coupling of atomistics with a continuum,
which is largely due to the general locality of continuum constitutive laws
and the nonlocality of interatomic forces.
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In the following we check both sampling schemes to ensure the symme-
try of atomic interactions. For that aim we consider the atomic interaction
of a sampling atom k (within the spherical cluster adjacent to mesh node
a) with a non-sampling atom l as illustrated in Figure 11. It is instru-
mental to explicitly separate all four force terms (I)-(IV) (see below) for
this type of interaction and adhering therein to the lattice statics terms for
pair potentials. First, we consider force terms captured by energy sampling.
The nonlocal action of energy Ek←l induces a force on atom k within the
cluster, expression (I), and on atom l outside the cluster, expression (II).
These two forces are equal up to the opposite sign, Newton’s third law
holds, actio=reactio. The interaction of atom k with atom l is schemat-
ically illustrated in Figure 11. Both forces are distributed according to
their barycentric coordinates from k and l to adjacent nodes a, b and c;
for atom a the distribution is mediated by factor [ϕa (Xk)− ϕa (Xl)] in
Equation (31). Moreover, since energy sampling is conceptually restricted
to clusters, forces at site k and site l due to the energy contribution El←k,
expressions (III) and (IV), are missing in Equation (31); this explains the
factor 1/2 therein. It is the function of properly defined weighting factors
ni to account for the energy contribution of non-sampling atoms.

(I) Force on atom k due to energy Ek←l:

f̃k = −
∂Ek←l

∂xk

= −
1

2
V ′(|rkl|)

rkl

|rkl|
.

(II) Force on atom l due to energy Ek←l:

f̃ l = −
∂Ek←l

∂xl

= +
1

2
V ′(|rkl|)

rkl

|rkl|
.

(III) Force on atom k due to energy El←k:

˜̃
fk = −

∂El←k

∂xk

= −
1

2
V ′(|rkl|)

rkl

|rkl|
.

(IV) Force on atom l due to energy El←k:

˜̃
f l = −

∂El←k

∂xl

= +
1

2
V ′(|rkl|)

rkl

|rkl|
.

The application of the force-based ansatz, Equation (28), gives full ac-
count of forces acting on cluster atom k, summing up expressions (I) and
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(III). Contrary to the present ansatz however, Equation (28) does not con-
sider the opposite force acting on atom l, since l is not a sampling atom.
Briefly, energy-sampling preserves symmetry in atomic interactions whereas
force-sampling does not.
It can be equally shown, (Eidel and Stukowski, 2009), that this lack of
symmetry in the interaction of sampling atoms with non-sampling atoms
implies an asymmetry of the corresponding stiffness matrix, thus indicating
nonconservative forces. By contrast, energy sampling leads to strictly sym-
metric stiffness matrices indicating conservative forces.
The stiffness matrix for energy sampling reads

kh
ab =

∂2EQC

∂xa∂xb

=
∑

i∈Lh

ni

∑
k∈Ci

1

2

∑
l∈L

[
ϕa(Xk)− ϕa(Xl)

][
ϕb(Xk)− ϕb(Xl)

]
·

[
V ′(|rkl|)

|rkl|
1 +

(
V ′′(|rkl|)

|rkl|
2 −

V ′(|rkl|)

|rkl|
3

)
rkl ⊗ rkl

]
. (33)

and for force sampling:

kh
ab = −

∂fh
a

∂xb

=
∑

i∈Lh

ni

∑
k∈Ci

−
∂fk

∂xb

=
∑

i∈Lh

ni

∑
k∈Ci

ϕa(Xk)
∑
l∈L

[ϕb(Xk)− ϕb(X l)] ·

[
V ′(|rkl|)

|rkl|
1 +

(
V ′′(|rkl|)

|rkl|
2 −

V ′(|rkl|)

|rkl|
3

)
rkl ⊗ rkl

]
. (34)

Summarising, the fully nonlocal QC formulation based on energy sam-
pling, QC-eFNL, exhibits advantages compared to force sampling: sampling
at the energy level instead of the force level preserves the variational struc-
ture of lattice statics leading to conservative forces, as indicated by symmet-
ric stiffness matrices. More specifically, energy sampling implies the strict
symmetry of atomic interactions in all regions, even across the boundary of
clusters, whereas force sampling does not in general. Energy sampling also
exhibits some numerical advantages. Standard algorithms for the numerical
minimisation of functionals like CG methods can directly be applied, since
they generally require gradients as well as evaluations of the functional (the
energy) itself. Moreover, a minimiser can be found, if the energy exhibits a
minimum.
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For residual forces observed in QC-eFNL simulations, the following prop-
erties have been shown in (Eidel and Stukowski, 2009). Residual forces are
conservative in nature; they do not follow from an asymmetry in atomic
interactions as a consequence of inconsistent a priori assumptions on how
atoms interact; they stem from the error in numerical quadrature and there-
fore can be reduced (to identically zero) by a sufficiently large cluster size.
As such, the present residual forces differ from ghost forces in QC-CBR by
source and property, which is the reason why we distinguish by name.

In (Eidel and Stukowski, 2009) QC-eFNL is employed to simulate nanoin-
dentation into (001) aluminium. The simulations have shown the promising
capacity of the method to reduce the prohibitive computational expense
of fully atomistic resolution (lattice statics) while faithfully simulating the
material’s response in significant details like the force-depth curve and the
load level and locus of dislocation nucleation.

4.5 Other Concurrent Multiscale Methods

There are a variety of concurrent multiscale methods based on a domain
decomposition method like FEAt and QC. Here we restrict to name some
of them along with key references for the interested reader.

• the Coupling of Length Scale (CLS) Method, (Rudd and Broughton,
1998), (Rudd and Broughton, 2000), (Rudd and Broughton, 2005).

• the Atomistic-to-Continuum Coupling (AtC) method, (Fish et al.,
2007).

• the Bridging Scale (BSM) method, (Wagner and Liu, 2003).

• the Coupled Atomistic and Discrete Dislocation (CADD) method,
(Shilkrot et al., 2002), (Shilkrot et al., 2004).

4.6 ’Learn-On-The-Fly’ - LOTF

FEAt and the variants of the QC method deal with the transition from
continuum (or coarsed grained) regions of the solid to its fully atomistic res-
olution, where e.g. EAM potentials are used to describe interatomic forces.
As mentioned previously, the parameters in EAM potentials are generally
fitted to the results of ab-initio calculations in different settings and are kept
fixed for a ’lifetime’. In this sense, EAM potentials themselves can be seen
as a hierarchical multiscale method. The method of ’learning on the fly’
(LOTF), (Csanyi et al., 2004), is a generalisation of this kind of hierarchical
multiscale method in that the parameters of the potential are recalculated
and hereby adjusted ’on the fly’ for judiciously selected atoms. Doing this,
the approach of LOTF ensures a maximum of accuracy and transferablity
to the broad variety of simulation settings which cannot be considered in
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total in a priori calculations that are performed for a conventional fitting of
empirical potential.

According to the general classification, LOTF can also be seen as a
concurrent multiscale method. However, since LOTF is adhering to a unified
classical force model for the entire system it avoids the ’inherent boundary
problem’ between different physical models along with inconsistencies which
plague many of the concurrent multiscale methods. It is worth mentioning
that LOTF has turned out to be quite insensitive to the chosen potentials.
It selects simple parametrised potentials and ’augments’ it at run time with
the necessary extra information, which is computed on the fly by means of
quantum calculations.

According to this concept, the flow chart structure of LOTF can be
described as follows:

1. Initialisation: start out for the physical system in its initial condition
with a reasonably parametrised classical potential.

2. MD predictor, extrapolation: as in standard molecular dynamics (MD),
the chosen potential is used with fixed parameters to predict a system
trajectory for a small number of time steps.

3. Testing: in the latest configuration, the local validity of the classical
potential is assessed on a site by site basis, and a selected subset of
atoms is flagged for quantum treatment.

4. Quantum Mechanics: use any quantum method (DFT or TB) which
provides the desired accuracy to compute the forces on only the se-
lected subset of atoms.

5. Force Fitting: the parameters of the classical potential are tuned lo-
cally around the selected atoms until it reproduces the accurate force.

6. MD corrector: interpolation: return the state of the system to that
before the extrapolation and rerun the dynamics, interpolating the
potential parameters between the old and the new values.

7. Return to 2.
The successful application of LOTF critically depends on the proper

choice of criteria that will correctly identify regions for quantum treatment.
Recent application examples of the LOTF method include studies of

dynamic crack propagation (Kermode et al., 2008) which will be discussed
in some more details later. A review of recent progress in the methodology
of hybrid quantum/classical (QM/MM) atomistic simulations for solid-state
systems can be found in (Bernstein et al., 2009). In this reference a unified
terminology is defined into which the various and disparate schemes fit,
based on whether the information from the QM and MM calculations is
combined at the level of energies or forces. Moreover, the pertinent issues
for achieving ’seamless’ coupling and the advantages and disadvantages of
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the proposed schemes are discussed. Finally, the applications and scientific
results obtained to date are summarised.

5 Atomistic Aspects of Fracture

Fracture is a phenomenon which spans over many length scales. The macro-
scopic dimensions of the crack and the specimen determine the intensity of
the stress concentration at the crack tip and are equally important as the
microstructure of the material, which provides preferred fracture paths. Ul-
timately, fracture reduces to the breaking of atomic bonds, which in the
case of brittle fracture occurs at an atomically sharp crack tip (Lawn, 1993;
Clarke, 1992). In a perfectly brittle material, the crack moves by no other
process than the breaking of individual bonds between atoms. Nevertheless,
traditional theory of brittle fracture processes does not focus on individual
atomic bonds but resorts to the treatment of Griffith (Griffith, 1921), which
is based on continuum thermodynamics. Following Griffith, one may regard
the static crack as a reversible thermodynamic system for which one seeks
equilibrium. The equilibrium condition leads to the so-called Griffith cri-
terion, which balances the crack driving force and the material resistance
against fracture. The crack driving force can be expressed as the stress
intensity factor K while the material resistance against fracture for the per-
fectly brittle case must be at least the surface energy of the two fracture
surfaces. With the implication of thermodynamic equilibrium, the Griffith
picture provides a reference value KG for the analysis of the crack driving
forces. It however cannot explain why and how fracture proceeds.

From an atomistic point of view, one immediately identifies the mate-
rial’s resistance against fracture with the forces needed to break the crack tip
bonds successively. The first atomistic studies of fracture (Thomson et al.,
1971) showed that the discrete bond breaking event manifests itself in a
finite stability range, which was attributed to the discreteness of the lattice
and called the ”lattice-trapping” effect. Lattice trapping causes the crack
to remain stable and not to advance/heal until loads K+ or K−, somewhat
larger/smaller than the Griffith load are reached. Other influences of the
atomic nature of a crack have recently been summarised in a series of arti-
cles in the MRS Bulletin (Selinger and Farkas, 2000). Consequences of the
lattice trapping have been reviewed (Gumbsch and Cannon, 2000; Gumb-
sch, 2001) and only two particularly important and enlightening aspects of
the lattice trapping, crack propagation anisotropy and the production of
metastable fracture surfaces, are discussed below.
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5.1 Lattice Trapping and the Directional Cleavage Anisotropy

Silicon is reported to have two principal cleavage planes: {111} planes,
usually the easy cleavage planes, and {110} planes (Michot, 1988; George
and Michot, 1993), the planes of easy cleavage in polar III-V semiconductors.
The most accurate constant-K experiments (Michot, 1988) seem to show
that {110} planes have a slightly lower fracture toughness than {111} planes.
For both cleavage planes, the measured fracture toughness gives surface en-
ergies (γ110 = 2.3J/m2, γ111 = 2.7J/m2) which are significantly larger than
the values calculated atomistically using density functional theory (DFT)
based quantum mechanical methods (γ110 = 1.7J/m2, γ111 = 1.4J/m2)
(Pérez and Gumbsch, 2000a).

Propagation direction anisotropy has been observed for both cleavage
planes. The preferred propagation direction is along <110> on both cleav-
age planes (Michot, 1988; George and Michot, 1993). On the {111} fracture
surface, the anisotropy with respect to propagation direction is minimal. In
contrast, cleavage on the {110} plane is extremely anisotropic. Propagation
along the <110> direction results in nearly perfectly flat fracture surfaces
(Michot, 1988; George and Michot, 1993). Attempts to achieve propaga-
tion in the <001> direction, perpendicular to the preferred direction, have
not been successful because the crack deflects onto {111} planes (George
and Michot, 1993; Cramer et al., 2000). The relation of the calculated sur-
face energies and elastic anisotropy cannot account for this deviation of the
crack (Pérez and Gumbsch, 2000b) and an atomistic investigation therefore
is attractive.

DFT calculations of the crack tip stability, the anisotropy in fracture
behaviour with respect to the propagation direction on the {110} plane was
explained as a consequence of a difference in lattice trapping for the different
propagation directions (Pérez and Gumbsch, 2000b). A {110} crack prop-
agating in the ”easy” <110> direction (see Figure 12 (left) ) continuously
opens successive bonds at the tip of the crack. This continuous process leads
to a relatively small trapping, and it can be argued that the trapping may
further decrease as the size of the model (specimen) is increased. In con-
trast, a crack driven in the ”difficult” <001> direction on the {110} plane,
displayed in Figure 12 (right), shows a clearly discontinuous bond break-
ing. Figure 13 shows the bond distances of the crack tip bonds (labeled
”B” in Figure 12) for both systems. Further analysis of this discontinuous
bond breaking process shows that it is mainly a result of the relaxation of
the six or eight atoms around the crack tip and connected with a signifi-
cant load sharing between the crack tip bond and the one above (Pérez and
Gumbsch, 2000a). Comparing both the loading and unloading processes,
it is seen that the discontinuous bond breaking is also connected with a
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larger lattice trapping range (Pérez and Gumbsch, 2000b). This difference
in the trapping effectively destabilises the {110} crack propagation in the
<001> direction against deflection onto an inclined {111} cleavage plane.
Thereby lattice trapping appears to provide the only reasonable explana-
tion for the experimentally observed cleavage anisotropy with respect to the
propagation direction for the {110} cracks in silicon.

CBA A CB

Figure 12. Sequence of bond breaking events during fracture in silicon for
different orientations as given in the text.
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Figure 13. Bond distances of crack tip bonds ”B” in Figure 12 during
loading.

The same type of propagation anisotropy has recently been found in DFT
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calculations of the cleavage of diamond (Pastewka et al., 2008). Similarly an
anisotropy with respect to the propagation direction had also been predicted
for the cleavage of tungsten single crystals (Kohlhoff et al., 1991; Riedle
et al., 1996; Gumbsch et al., 1998)

5.2 Metastable Fracture Surfaces

A crack which experiences significant trapping can be loaded above the
Griffith load and still does not propagate. Upon increasing the load, the
crack is expected to eventually take the path that is associated with the
lowest energy barrier to propagation. With trapping this path is not neces-
sarily the one which leads to the surface of lowest energy. A very prominent
example of such behaviour is the surface reconstruction after cleavage of
silicon {111} planes. Low temperature cleavage (≤ 600K) produces the 2x1
Pandey π-bonded chain reconstruction (Pandey, 1981), while high temper-
ature annealing gives the so called 7x7 reconstruction. This latter structure
is energetically more favourable but not directly accessible through the frac-
ture process.

Atomistically simulating the fracture of the intermetallic alloy B2-NiAl
(Ludwig and Gumbsch, 1998), using an embedded atom potential specifi-
cally developed for B2-NiAl (Ludwig and Gumbsch, 1995), it was observed
that a {100} crack driven in a <001> direction did not cleanly separate the
adjoining (200) Ni and Al layers. It instead took a zig-zag path which split
the Al (200) plane directly in front of the crack tip and deposited every sec-
ond row of atoms on the upper and the lower fracture surfaces, respectively
(see Figure 14). This result would not be so remarkable if the surface en-
ergy of the half-occupied Al (100) surface (1.86 J/m2) were not higher than
the average for the Ni and Al terminated surfaces (1.76 J/m2) (Ludwig and
Gumbsch, 1998). The crack had obviously been overloaded to the extent
that it could release enough elastic energy so as to create the high-energy
half-occupied surfaces. It did so because the energy barrier for this process
(0.18 J/m2) is lower than the trapping barrier for the ideal surfaces.

In this example of NiAl, the crack is creating two identical half-occupied
fracture surfaces instead of the asymmetric arrangement of the two sur-
faces being fully occupied by Ni and Al, respectively. Similar half-occupied
surfaces would also be expected in equilibrium for an ionic material where
the asymmetric fully occupied surfaces would be oppositely charged (Tasker,
1986). With this analogy in mind, one may search for even more pronounced
trapping effects in ionic materials where the crack faces the problem of sort-
ing out the charges.
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Figure 14. Rough fracture surface of B2-NiAl created during dynamic
fracture.

6 Dynamics of Brittle Crack Propagation

The fracture of materials can be a dynamic process, particularly in the
final stage of supercritical propagation. Although this final stage of frac-
ture might at first seem almost irrelevant, closer consideration shows that
it is precisely the dynamics of the brittle crack which competes with the
rate-dependent plasticity in the near tip region to determine whether a
propagating crack can ever be stopped. The dynamic crack propagation
has therefore recently attracted significant attention.

The first set of atomistic investigations of dynamically moving cracks
were directed towards understanding the steady state propagation, crack
speed and the onset of dynamic instabilities. Analytical atomistic studies
(Marder and Gross, 1995) on simplified one- and two-dimensional structures
show that the dynamically propagating crack can only access a limited ve-
locity regime. After initiation, crack tip speed immediately reaches about
20% of the Rayleigh wave velocity and approaches a branching instability
at about half the Rayleigh wave velocity (Marder and Gross, 1995). The in-
stability manifests itself in the breaking of bonds at the flanks of the crack
before the breaking of the next bond in the propagation direction and is
interpreted as a branching instability.

MD simulations (Gumbsch et al., 1997) of the propagation of a mode I
crack with a straight crack front and a short periodic length along the crack
front (quasi-two-dimensional geometry) essentially confirm the analytical
results. They confirm a lower band of forbidden velocities for the straight

47



48 B. Eidel, A. Hartmaier and P. Gumbsch

crack and also reveal an upper critical velocity. The upper critical velocity
for the mode I crack is shown to strongly depend on the non-linearity of
the atomic interaction. For harmonic snapping spring force laws (Gumbsch
et al., 1997) and for open crystal structures with strong directional bonds
(Hauch et al., 1999; Swadener et al., 2002) the velocities can be almost as
high as the Rayleigh wave velocity, the relativistic upper limit. Only 40%
of the Rayleigh wave velocity is reached for closed packed crystals and more
realistic non-linear atomic interactions (Gumbsch et al., 1997). Up to 50%
of the shear wave speed is reached in the more complex quasicrystalline
structures (Mikulla et al., 1998).

Increasing temperature reduces this band of forbidden velocities and
successively allows cracks to also propagate at lower speeds (Holland and
Marder, 1999; Rudhart et al., 2003). In amorphous or quasicrystalline struc-
tures, increasing the temperature may also lead to a change in crack prop-
agation mechanism from the propagation of a distinct crack tip to crack
propagation by successive opening of pores or daughter cracks in front of
the main crack and their backward propagation (Falk and Langer, 1998,
2000; Rudhart et al., 2003). This of course drastically reduces the crack
propagation speed.

Above the critical velocity, the MD simulations reveal a rich set of dif-
ferent types of instabilities depending on the crystallographic orientation of
the crack and on the crystal structure (Gumbsch et al., 1997; Hauch et al.,
1999; Mikulla et al., 1998). The generation of cleavage steps and dislocation
emission are usually observed at lower overloads, while crack bifurcation was
only observed at the highest overloads. Dislocation emission usually leads
to a pronounced change in crack propagation direction.

Surprisingly, a different dynamic instability was found in silicon on the
(111) cleavage plane not at high speeds but rather at low speeds. In (Ker-
mode et al., 2008) LOTF was applied to investigate this low-speed crack
propagation instability using quantum-mechanical hybrid, multi-scale mod-
elling and single-crystal fracture experiments. The simulations predict a
crack-tip reconstruction that makes low-speed crack propagation unstable
to deflect towards just one of the two crack faces on the (111) cleavage plane,
which is conventionally thought of as the most stable cleavage plane. An
asymmetrical crack tip reconstruction was found to be responsible for this
reconstruction. A small energy barrier needs to be overcome to assess this
crack tip reconstruction. Corresponding experiments confirm this instabil-
ity prediction at a range of low speeds, using an experimental technique
designed for the investigation of fracture under low tensile loads.

Further simulations (Kermode et al., 2008) also explain why, at moder-
ately high speeds crack propagation on the (110) cleavage plane becomes
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unstable and deflects onto (111) planes, as previously observed experimen-
tally.

[110]
[112]

720 A

Figure 15. Propagation of the (111)[110] crack in silicon, using the LOTF
scheme and the SIESTA code as quantum engine. Brittle fracture propaga-
tion on a (111) cleavage plane is correctly predicted.

Large scale MD simulations have recently confirmed continuum mechan-
ical analysis (Gao et al., 1999) on the fact that mode II cracks just like
edge dislocations (Gumbsch and Gao, 1999) are not bound by the shear
wave speed as an upper limit (Gao et al., 2001). They show a transition
to intersonic propagation via the nucleation of a daughter crack out of a
subsonic mother crack. Large-scale MD simulations on dynamic fracture
under mode I conditions have revealed that the properties of atomic bonds
in the vicinity of the crack tip determine the maximum crack propagation
speed (Buehler et al., 2003). By taking into account that atomic bonds
under high strains, as they occur around crack tips, show non-linear elastic
behaviour, it was found that the the maximum velocity may deviate sig-
nificantly from that calculated by the global linear elastic properties of the
material. At large strains, metallic bonds typically weaken and thus show a
reduced stiffness before they break. In polymers, in contrast, the material
typically becomes stiffer at large tensile strain, because the long-chained
molecules are stretched. In (Buehler et al., 2003) it could be shown that
the local elastic properties in a certain critical volume around the crack tip
governs the dynamic fracture, rather than the global material properties.
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Hence, if the material stiffens under tensile load, the crack may become
supersonical compared to the global speed of sound in the material, while
it is locally still subsonical.

7 Summary

The flexibility of MD methods makes them a versatile tool for studying a
wide range of materials phenomena, and in particular fracture in dynamic
situations. Because the size of the samples under consideration is consid-
erably larger than in ab initio simulations, MD simulations can be used
to compare the instability of a crack tip against propagation with its in-
stability against shear. Since the latter process leads to the generation of
dislocations, the fracture behaviour is no longer pure cleavage, but is accom-
panied by some plasticity. In this article the fundamentals of classical MD
methods have been introduced, to demonstrate the possibilities and also the
limitations of atomistic method. Furthermore, scale bridging methods have
also been included which will in the future allow the community to study
fracture in larger volumes and possibly on larger time scales than classical
MD allows for.

Some applications of MD methods to studying and understanding frac-
ture processes have been briefly mentioned to demonstrate the power of this
method. In particular, MD simulations contributed to the understanding
of brittle crack advance as a process of continuous bond breaking, which is
necessarily described incompletely by any continuum method. Due to the
limitations of MD methods to short time scales, dynamic fracture is a fertile
field for investigations, but also the conditions for dislocation nucleation at
crack tips and the interaction of propagating cracks with dislocations or
pores can be studied at the atomic scale, (Zhou et al., 1996; Bitzek, 2006;
Bitzek and Gumbsch, 2007).

This article thus provides an introduction to atomistic simulation meth-
ods and their application to fracture processes. Literature for in depth
reading is also provided.
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