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ABSTRACT 
Reliable prediction of pressure rise and power demand of axial fans is a fundamental re-

quirement in design and optimization processes. Moreover, prediction of the downstream ve-
locity profile is needed for the design of guide vanes. Experimental tests and CFD simulations 
represent reliable, but costly methods. The aim of this work is to replace these methods by 
CFD-trained meta-models, or more specifically by artificial neural networks (ANNs). Aiming 
at a general purpose prediction tool, the input space was chosen such that high flexibility can 
be achieved with a limited number of physically interpretable parameters. Application of the 
ANNs to two sample fans showed good agreement with simulations and measurements. The 
usefulness of the validated ANNs was then illustrated by using them in parameter studies as 
well as in an optimization process revealing potentials for efficiency improvement and exten-
sion of operating range. 

NOMENCLATURE 

Latin symbols 
A area 
D diameter 
P power 
R regression 
S tip clearance 
V  volume flow rate 
d (max.) thickness of airfoil 
f (max.) camber of airfoil 
n rotational speed of fan 
p pressure 
r radius 
u circumferential speed of blade 
x coordinates along airfoil 
z Cartesian coordinate 
 here: axis of rotation 

Greek symbols 
 angle of attack 
 flow angle 
 blade stagger angle 
 flow coefficient
 efficiency 

 sweep angle 
 density
 angle of rotation
 pressure coefficient 

Abbreviations 
ANN artificial neural network 
CFD computational fluid dynamics 
MLP multilayer perceptron 
RANS Reynolds averaged Navier Stokes 
RBF radial basis function 
SST shear stress transport 

Subscripts and Indices 
1, 2 plane up-/downstream of the fan 
m meridional 
n normal 
h hub 
r radial 
s shroud 
t total 
ts total-to-static 
tt total-to-total 
 circumferential 
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INTRODUCTION 
The qualification of artificial neural networks (ANNs) in performance prediction and optimiza-

tion of turbomachinery has been proven by several recent studies. The overview given here focuses 
on work that is most relevant for the present case, i.e. the utilization of ANNs in low pressure axial 
fans (comparatively low Reynolds numbers and almost incompressible flow). 

Ghorbanian and Gholamrezaei (2008) [1] presented a comparison between several ANN types 
and their ability to predict compressor performance in terms of compression ratio and efficiency as 
a function of flow rate and rotational speed (alternatively flow rate as function of compression ratio 
and rotational speed). Good agreement of predicted and measured performance could be achieved 
by all network types tested, but the most commonly used type, the multilayer perceptron (MLP) 
network, was superior in terms of generalization, i.e. at operating points far off the closest measur-
ing data. They showed that the ANN approach can decrease testing time, but the results were lim-
ited to one specific compressor and prototyping as well as network training would need to be re-
peated for different designs. 

A more general approach was taken by Arnone et al. in 2009 [2] who predicted the pressure 
head and efficiency of a Kaplan turbine for variable operating conditions as well as variable geo-
metrical parameters in terms of stagger angles at runner and guide vanes. The MLP network was 
trained by computational fluid dynamics (CFD). The agreement between ANN prediction and 
measurements was good and thus the network could be applied to optimize the runner-guide vane 
stagger correlation for all runner positions. However, the solution is still application-specific as only 
few of the generally available geometrical parameters were incorporated into the network model. 

Further examples of CFD-trained ANNs in the field of turbomachinery exist. In 2011, Chec-
cucci et al. [3] used such a network to obtain the response surface in a centrifugal pump optimiza-
tion problem. The optimum regarding efficiency and good suction capability was found out of 
eleven geometrical parameters. Good agreement between predicted and measured performance was 
achieved. The selection of input parameters was more general as compared to the upper examples, 
but still many problem specific constraints, e.g. the specific pump speed, were considered. 

The interesting approach of using inverse artificial neural networks (iANNs) to optimize the ge-
ometry of a turbine runner was presented by Flores et al. in 2010 [4]. The optimization was success-
ful and the ANNs obtained showed excellent performance, but only four operational inputs were 
considered (flow rate, flow components in two directions, and angular velocity) and the input range 
covered only ±2 % of the initial values. 

The computational inexpensiveness as compared to CFD simulations has made ANNs a popular 
tool for the response surface in optimization problems where the number of CFD simulations can be 
reduced if the ANN is trained by CFD and later used to compute the target function instead of direct 
computation of the target function by CFD. Examples covering both approaches can be found in the 
book “Optimization and Computational Fluid Dynamics” by Thévenin and Janiga (2008) [5]. The 
same reference was utilized for the programming of the evolutionary optimization algorithm men-
tioned later in this paper. 

The attempt of the current work is to apply the ANN approach in the field of low pressure axial 
fans. The flexibility in potential fan designs is strongly increased as compared to the references 
above by incorporating more input parameters with a greater range. Besides integral values such as 
pressure rise and efficiency, the circumferentially averaged flow field downstream of the runner is 
modeled by ANNs as well. This information is of high importance for the design of guide vanes. 

Before training the ANN, a decision must be made about the network type and size. Here, multi-
layer feed-forward networks (or multilayer perceptron, MLP) with two hidden layers, sigmoid hid-
den neurons, and linear output neurons were constructed with the Neural Network Toolbox of 
MATLAB®. The main advantages and drawbacks of this network type, especially as compared to 
radial basis function (RBF) networks, are discussed by Nelles [6]. High accuracy, smoothness, and 
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insensitivity to noise are, among others, good attributes that suggest the choice of MLPs whereas 
many of the drawbacks described, e.g. time consuming training, are considered less relevant for the 
present case. However, owing to the ridge construction method, no locality exists in MLPs. Locality 
describes the capability of ANNs to model processes within a strictly limited input space region 
which has no effect on other regions. In the present case, the lack of locality represents an important 
disadvantage in the incorporation of stall behavior into the model, which is overcome by using dif-
ferent networks for operating points in stall. Whether or not stall occurs is predicted by a pattern 
recognition network that has a similar structure as described above except that sigmoid transfer 
functions are also applied in the output layer. Optimization of the hidden layer weights is done by 
the Levenberg-Marquandt algorithm [7] and the conjugate gradient backpropagation method [8], 
respectively. Both methods belong to the class of nonlinear local optimization algorithms. The 
Levenberg-Marquandt algorithm is a powerful and fast method which has, however, drawbacks in 
large problems where the conjugate gradient method can be superior [6]. Network structure optimi-
zation (the number of neurons in each hidden layer) was done by a simple in-house algorithm based 
on the principle ideas of the steepest descent method. 

The aim of this work is the construction of ANNs for low pressure axial fans predicting 
 the pressure rise, pts and ptt, 
 the power consumption P, 
 the circumferentially averaged downstream velocity profile, cm2(r), ct2(r), cr2(r). 

Requirements for the input parameters are: 
 provision of high geometrical flexibility, 
 dimensionless where possible, 
 physical interpretability. 

The first point aims at general (not problem-specific) modeling of the fan performance. The lat-
ter two are required for informative conclusions from studies with the networks. 

METHODOLOGY 

Input Space 
As outlined previously, the input parameters shall be dimensionless where possible. However, 

numerical simulations and testing must be conducted with real test objects wherefore at least the 
outer fan diameter, D, and the rotational speed, n, must be specified. Standard test conditions at the 
University of Siegen were selected, i.e. D = 0.3 m and n = 3000 min-1. All other geometrical pa-
rameters can be referred to this diameter. Fixing D and n is not considered problematic because re-
sults for arbitrary combinations of D and n can be obtained by application of the well-known scal-
ing laws 

 
2 2p ~ n D   (1) 

3 5P ~ n D  (2) 
3c ~ V ~ nD  (3) 

 
Taking into account varying Reynolds numbers may require scaling methods such as by Ackeret 

or more recently (2012) Pelz et al. [9]. The input parameters selected are similar to the design vari-
ables suggested by Carolus and Starzmann [10] in their work about axial fan design in 2011. This is 
supposed to ensure similar diversity of potential fan geometries as in state-of-the art design tools. 
Basic geometrical inputs are the hub-to-tip ratio (, the number of blades (z), and the tip clearance 
(S). One blade section is described by its chord length (c), sweep angle (), maximum cam-
ber/thickness (f, d) and position of maximum camber/thickness (xf, xd) of the utilized NACA sec-
tions. The reason for the choice of NACA sections is the high level of geometrical flexibility pro-
vided by only few parameters. The way the section geometry is constructed from these parameters 
and the impact on lift or drag of isolated airfoils can be found in the book “Theory of Wing Sec-
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tions” by Abbot and Doenhoff [11].  Each of the values describing the sections is defined at hub, 
mid-span, and shroud with second degree polynomial interpolation in between. The angle of attack 
() is also varied along the span, but with five equally distributed sampling points. For the geomet-
rical construction of the fan, the stagger angle is required. It is defined by 

 
1( r ) ( r ) ( r )    , where (4) 

1 1
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 (5) 

 
As a consequence of that, the dimensionless design flow rate (design) represents a further input 

parameter which is also required for incorporation of the sweep angle (). In principle, it is also 
possible to use the stagger angle as input parameter instead of the angle of attack. This option has 
the advantage that purely geometrical parameters would be used. However, a large range of poten-
tial stagger angles would need to be considered whereas the angle of attack can be restricted to a 
comparatively low range which avoids extreme fluctuations between different spanwise locations. 
Moreover, more realistic designs can be expected by consideration of the spanwise distribution of 
the inlet flow angle . The sweep angle is defined as the angle between the incoming relative ve-
locity w1(r, design) and the blade stacking line which goes through the center of gravity of each sec-
tion. Details about the blade construction incorporating a sweep angle as well as its aerodynamic 
and acoustic effect are discussed by Beiler and Carolus (1999) [12]. 

The actual flow rate () may differ from the design flow rate and represents the last input pa-
rameter. A graphical illustration of all geometrical input parameters is depicted in Figure 1. All input 
parameters as well as their definitions and ranges are listed in Table 1. 

 

 
 
 
 

 

 
Figure 1: Illustration of geometrical input parameters. Top left: Side view of a fan in a duct. 
Top right: Blade section. Bottom: Definition of the blade sweep angle in a 3D and 2D view 
(here: constant sweep angle from hub to shroud).  
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Training Data Generation 
Training data for the ANNs was generated by random variation of the input parameters and 

evaluation of the target values by means of CFD. The rotating computational domain was discre-
tized with the commercial grid generator ANSYS TurboGrid® 14.0. The grid is block-structured and 
contains approx. 500,000 hexahedral elements complying with the grid quality specifications de-
fined in the ANSYS user manuals. The domain extends one fan diameter upstream and two fan di-
ameters downstream of the fan blade. A general grid interface (GGI) was placed in the tip clearance. 
To save computational time, only one blade passage, with periodic boundary conditions at the sides, 
was simulated. Further boundary conditions are rotational speed, given mass flow rate at the inlet, 
ambient pressure at the outlet and no slip at the walls (hub, shroud, and blade). The Reynolds num-
ber varies with flow rate and fan geometry. A typical value is around 200,000. The Reynolds-
Averaged Navier-Stokes (RANS) equations were solved with ANSYS CFX® 14.0. Usage of a 
steady state CFD model is inevitable for reasons of computational cost, but increases the uncer-
tainty in stall regions where the flow field is highly transient. The resulting impact on network per-
formance will be discussed in the subsequent sections. The selected turbulence model is shear stress 
transport (SST) and the iteration limit is 200. Solutions that fail a specific residual target are sorted 
out to avoid too much noise in ANN training data. However, these considerations must always be 
balanced against the demand for covering the input space as much as possible. A good tradeoff be-
tween these two requirements was found to be that solutions with residuals higher than 10-1 MAX 
or fluctuations of integral target values (e.g. p, P) higher than 10% within the last 20 iterations are 
excluded from the training data. The pressure was evaluated at planes placed ½ fan radius upstream 
of the leading edge or downstream of the trailing edge, respectively. In the downstream plane, the 
velocity field was circumferentially averaged in CFX POST® 14.0 and the values at 100 equally 
spaced points in the radial direction were captured in the result data as well. This procedure was 
automated by replay scripts and more than 5,000 simulations were conducted with parallelization on 
20 CPUs (5 parallel simulations, each on 4 CPUs). The total computational effort amounts to 
approx. 1.1.104 CPU hours. 

 
Table 1: Definition and ranges of input parameters. 
 
Name Symbol/Definition Range Comment 
Hub-to-tip ratio  = Dh / D 0.3 – 0.6  
Number of blades z 5 – 11 Only integers 
Tip clearance ratio S / D 0.0005 – 0.005  
Chord length ratio c / D 0.133 – 0.333  
Rel. max. camber1 f / c 0 – 0.09 NACA section 
Rel. position of max. camber1 xf / c 0.1 – 0.8 NACA section 
Rel. max. thickness1 d / c 0.05 – 0.15 NACA section 
Rel. position of max. thickness1 xd / c 0.1 – 0.7 NACA section 
Angle of attack2  -5° – +15° Against w1 vector 
Sweep angle1  -60° – +60° Against w1 vector 
Design flow rate design 0.2 – 0.4 Required for  and  
Operating flow rate  0.1 – 0.4  

1 At three equally spaced radial positions with polynomial interpolation in between. 
2 At five equally spaced radial positions with polynomial interpolation in between. 

ANN Construction 
All networks were constructed and optimized with the Neural Network Toolbox of MATLAB®. 

A pattern recognition ANN was used to find stall indicating stall for  < stall and no stall for  > 
stall where the criterion for stall was a negative mean value of cr1. This empiric criterion was de-
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rived from several simulations of complete characteristic performance curves (among others the up-
coming curves in the result section). However, a criterion based on purely physical considerations is 
sought within the scope of further investigations. The pattern recognition network was trained with 
the complete training data using the conjugate gradient backpropagation optimization method to 
determine the hidden layer, output layer, and bias weights. The training data was then split into two 
categories (stall or not) and a total of twelve MLP networks were trained to predict pts, ptt, P, cm2, 
c2, and cr2 for operating points in or not in stall using the Levenberg-Marquandt algorithm. The 
cost function for both optimization methods is the mean-square error between the network outputs 
and the target values. The actual training process was conducted with only 70% of the correspond-
ing training data while 15% was used for both, validation and testing. Validation is required to stop 
training before over-fitting occurs while testing is required to check the ANN performance with data 
that in no way contributed to the optimization process. A closer discussion of over-fitting is given 
by Nelles [6]. The optimal network structure was obtained by initially constructing networks with 
ten neurons in each of the two hidden layers and increasing/decreasing the number of neurons in the 
most promising direction. Only the performance in the test data was considered for the comparison 
of network structures. 

The c2 ANNs have 34 output neurons, corresponding to 34 points that are evenly distributed in 
radial direction, where the velocity was evaluated. Utilization of more points immensely increases 
the network construction time, but is feasible with the training data gathered. 

Dimensionless values for the ANN outputs were not used because the efficiency tends to (mi-
nus) infinity when P approaches 0 (ptt being negative then). However, dimensionless values can be 
obtained by 

 

2 2

p

n D4


 

  ( = 1.185 kg/m³ throughout the simulations) and (6) 

V p

P

 


 (7) 

Experimental Set-Up 
Characteristic curves were measured at the chamber test rig of the University of Siegen accord-

ing to DIN 24163 [13]. The accuracy in ts and ts is high, but no total-to-total values can directly 
be measured. Velocities downstream of the fan were measured using either hot-wire anemometry or 
a five-hole probe. The reason for two different measuring techniques was that the ANNs were vali-
dated against measurements with two pre-existing fans of which one velocity profile obtained from 
hot-wire anemometry was already known. The new measurements for this work were done using 
the five-hole probe. Both techniques yield a measuring tolerance lower than ±5% of the measuring 
value.  

Results 

Network performance 
Figure 2 compares the ANN output data with the targets (CFD results) for the most important 

networks meaning that cr2, which is always comparatively low and less relevant for the design of 
guide vanes, and ptt, which cannot be measured and is often unnecessary in practice, are spared. 
Only the test data, i.e. data that was not used for the network training, is plotted. It can be seen that 
good agreement between output and target can be achieved, especially in ANNs for operating condi-
tions without stall. With an ideal ANN, all points would perfectly match the straight curve in each 
plot, resulting in a regression value R = 1. Some of the actual values given on each plot get quite 
close to that. The minimum value occurs at the c2 prediction under stall conditions, with Rmin = 
0.865. However, excellent agreement in stall was not expected as under those operating conditions 
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the flow becomes unstable and unsteady, wherefore steady state CFD simulations do not provide 
accurate results increasing the noise in the network training. Whether or not stall occurs is predicted 
correctly in 95.1% of the test cases. Table 2 lists the optimal network structures and regression val-
ues found by the structure optimization. 
 
Table 2: Optimal network structures and regression values of test data. 

 
Network Size of hidden layers 

(no stall) 
Size of hidden layers 

(at stall) 
Regression 
(no stall) 

Regression 
(at stall) 

pts 11 x 10 11 x 11 0.9686 0.8821 
ptt 9 x 10 11 x 10 0.9535 0.8330 
P 12 x 12 11 x 11 0.9680 0.9150 
cm2 10 x 10 12 x 12 0.9584 0.9349 
c2 9 x 11 8 x 13 0.9393 0.8646 
cr2 9 x 10 10 x 11 0.7719 0.6105 

 
The ANNs were then applied to compute complete characteristic curves of two fans designed at 

the University of Siegen. Both fans were designed with the blade element method (BEM) as sug-
gested by Carolus [14] or Carolus and Starzmann [10] and are known from earlier investigations by 
Kohlhaas et al. [15] and Sturm et. al [16]. The ANN validation with these two fans appears adequate 
because of their quite different design. The first fan has six thick unswept blades and a rather large 
hub-to-tip ratio. In contrast, the second fan has five thin swept blades and a rather small hub-to-tip 
ratio. The operating rage is quite different, as it can be seen on the following plots. The only simi-
larities are xf and xd of the airfoil sections used. 

A comparison of ANN-predicted, CFD-simulated and measured curves is shown in Figure 3. 
Comparisons between CFD and experiment can be used to assess the adequacy of the numerical 
model to predict fan curves and consequently its adequacy to be used for the ANN training. Com-
parisons between ANN and CFD are suitable to asses the ANN ability to substitute CFD simulations 

 
Figure 2: Output over target for selected ANNs. The target values are the CFD results and 
have the same dimension as the respective input. 
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Direct comparisons between ANN and measurement are not useful as good agreement can also 
originate from cancelling out of ANN and CFD errors. The stall flow rate, stall, is predicted with 
high precision by both, ANN and CFD in case of Fan 1 but has a minor offset in case of Fan 2. The 
pressure curves and efficiency curves are matched with reasonable accuracy, too. In Figure 4, a 
similar comparison is depicted for the downstream velocity components cm2 and c2 at the respective 
design points. Again, good agreement of ANN, CFD, and measurements is achieved. 

After the successful validation, the usefulness of the ANNs shall be shown by conducting a pa-
rameter study as well as an optimization. In the parameter study, blade sweep within a range of 
±40° is applied to the previously unswept Fan 1 and the capability to delay stall is examined. The 
sweep angle is defined at hub and shroud only, while their mean value is used at midspan. 
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Figure 3: Comparison of ANN, CFD, and experiments regarding pressure rise and efficiency. 
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Figure 5 illustrates that positive sweep angles can delay stall considerably. Moreover, the char-
acteristic curve of the promising configuration h = s = 40° is computed and compared with the 
original Fan 1. It is found that the sweep angle decreases blade lift resulting in lower pressure rise 
and total-to-static efficiency for  > stall. This has been discussed in detail by Beiler [17] and is of-
ten compensated by increasing the chord length. 

In the case study demonstrating an optimization, only the camber (f and xf) of Fan 2 was varied 
while all other input parameters were kept constant. The target function of the evolutionary optimi-
zation algorithm was the total-to-static efficiency at mostly unchanged pressure curve. The resulting 
characteristic curves are depicted in Figure 6 and reveal a successful optimization. Blade load has 
been shifted away from the tip region towards lower blade sections, especially towards midspan. 
This is also illustrated by the c2 curves on the right side. No aerodynamic explanation is sought here 
as the focus is on ANN training, validation and application. 
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Figure 5: Results from blade sweep variation (Fan 1). Left: Impact of blade sweep on stall 
point. Right: Characteristic curves with and without sweep. 
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CONCLUSIONS 
Previous experience with ANNs in the field of turbomachinery was transferred to the specific 

application on low pressure axial fans. A set of ANNs predicting the stall point, pressure rise, power 
consumption, and circumferentially averaged downstream flow field was constructed. The ANNs 
were trained by steady state CFD data, validated, and applied. The input layer comprises 28 geo-
metrical and operational parameters and thus is considerably extended as compared to previous 
studies resulting in a general purpose prediction tool. It could be shown that the optimization of the 
network structure and the layer weights allows the construction of ANNs with high accuracy. Vali-
dation against CFD-simulated as well as experimentally measured characteristic fan curves of two 
sample fans showed good agreement. This also applies to the comparison of downstream velocities 
obtained from these three techniques. Agreement between CFD and experiments proves the ade-
quacy of the numerical model for the network training while the agreement between ANN and CFD 
proves sufficient training of the network. Examples for the exploitation of the ANNs were given by 
their application in a parameter study as well as in an optimization which yielded the potential to 
delay stall by incorporation of blade sweep and the potential to improve efficiency by optimized 
blade sections, respectively. Results from these ANN studies were obtained by several orders of 
magnitude quicker than it would have been possible with comparable CFD studies. No aerodynamic 
explanation for the improved performance is sought within the scope of this work as the focus is on 
ANN methodology. 

Future work will focus on both, further validation and application of the ANNs. Additional vali-
dation work is required for extraordinary designs, e.g. far off in Cordier’s diagram of optimal tur-
bomachinery stages. Despite quite different shapes, the two sample fans used in this work were both 
designed with a similar philosophy. For example, their design points are typical for axial fans and 
the blade sections were selected according to promising 2D airfoil polars. After the successful vali-
dation, the ANNs will offer a valuable design tool for operating points where strong 3D flow effects 
prohibit using the blade element method. The qualification to work in these regions was already in-
dicated by the precise prediction of the stall point, but it was also shown that some precision is lost 
beyond this point. It should be examined to which extent the accuracy can be improved by further 
training. However, it will always be limited to the performance of RANS simulations which on 
principle deliver uncertain results for flows with strongly unsteady behavior. 

The further exploitation of ANNs in parameter studies and optimization algorithms can be used 
to scrutinize general assumptions in fan design methods, to develop design recommendations, or 
simply as a fan design tool. The usage in optimization problems will also detect weak points of the 
ANNs as the optimizer will always find regions with unrealistically high performance predictions. 
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