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1 Introduction

The two logarithmic strain measures [11]

wyol = [tr(log U)

wiso = ||dev,log U||  and

which are isotropic invariants of the Hencky strain ten-
sor log U = log VFTF, can be uniquely characterized
by purely geometric methods based on the geodesic
distance on the general linear group GL(n). Here,
F = Vi is the deformation gradient, U = VFTF is
the right Biot-stretch tensor, log denotes the principal
matrix logarithm, ||.|| is the Frobenius matrix norm, tr
is the trace operator and dev, X = X — 2 tr(X) -1 is
the n-dimensional deviator of X € R™*".

2 The Euclidean strain measure in lin-
ear and nonlinear elasticity

Let ¢(x) = x + u(x) with the displacement u. Then
the infinitesimal strain measure may be obtained
by taking the distance of the displacement gradient
Vu € R™" to the set of linearized rotations so(n) =
{A € R™ . AT = —A}, which is the vector space
of skew symmetric matrices. An obvious choice for a
distance measure on the linear space R"*" = R of
n X n-matrices is the Euclidean distance induced by the

canonical Frobenius norm ||.||. One can also use the
more general weighted norm defined by

2 K
X1 e = 1 I devn sym X [*pc [[skew X245 [er(X))*

for p, pic, & > 0, which separately weights the devi-
atoric (or trace free) symmetric part dev,sym X =
sym X — Ltr(sym X) - 1, the spherical part 1tr(X) - 1,
and the skew symmetric part skew X = 3(X — XT) of
X.

Of course, the element of best approximation in s0(n)
to Vu with respect to the weighted Euclidean distance
disteeia(X, Y) = [| X — Y||Nlbh is given by the as-
sociated orthogonal projection of Vu to so(n). This
projection is given by the continuum rotation, i.e. the
skew symmetric part skew Vu = }(Vu — (Vu)") of
Vu. Thus the distance is

disteycid(Vu, s0(n)) = ||sym Vul|
We therefore find
diStzEuclid(vu'so(n)) = ”Sym vu”i,y(m‘
= plldevnel? + S fer()P?

bk

for the linear strain tensor ¢ = sym Vu, which is the
quadratic isotropic energy for linear elasticity.

In order to obtain a (geometrically) nonlinear strain
measure, we must compute the distance

dist(Vp, SO(n)) = dist(F, SO(n)) = Oeigg(n)dist(:‘:, Q)

of the deformation gradient F = V¢ € GL"(n) to
the actual set of pure rotations SO(n) C GL™(n). It
is therefore necessary to choose a distance function on
GL*(n); an obvious choice is the restriction of the Eu-
clidean distance on R"*" to GL"(n). For the canonical
Frobenius norm || .||, the Euclidean distance between
F,P e GL(n)is

distgyaig(F, P) = ||F — P|| = /tr[(F — P)T(F — P)].

Thus the computation of the strain measure induced by

the Euclidean distance on GL"(n) reduces to the matrix
nearness problem [5]

diStEuc“d(F, SO(n)) = Qeig(g(n)”F — Q”
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By a well-known optimality result discovered by
Giuseppe Grioli [3] (cf. [10, 4, 9, 1]), also called “Gri-
oli's Theorem” by Truesdell and Toupin [12, p. 290],
this minimum is attained for the orthogonal polar fac-
tor R.

However, we observe that the Euclidean distance is not
an intrinsic distance measure on GL"(n): for example,
A — B ¢ GL'(n) for A, B € GL™(n) in general, hence
the term ||A — B|| depends on the underlying linear
structure of R™". Furthermore, because GL"(n) is not
convex, the straight line {A+t (B—A) |t € [0, 1]} con-
necting A and B is not necessarily contained in GL"(n),
which shows that the characterization of the Euclidean
distance as the length of a shortest connecting curve is
also not possible in a way intrinsic to GL"(n).

s0(n)

al(n)

dist2oq(F. SO(n))

= pu|dev,log U|? + 5 [tr(log U)]?
 dist?,4(F, SO(n))

— U= 1P = |VFTF - 1f
diStQEuclid,m(vqu(”)) .
= pu|dev, symVu|? + 5 [trVu]?

3 GL'(n) as a Riemannian manifold

In order to find an intrinsic distance function on GL"(n)
that alleviates the drawbacks of the Euclidean distance,
we endow GL(n) with a Riemannian metric. Such a
metric g is defined by an inner product ga: T4 GL(n) x
TaGL(n) — R on each tangent space TAGL(n),
A € GL(n). Then the geodesic distance between
A,B € GL(n) is defined as the infimum over the
lengths of all (twice continuously differentiable) curves
connecting A to B. Mechanical considerations suggest
a left-GL(n)-invariant and right-O(n)-invariant
metric g of the form

gaX.Y) = (A X ATY )

where (-, ) .. is the fixed inner product on the tan-
gent space gl(n) = Ty GL(n) = R™*" at the identity
with

(X, Y) e = 1 (dev,sym X, dev,sym Y)
+ pic(skew X, skew V) + 5 tr(X) tr(Y).

Then, combining an explicit representation of the
geodesic curves [8] with a novel logarithmic mini-
mization property [7], the geodesic distance of F €
GL*(n) to the special orthogonal group SO(n) can be
computed explicitly [11] (cf. [6]):

Theorem. Let g be the left-GL(n)-invariant, right-
O(n)-invariant Riemannian metric on GL(n) defined by

ga(X,Y) = (A’1X,A’1Y)I,,“C,N, y fhe, &> 0.

Then for all F € GL'(n), the geodesic distance of F
to the special orthogonal group SO(n) induced by g is
given by

distZeoq(F, SO(n)) = 1 |[dev, log |2 + g [tr(log U)]?.

The orthogonal factor R € SO(n) of the polar decom-
position F = R U is the unique element of best approx-
imation in SO(n), i.e.

distgeod(F, SO(n)) = distgeod(F, R) .

Similarly, the partial strain measures ||dev,log U||
and |tr(log U)| can also be characterized separately.

Theorem (Partial strain measures). Let

wiso(F) = ||C|EV,, log v FTF”v
wyol(F) = [tr(log VFTF)|.

Then

. F
Wiso( F) = distgeod, sL(n) (mv 50("))
Wvol(F) = \/E . dIStgeod.]R“]l ((dEt F)l/n ol 11) ’

where the geodesic distances distgeoq si(n) and
distgeoq m- o the Lie groups SL(n) and R*-1 are
induced by the canonical left-invariant metric

EAX, Y1 = (AIX, ALY) =tr(XTA TA YY),

This theorem states that wis, and wy, appear as nat-
ural measures of the isochoric and volumetric strain,
respectively: if F = Fig Fuol is decomposed [2] into an
isochoric part Fi, = (det F)~¥"-F and a volumetric part
Fuol = (det F)¥7 . 1, then wis(F) measures the SL(n)-
geodesic distance of Fig, to SO(n), whereas %wm(f:)
gives the geodesic distance of F to the identity 1 in
the group R - 1 of purely volumetric deformations.
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