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1 Early uniaxial logarithmic laws

Historically, there have been a number of different mo-
tivations for the use of logarithmic strain measures in
nonlinear elasticity. The use of logarithmic strain mea-
sures in nonlinear elasticity theory dates back to the end
of the 19t century.

In 1880, A. Imbert proposed a logarithmic stress re-
sponse function as a model for the uniaxial tension of
vulcanized rubber [10]. E. Hartig applied a similar law
to the uniaxial deformation of rubber [4] in 1893. They
employed the equation t = c-In(\) with some material
parameter ¢ to describe the relation between the ob-
served uniaxial elongation A and the required force t.

However, both of them used a purely phenomenolog-
ical approach: neither Imbert nor Hartig considered a
theoretical framework or stated underlying reasons for
the use of a logarithmic strain measure. They merely
employed the logarithm in order to give an approxima-
tion of data obtained through (uniaxial) experiments.

Today, the introduction of logarithmic strain measures
to the theory of elasticity is often attributed to P. Lud-
wik, for example by Truesdell [23, p. 254]. The earliest
mention of the logarithmic strain by Ludwik appears
in his 1909 monograph Elemente der technologischen
Mechanik [12] on plastic deformations, where Ludwik
arrived at the logarithmic strain measure via the inte-
gral flé# = Iogi over the instantaneous strain d7’ for
uniaxial elongations.

2 The work of Heinrich Hencky

A fully three-dimensional logarithmic elastic law, widely
considered to be the first of its kind, was introduced
by Heinrich Hencky in his 1928 article Uber die
Form des Elastizitatsgesetzes bei ideal elastischen Stof-
fen [5, 14]. His approach can be summarized as follows:
Hencky assumed that a law of superposition of the
form

(V1 V) = a(V1) + o(V2) 1)

holds for all coaxial, i.e. commuting, stretches V;, V, €
Sym™(3); here, o denotes the corresponding Cauchy
stress. From this assumption, he deduced a logarithmic
law of elasticity. He also gave an explicit motivation
for his assumed law of superposition, which he later
expanded upon in a 1929 article [6, 14]: referring to
Prandtl’s distinction between “elastically determinate”
and “elastically indeterminate constructs” [17], Hencky
assumes that a law of elasticity for an ideally elastic
body should provide “elastic determinacy to the great-
est extent for epistemological reasons” [14, p. 19], a
requirement motivated by Dingler [3]. From this he
concludes that the multiplicative composition of coax-
ial stretches must effect the additive composition of the
respective Cauchy stresses 0. Hencky correctly claimed
that an elastic stress response which satisfies (1) must
necessarily be of the form

(V) =2p-devslog(V) + k- trflog V] -1 (2)

with material parameters i, kK > 0.

In another 1929 article [7, 14], however, Hencky cor-
rected his statements, proposing then that the law of
superposition must hold for the Kirchhoff stress tensor 7
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instead of the Cauchy stress 0. Although his reasoning
for this correction is based on L. Brillouin’s suggestion
[2] that the Cauchy stress “is not a true tensor of weight
0 but a tensor density” as well as a “lack of group prop-
erties for pure deformations in the general case” [14, p.
20], the fact that the stress-stretch relation

7(V) =24 - devalog(V) + k- trflog V] -1 (3)

resulting from this new approach with respect to the
Kirchhoff stress 7 is hyperelastic with the correspond-
ing strain energy (cf. [15])

W(V) = ju|devs log V|2 + g [tr(log V)2 (4)

can be seen as a motivating factor as well, especially
since Hencky had shown in his 1928 article that the
stress response (2) does not lead to a path-independent
energy potential and is therefore not hyperelastic.

Ao Ai ~ length
A1 . 7 ~ Kirchhoff stress
A2 T+ AT
AN
Ay =—
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A2 '+ AT’

Daram verlangen wir noch zweitens eine solche Form des
Elastizitatsgesetzes, daB beim Aufbringen einer meuen Last auf ecinen

schon belasteten Korper ein ErschlieBen der alten Last aus den Form-
d die beim Aufbri der Z belastung eintreten, sglich
sein soll.

Figure 1: Hencky's law of superposition in the one-dimensional
case: regardless of the predeformation and the prior stress, it must
hold that AT = A7/

Although his deductions of the stress-stretch relations
(2) and (3) from the respective laws of superposition
are correct, Hencky does not provide explicit computa-
tions for either one. A proof for a generalized version of
this deduction from the law of superposition was later
given by H. Richter [20], who did extensive work on
the matrix logarithm in finite elasticity [18, 19, 21, 22].

3 The prior work of G.F. Becker

However, the first known introduction of the logarith-
mic strain tensor to fully three-dimensional nonlinear
elasticity is actually due to the famous geologist George
Ferdinand Becker. In his 1893 article “The Finite Elas-
tic Stress-Strain Function” [1, 16], he proposed a linear
relation between the (material) logarithmic strain ten-
sor log U and the Biot stress tensor T of the form

TEYU) = 21 - devslog(U) + & - trlog U] - 1. (5)

Becker used a systematic approach remarkably simi-
lar to Hencky's: by postulating a law of superposition
for the stress-strain relation, a logarithmic constitutive
law is deduced. Although it was reviewed in Beiblatter
zu Wiedemanns Annalen der Physik [11] and cited in
Lueger's Lexikon der gesamten Technik [13], Becker's
work seems to have gone completely unnoticed in con-
tinuum mechanics until its recent rediscovery [16].

Note also that Becker's development of a detailed con-
nection between stresses and the logarithm of the prin-

cipal stretches in 1893 predates the publication of Lud-
wik’s aforementioned derivation of the uniaxial logarith-
mic strain. The introduction of the logarithmic strain
to elasticity theory is therefore currently misattributed
in the literature. This error of attribution seems to orig-
inate from Hencky himself who, in a 1931 article [8, p.
175], refers to a brief section on plastic deformations in
“Hiitte: Des Ingenieurs Taschenbuch” [9] where Ludwik
is cited. The same misattribution to Ludwik is given by
Truesdell [23], who does not mention Becker at all.
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