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Abstract 
Cost-effective optimization of centrifugal fans requires quick and reliable methods to evaluate 
the target function. A typical target function is maximization of total-to-static efficiency for a 
given design point. In this work, we suggest to evaluate the target function with CFD-trained 
meta-models. The meta-models used are artificial neural networks (ANN) and differ from pre-
viously developed meta-models in terms of universality since they can be used for optimizing 
all typical design points of centrifugal fans according to the Cordier diagram. 

Since this is the first publication about our research on meta-models for centrifugal impel-
lers, the focus is on methodology. In particular, it is described how an adequate accuracy of 
the meta-models can be achieved with limited computational resources. For that purpose, 
the number of simulations required to generate an informative CFD-dataset was reduced by 
a suitable choice of geometrical parameters and an optimized design of experiments. Reduc-
tion of the computational time required for each CFD simulation was achieved by optimizing 
the computational grid. Eventually, the resulting CFD dataset was efficiently exploited by 
testing several competing meta-models. 

The final meta-models were embedded in an evolutionary optimization algorithm and the 
resulting geometry was simulated by CFD. The comparison between meta-model prediction 
and CFD proved the high potential of the methodology since the CFD-predicted efficiency 
was very high. Nevertheless, it is doubtful if the real aerodynamic optimum was found be-
cause the efficiency predicted by the meta-models was even higher and different meta-
model types did not yield the same optimal geometrical parameters. For that reason, a plan 
for future improvements of the meta-models was developed. 
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INTRODUCTION 
 

Classic design methods for centrifugal fans are for instance 
described by Pfleiderer [1, 2] and Bommes [3]. The main ad-
vantage of these methods is the low demand for computa-
tional resources. However, the strong focus on empirism lim-
its the achievable efficiency and the accuracy with regard to 
the fulfillment of the design target. For that reason, modern 
fan design is usually supported by CFD. For instance, the 
designer can apply the classic methods first, analyze the re-
sult by CFD and then try to improve the design based on the 
interpretation of the CFD results. The full exploitation of the 
potential for improvement, however, can only be achieved by 
coupling CFD with optimization algorithms. The main draw-
back of this method is the associated computational ex-
pense. Hence, methods were developed to reduce the re-
quired amount of CFD simulations. Ratter et al. [4-6] suc-
ceeded to reduce the CFD effort by incorporating pre-
knowledge about the optimal position of the stagnation point 
at the leading edge. Moreover, a response surface method 
was used to further reduce the number of required CFD 
simulations. The response surface method is one example of 
CFD-trained meta-models which have the advantage that 

CFD is only required to generate a dataset with which the 
model is trained. After that, the meta-models predict the fan 
performance several orders of magnitude faster than CFD. 

The present work is also concerned with the development 
of meta-models and their application in the optimization of 
centrifugal impellers. The main improvement over previously 
developed meta-models is their universality since they can be 
used to aerodynamically optimize centrifugal impellers for all 
typical design points according to the Cordier diagram. The 
design point is characterized by the flow rate V  and the total-
to-total pressure rise ptt = pt2 - pt1 where the index "t" means 
total and the indices "1" and "2" refer to positions upstream 
and downstream of the impeller, respectively. For the sake of 
comparability, the design point should rather be expressed by 
the non-dimensional flow and pressure coefficients  and tt: 
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D2 is the outer impeller diameter, n is the rotational 
speed and  is the fluid density. Another way to express the 
non-dimensional design point is to use the specific fan speed 
 and the specific fan diameter  instead of  and tt: 
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In many practical applications the kinetic energy of the 
fluid downstream of the impeller is useless since it dissipates 
in the surroundings. A definition of the pressure rise which 
considers the kinetic energy at the impeller outlet as loss is 
the total-to-static pressure rise pts. The corresponding total-
to-static pressure coefficient ts is defined analogously to 
Equation 2. The efficiency of the impeller is the quotient of air 
power and the power of the shaft driving the fan: 
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Tshaft is the torque of the driving shaft. In principle, the ef-

ficiency can be computed with both ptt and pts. However, 
only ts is relevant for the present work. 

The focus of this publication is to demonstrate a compu-
tationally cost-effective way to generate the meta-models 
and to assess their applicability for aerodynamic optimiza-
tion. The results of the optimizations are planned to be pub-
lished in future papers. 

 
1. METHODOLOGY 

 

The development of meta-models requires a set of sequen-
tial steps that are described in the following. Firstly, the im-
peller geometry needs to be parameterized (section 1.1). 
Four representative parameter combinations are picked for 
validation experiments (1.2). The experimental set-up is de-
scribed in section 1.3. In order to generate a dataset with 
which the meta-models are trained, numerous CFD simula-
tions need to be performed. Section 1.4 describes the CFD 
model. The geometries to be simulated are determined by 
design of experiments (1.5). For each geometry, the operat-
ing point is varied to capture the relevant section of the char-
acteristic curve (1.6). Eventually, the meta-models can be 
trained with the resulting CFD dataset. An overview about 
the meta-model outputs is provided in section 1.7. Sections 
1.8 and 1.9 describe the general training strategy and spe-
cific measures for improving the meta-models, respectively. 

 
1.1 Impeller Parameterization 
The main objective of the impeller parameterization is to en-
able a high level of geometrical flexibility while keeping the 
number of free geometry parameters to a minimum. For that 
reason, basic parameters which are also used in classic lit-
erature [2, 3] are selected. Those parameters are graphically 

illustrated in Figure 1 and listed in Table 1. The blades have a 
circular shape between the inner diameter D1 and the outer 
diameter D2. The hub is a flat disc perpendicular to the axis of 
rotation. The shroud is not parallel to the hub but tapers be-
tween D1 and D2. The innermost part of the shroud has a cir-
cular shape with the radius rs. The outer (mostly much larger) 
part of the shroud has a linear shape determined by the two 
distances b1 and b2 from the hub. The circular arc forming the 
blade has the constant thickness S. This represents a very 
simple geometry and thus facilitates cost-effective manufactur-
ing techniques and keeps the number of parameters required 
to describe the blade shape low. The radius and the center-
point of the circular arc are given via the inlet angle b1 and the 
outlet angle b2 which are measured between the circumferen-
tial direction and a tangent at the blade leading or trailing 
edge, respectively. Together with the number of blades z, the 
aforementioned geometrical parameters are sufficient to de-
scribe simple impellers. In order to enable more innovative 
designs, two more parameters are introduced which are the 
lean angle  and the cut-off angle . The lean angle  de-
scribes the rotation of the blade around an axis which goes 
through the centerpoint of the blade section at the hub and 
which is tangential to the blade at that point. Positive values of 
 refer to lean towards the suction side whereas negative val-
ues refer to lean towards the pressure side. After applying the 
lean, it might become necessary to cut material which pro-
trudes beyond the hub/ shroud or the lateral surfaces at D1/D2. 
Accordingly, gaps between the blade and those surfaces are 
filled maintaining the circular blade shape. The cut-off angle  
is applied to the leading edge of the unwound blade. The two 
legs of this angle are the original leading edge of the uncut 
blade and the cut edge which forms the new leading edge. 
The intersection between those two legs is always at the hub, 
i.e. the original leading edge position only persists at the hub 
while material is increasingly cut towards the shroud. Due to 
lean and cutting the leading edge, the actual blade angles b1  
and b2 become variable over the blade height and differ from 
the original definition used to determine the centerpoint and 
the radius of the circular arc which forms the blade. Neverthe-
less, the blade keeps its circular shape which is important to 
facilitate cheap manufacturing techniques. 

From the aforementioned parameters, D2 and S are not 
varied by design of experiments but are constant or a function 
of other geometrical parameters, respectively. The reason for 
holding D2 constant is that we consider the dimensionless 
aerodynamic performance which is independent of D2. This 
also applies to the rotational speed n and the fluid density  
which are held constant, too. The reason why S is no inde-
pendent parameter is that the blade thickness only has a mi-
nor effect on the aerodynamic performance and is usually se-
lected for constructive reasons. We here assume that the 
blade thickness increases with increasing ratio D1/ D2: 
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Further geometrical parameters are required to describe 
the inflow nozzle. Since the inflow nozzle is less relevant with 
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respect to the aerodynamic performance, those parameters 
are a function of the impeller parameters and do not need to 
be varied by design of experiments. The inflow nozzle has a 
simple geometry and is fully described by its outflow diame-
ter and the radius rn. All dependent parameters are listed in 
Table 2. 

 
 

 
Figure1. Side view and top view of the impeller with in-

dication of the geometrical parameters 
 

Table 1: Independent geometrical parameters 

Description 
Symbol/ 

Definition 
Min. 

Value 
Max. 
Value 

Number of blades1 z 5 16 
Diameter ratio D1/D2 0.25 0.8 

Inlet blade angle 1 20° 60° 
Inlet blade angle 2 20° 60° 
Inlet width ratio2 b1/D2 0.025 0.4 

Outlet width ratio2 b2/D2 0.025 0.4 
Shroud radius ratio rs/D1 0.14 0.3 

Lean angle  -15° 15° 
Cut-off angle  0° 30° 

1 only integers are possible 
2 b2 must always be smaller or equal to b1 

 
Table 2: Dependent and constant 

geometrical parameters 

Description 
Symbol/ 
Definition 

Value 

Outer diameter D2 0.3 m 
Rotational speed n 50 s-1 

Fluid density  1.2 kg/m3 
Nozzle radius ratio rn/D1 0.25 

Clearance ratio rc/D1 0.02 
Overlap ratio ro/D1 0.03 

1.2 Impellers for Validation Experiments 
Experimental validation of the CFD model is performed with 
four prototypes which are supposed to be as different as pos-
sible regarding both geometry and aerodynamic performance. 
The geometrical parameters of the first prototype (VAL1) are 
mostly the mean values of the lower and upper limits indicated 
by Table 1. The only exception is b2/D2 which the mean value 
of the lower limit and b1/D2 of VAL1, i.e. the actual upper limit 
for the present case taking the constraint b2 ≤ b1 into account. 
At the other three prototypes, all extreme values of the geo-
metrical parameters were used at least once. The allocation of 
the extremes to the three impellers was performed in such a 
way that the aerodynamic behavior became as different as 
possible. For instance, VAL2 is supposed to be associated 
with high pressure coefficients at small flow coefficients. 
Hence, the inner diameter and the width are minimal while the 
number of blades and the exit angle are maximal. VAL3 is 
supposed to allow for very high flow rates. Consequently, the 
inner diameter and the width are maximal. VAL4 has no aero-
dynamic design philosophy but simply contains all extremes of 
the geometrical parameters that were not used for VAL2 or 
VAL3. Table 3 summarizes the geometrical parameters of the 
four impellers. 
 

Table 3: Geometrical parameters of the prototypes 
Parameter VAL1 VAL2 VAL3 VAL4 

z 11 16 12 5 
D1/D2 0.525 0.25 0.8 0.5 
b1 40° 30° 60° 35° 
b2 40° 60° 60° 20° 

b1/D2 0.213 0.1 0.4 0.2 
b2/D2 0.119 0.025 0.4 0.1 
rs/D1 0.22 0.3 0.14 0.2 
 0° 15° -15° 15° 
 15° 30° 0° 30° 

 

1.3 Experimental Set-Up 
The four prototypes described in the previous section 

were built by means of stereolithography and measured on a 
chamber test rig in accordance with EN ISO 5801 [7]. Figure 2 
shows a picture of the test rig and labels the essential compo-
nents. Air is sucked in through the test rig inflow nozzle at 
which the static pressure is measured. Given the pressure, the 
flow rate is calculated with the aid of a calibration curve. The 
air then passes through a flow straightener, an auxiliary fan 
and a throttle. The two latter components are required to con-
trol the operating point. In the chamber, the air is decelerated. 
Owing to the large cross-section area, the dynamic pressure in 
the chamber is negligible and the static pressure measured at 
the chamber walls is assumed to be equivalent to the total 
pressure upstream of the fan. The impeller inflow nozzle is 
integrated in the chamber back wall and aerodynamically con-
nects the test rig with the impeller which is placed behind the 
chamber. The torque and the rotational speed of the drive mo-
tor are measured at the shaft that connects the motor with the 
impeller. These quantities are required to determine the shaft 
power and eventually the efficiency. 
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A 
 

Test rig inflow nozzle; measurement of the pres-
sure which eventually yields the flow rate 

B Flow straightener 
C Auxiliary fan 
D Throttle 
E Chamber with flow straightener, measurement 

of pressure upstream of the test fan 
F Fan stage with inflow nozzle 
G Drive motor, measurement of torque and rota-

tional speed 
 

Figure 2. Chamber test rig in accordance with EN ISO 
5801 [7] 

 
1.4 CFD-Model and Optimization of the Grid 

Resolution 
The CFD model used for this work emulates the experimen-
tal set-up described in the previous section, i.e. the inflow is 
assumed to traverse the chamber and the inflow nozzle 
whereas the outflow area is free of obstacles except for the 
outer chamber walls. Figure 3 depicts a sketch of all compo-
nents considered for the CFD-model. The boundary condi-
tions are constant mass flow rate at the inlet, ambient pres-
sure at the opening and no slip at the walls. Hub, shroud and 
blade are modeled as rotating walls with the rotational speed 
n whereas all other walls are stationary. 

Due to the high number of CFD simulations required to 
train the meta-models, only stationary simulations were af-
fordable, i.e. the Reynolds-Averaged Navier-Stokes (RANS) 
method was used. The solver selected was ANSYS CFX 
14.5 and the turbulence model used was shear stress trans-
port (SST). As usual in RANS simulations, only one blade 
channel was simulated and rotational periodicity was as-
sumed at the lateral boundaries. The interface type in be-
tween the rotating blade and the stationary environment was 
frozen rotor. 

 
 

Figure 3. CFD-model 

In order to determine the fan performance data described 
in the introduction, the quantities pts, ptt and Tshaft must be 
extracted from the CFD results. pts is the difference between 
the area-averaged pressure at the opening and the inlet. The 
dynamic pressure required to determine ptt was evaluated at 
the interface between the impeller outlet and the environment. 
The overall shaft torque Tshaft equals the sum of the torques at 
all rotating surfaces, i.e. the surfaces at the blade, the hub and 
the shroud. 

The computational grid of the impeller was generated with 
ANSYS TurboGrid 14.5 and the grid of the environment was 
generated with ICEM CFD. A grid optimization was performed 
to find the best compromise between accuracy on the one 
hand and numerical cheapness on the other hand. The accu-
racy was estimated by comparing the numerical results with 
the experimental results of the prototypes in terms of ts and 
ts. This comparison was performed for the prototypes VAL1, 
VAL2 and VAL4. Three operating points were considered for 
each impeller to cover the operational conditions of partial 
load, maximum ts and overload. VAL3 was excluded from the 
optimization since its aerodynamic behavior is extremely insta-
tionary and impossible to be predicted by RANS simulations 
independent from the grid resolution. Section 2.2 discussed in 
more detail how to deal with problematic impellers such as 
VAL3. The high number of 18 quantities to be compared (ts 
and ts at three impellers with three operating points each) is 
important to mitigate the dependency of the target function on 
random effects. The numerical expense of a simulation was 
considered by a penalty term which is a function of the overall 
number of nodes N. It is defined such that 500,000 extra-
nodes should reduce the averaged difference between CFD 
and experiment by at least 0.01. Otherwise, an increase of 
nodes impairs the target function. The mathematical definition 
of the target function is provided by Equation 7: 
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Besides the overall number of nodes N, the distribution of 
the nodes has an essential effect on the target function. For 
instance, one optimization parameter was defined to control 
the ratio between the number of nodes in the grid around the 
impeller and the number of nodes in grid of the environment. 
Further optimization parameters were introduced to control the 
distribution of nodes within each of the grids. At the impeller 
grid, an additional optimization parameter was required to bal-
ance the resolution in axial direction against the resolution in 
meridional direction. Moreover, two parameters were intro-
duced which determined the intensity of the typical grid re-
finement in the boundary layers at both impeller and environ-
ment. Eventually, the size of the environment also has an im-
pact on the target function. On the one hand, its dimensions 
must be large enough to avoid an unphysical impact of the 
boundary conditions on the fan performance. On the other 
hand, too large dimensions at a given overall number of nodes 
increases the cell sizes and hence reduce the numerical accu-
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racy. The dimensions that were varied are indicated in Figure 
2, i.e. the axial length of the chamber (lax,c) as well as the 
axial length and the diameter of the volume around the im-
peller (lax,e and De). The diameter of the chamber is not var-
ied since it is equal to the experimental set-up (3.7·D2). Alto-
gether there were eight grid parameters to be optimized. This 
was performed using the Simplex method by Nelder and 
Mead [8]. 
 
1.5 Design of Experiments 
One crucial step in building a meta-model is the design of 
experiments (DoE). It determines which geometric parameter 
combinations should be investigated by CFD simulations. As 
recommended by Santner et al. [9], a space filling design 
should be chosen, if no prior knowledge about the process is 
available. Due to its advantages and simplicity [9] a latin hy-
percube (LH) design has been used. The non-collapsing 
property of LH designs is one advantage compared to com-
monly used grid designs. Non-collapsing means, that if all 
data points are projected onto one axis, all values along that 
axis only occur once. In order to achieve good space filling 
properties the LH design was optimized with the extended 
deterministic local search method described by Ebert et al. 
[10]. 

Due to the time restrictions it should be possible to simu-
late about 2000 different geometries. The question arises, if 
in addition to an LH design all corners of the input space 
should be simulated. For the nine dimensional input space 
this would be about 25% (29 = 512) of all data points. The 
positive effect assumed is the lower demand for extrapola-
tion. Expecting that the demand for extrapolation is of minor 
importance and considering the results from Belz et al. [11], 
it was decided to not simulate all possible corners. 

Once the optimization of the LH design is finished, the 
order in which the geometries are simulated needs to be de-
fined. The goal of a specific order is to obtain models that 
capture the behavior of almost all geometries as good as 
possible at any time. Therefore the already measured ge-
ometries should cover the input space as uniformly as possi-
ble while being as space filling as possible. To achieve this 
goal, all data points of the optimized LH design were clus-
tered using the intelligent k-means algorithm (see Mirkin 
[12]). Basically this algorithm incorporates the classic k-
means algorithm, but the number of clusters k is determined 
automatically, see Mirkin [12] for more details. Once each 
data point was assigned to one cluster, the data points within 
each cluster were ordered. Starting with the point next to the 
cluster center, the next points were chosen such that dis-
tances between the already ordered points were as large as 
possible. After that the ordering algorithm went from cluster 
to cluster and picked the first remaining element from each 
ordered cluster list and added it to the overall ordering list, 
leading to the final measurement order. Because each clus-
ter represents another area of the input space, this proce-
dure should guarantee to have points from all areas as early 
as possible. 

 

1.6 CFD-Simulation of the DoE 
 

Points of the Characteristic Curve to be Simulated 
The section of the characteristic curve that is relevant to the 
present work is the operating range between zero flow rate ( 
= 0) and zero total-to-static pressure rise (ts = 0). To save 
computational time, each new simulation was initialized with 
the previous one. The first point of a characteristic curve that 
was simulated was always the estimated flow coefficient 
where ts becomes zero. At the beginning of the project this 
point had to be estimated by theoretical models [13]. After ap-
proximately 200 geometry variations, however, it was esti-
mated more precisely by preliminary meta-models. From that 
operating point onwards, the flow coefficient was reduced in 
seven steps. After that, the density of operating points was 
enhanced in two important areas of the characteristic curve if 
required. One of them was the operating area with highest ts. 
The flow coefficient where ts becomes maximal was interpo-
lated based on the existing CFD results and an additional CFD 
simulation was performed if it differed by more than  = 0.003 
from the existing curve points. The same strategy was applied 
to the operating point of zero ts to check if the initial estima-
tion was sufficiently precise. 
 
Time Step Control 
As mentioned previously, the RANS equations were solved 
with ANSYS CFX. One essential parameter that influences the 
convergence is the time scale. For the present work, the 
"physical time scale" option was selected. In general, large 
magnitudes of the time scale on the one hand often accelerate 
the rate of convergence but on the other hand also favor di-
vergence and numerical overflow. Unfortunately, the optimal 
time scale is individual for each simulation and cannot be es-
timated in advance. For that reason, the present work used an 
adaptive choice of the time scale. The starting value for the 
first simulation of one fan geometry was always very low 
(0.0005 s). This time scale was, however, only used to guar-
antee stability in the first 50 iterations. After that, it was multi-
plied by 10 (i.e. 0.005 s). Potential numerical instability due to 
a too large time scale was detected based on the residuals 
and on the fluctuation of integral quantities (e.g.  or ) over 
the iterations. In case of high residuals or high fluctuations of 
the integral quantities, the time scale was decreased until nu-
merical stability was restored. 
 
1.7 Strategies to Predict the Characteristic 

Curves by Meta-Models 
There are basically two ways to predict characteristic fan 
curves. The simplest approach is a direct prediction of the 
quantities of interest (e.g.  or ). The disadvantage of that 
strategy is that these quantities are dependent on the flow co-
efficient which therefore has to be considered as an additional 
input to the meta-models. This not only increases training 
time, but also increases the complexity of the meta-models 
which eventually increases the risk of overfitting effects. 
An alternative is to use parameterized shapes of the charac-
teristic curves. In that case, the meta-models are used to pre-
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dict the curve parameters and the characteristic curve is built 
on the basis of these curve parameters. One essential ad-
vantage of that method is that the curve parameters are only 
dependent on the impeller geometry. As a consequence,  is 
no meta-model input.  Another advantage of this method is 
that the curve parameters can be physically interpretable 
quantities such as the flow coefficient at zero ts or maximum 
ts. This allows direct control over the most important points 
of the characteristic curve. The main disadvantage of this 
method is the loss of flexibility since not all curve shapes can 
be emulated by the pre-defined functions in an adequate 
way. A further problem is the accumulation of errors if more 
than one curve parameter is predicted imprecisely. Unfortu-
nately, the two disadvantages mentioned require conflicting 
measures for mitigation. Higher flexibility can, for instance, 
be achieved by a higher number of curve parameters which, 
however, amplifies the accumulation of errors. Hence, an 
adequate solution must incorporate as much prior knowledge 
as possible such that most curves can be emulated ade-
quately with only a few curve parameters. 

It was found that knowledge about only two operating 
points enables an adequate prediction of the ts() curve. 
Those two operating points are the zero-crossing (ts=0) and 
the operating point where the product of  and ts (i.e. the 
power coefficient ts()) becomes maximal. The latter operat-
ing point actually contains two important pieces of informa-
tion: (i) a further operating point on the ts() curve (ts 

=ts/) and (ii) the first derivative ('ts = -ts / , assuming 
that 'ts is zero at that operating point). Given these three 
pieces of information, the full ts() curve can be built up by a 
second degree polynomial. 

The typical curve shape of ts() is more complex than 
the curve shape of ts() and hence cannot be modeled ade-
quately by a second degree polynomial. Instead, the Equa-
tions 8 and 9 were used. These equations contain the impor-
tant operating point of maximum ts (i.e. ts,max and ts,max). 
From that operating point onwards, ts() is assumed to de-
cay in both directions. On the left hand side, the curve 
crosses zero at  = 0. On the right hand side, the flow coeffi-
cient where ts becomes zero is identical with the flow coeffi-
cient that was already required to determine the zero-
crossing of ts(), i.e. ts=0. The curvature between the 
maximum and the zero-crossings is controlled by the expo-
nents p which are defined individually for each side. 
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The curve parameters were determined for all character-
istic curves that were simulated using the Simplex optimiza-
tion method. The target function was the minimum averaged 

difference between the CFD results and the modeled curve. 
 
1.8 Training of the Meta-Models 
Two meta-model types were tested: Local Model Networks 
(LMN) and Multi-Layer Perceptrons (MLP). 

LMNs follow a divide-and-conquer strategy. The input 
space spanned by all geometry parameters is divided into 
small sub-spaces, where simple local models are able to suffi-
ciently well describe a part of the whole function to be ap-
proximated. The local models are interpolated in between two 
adjacent sub-spaces. The structural complexity of a LMN is 
directly related to the number of sub-spaces and the architec-
ture of the local models. The identification of the sub-spaces, 
i.e. the shape, the location and the number of sub-spaces, as 
well as the determination of the local model parameters is part 
of the so-called training. For the training of the LMNs the hier-
archical local model tree (HILOMOT) algorithm (see Nelles 
[14]) was used with local linear models. The structure of the 
LMN grows incrementally by adding a further division of one 
pre-existing sub-space. Therefore, one local model is added in 
each step until a termination condition is met. For the determi-
nation of the shape and location of the sub-space to be added, 
a nonlinear optimization is necessary. The parameter determi-
nation of the local linear models can be carried out via least 
squares. In the HILOMOT algorithm the least squares problem 
is nested in the nonlinear optimization for the partitioning, 
leading to a separable nonlinear least squares problem (see 
Nielsen [15]) with excellent convergence properties. With each 
added local model, the flexibility and thereby the ability to de-
scribe more complex processes of the LMN is increased. The 
user has to avoid too flexible models, since at some point the 
LMN is able to describe random deviations that do not origi-
nate from the true process behavior like e.g. noise. This effect 
is well known as overfitting. For the automatic prevention of 
overfitting the available data can be split into two data sets for 
training and validation. Two types of errors follow from the 
data splitting, the training and the validation error. The minimi-
zation of the training error through the model parameter tuning 
is done without any information about the validation error. The 
latter is only utilized to test the generalization ability of the 
model. An increase of the validation error indicates beginning 
overfitting. For the termination of the LMN training process 
20% of the available data was utilized as validation data. As 
soon as the validation error increased two times in succession, 
the training was terminated in order to prevent the model from 
overfitting 

MLPs consist of the input layer, one or more hidden 
layer(s) and the output layer. The number of hidden layers and 
the number of neurons in each of the hidden layers deter-
mines the complexity of the model. In the present work, two 
hidden layers were used and the number of neurons in each 
hidden layer was optimized. The optimization problem was 
initialized by training an MLP with only two neurons in each 
hidden layer. Afterwards, the number of neurons in each hid-
den layer could be increased or decreased by one leading to 
eight possible structures (1 layer - 1 layer, 1-2, 1-3, 2-1, 2-3, 3-
1, 3-2 and 3-3). MLPs were trained for all of these structures 
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and the MLP with the lowest validation error was selected as 
the interim optimum from where the procedure of testing all 
surrounding structures was repeated. The structure optimiza-
tion was stopped when none of the structure changes led to 
a decrease in the validation error. Training an MLP for a 
given structure means optimization of the weights in the hid-
den layers. This was performed with the Neural Network 
Toolbox of Matlab which uses the Levenberg-Marquardt 
method. The target function of the weight optimization was 
the mean squared difference between the MLP output and 
the CFD results. 80% of the available CFD data was used for 
that purpose whereas the remaining 20% was used for vali-
dation. The training process was terminated prematurely if 
the validation error increased six times in succession which 
is assumed to indicate overfitting. Eventually, the training 
state with the minimal validation error was selected. Since 
the Levenberg-Marquardt method is a local optimization al-
gorithm, the result depends on the initialization. For that rea-
son, the weight optimization of each structure to be tested 
was performed with twelve different initializations and only 
the MLP with the lowest validation error was used for the 
comparison with other structures. 
 
1.9 Further Measures to Improve the Meta-

Model Performance 
One simple possibility to improve the meta-model perform-
ance was pursued here. It is based on improving the bias-
variance tradeoff by input selection. Only inputs advanta-
geous to the overall performance shall be included in the 
meta-model. This input selection was performed by back-
ward elimination. Backward elimination is a search strategy 
that starts with a full model and removes the least significant 
inputs step by step. In contrast to the opposite approach 
called forward selection this strategy takes correlations be-
tween the (potential) inputs into account at the price of higher 
computational effort. 

Once an input is removed, it can not be added after-
wards. Since the meta-model inputs correspond to the cen-
trifugal fan geometry parameters, which are carefully chosen 
according to expert knowledge, it seems not reasonable to 
neglect some of them. However, especially in early stages 
where only a small amount of data is available, the concen-
tration on the most important inputs might be beneficial. 
Loosely speaking, the uncertainty of the meta-model pa-
rameters is high, if the number of samples is small. Decreas-
ing the number of inputs goes along with less parameters in 
the model, such that for the estimation of each remaining 
parameter in relative terms more information is available. 
Lowering the parameter uncertainty of the model can over-
compensate the loss of information due to discarded inputs, 
such that the model generalization performance increases. 
This phenomenon is well known as bias-variance tradeoff, 
see Bishop [16] for more information. 

 
2. RESULTS 
 

All of the results presented in the following are based on a 

dataset of 622 simulated characteristic fan curves. The data-
set is growing continuously which is likely to enhance the re-
sults in the future. The results that heavily depend on the size 
of the CFD dataset comprise the quality of the meta-models 
(section 2.2), the range of design points that could be realized 
so far (2.3) and the suitability of the meta-models to be used in 
optimization algorithms (2.5). 
 
2.1 Optimal Computational Grid 
Given the penalty term which accounts for computational ef-
fort, the ideal overall number of nodes is approx. 650,000. 
77% of the nodes should be used to mesh the blade channel 
whereas only 23% should be used to mesh the environment. 
The optimal balance between the resolution of the boundary 
layers and the resolution of other regions leads to an averaged 
dimensionless wall distance of y+ ≈ 12 at the impeller surfaces 
and y+ ≈ 18 at surfaces in the environment. Naturally, the non-
averaged local magnitudes can differ significantly depending 
on the location on the surface, the blade geometry and the 
operating point. The optimal balance between the resolution in 
axial and in meridional direction is achieved by similar cell 
sizes in either direction. 

The optimal dimensions of the environment (lax,c, lax,e and 
De) were found to be very weak optimization parameters if 
critical magnitudes are exceeded. Therefore, it was possible to 
slightly modify these dimensions with only a minor impact on 
the predicted performance. It was decided to adapt the two 
axial lengths to one fan diameter (lax,c = lax,e = D2) and to adapt 
the diameter of the environment to the diameter of the cham-
ber (De = Dc = 3.7D2). 

All CFD results presented in the following are based on 
computational grids generated with the optimal grid parame-
ters listed above. 
 
2.2 Quality of the CFD Model 
Figure 4 compares the CFD-simulated and measured charac-
teristic curves of three validation examples in terms of ts and 
ts. Not all CFD-simulated operating points are depicted since 
some results are considered unreliable. This applies to all op-
erating points with strong secondary flows and a highly insta-
tionary flow field which cannot be computed adequately with 
the RANS equations. Two criteria are defined to detect unreli-
able CFD results. The first criterion deals with the wall shear 
stress w at the blade. Magnitudes smaller than 1 Pa generally 
indicated flow separation. The four validation examples 
showed that the difference between CFD and experiment be-
comes significant if the area-averaged wall shear stress falls 
below a critical magnitude. When computing the average, all 
areas with attached flow (w ≥ 1 Pa) were weighted with w = 1 
Pa to avoid that very high local magnitudes bias the conclu-
sion. Equation 10 states the mathematical formulation in which 
the index i represents the cell number of the computational 
grid on the blade surface and G is the overall number of cells 
on the blade surface. 
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Figure 4. Comparison between CFD and experiment for 

VAL1, VAL2 and VAL4 
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The second criterion deals with radial backflow in the 
blade channel. In an ideal flow field, there is only flow from 
the inside to the outside. Secondary flows, however, can 
lead to local backflow. The intensity of backflow is measured 
by the quotient of two differently computed mass flow rates in 
radial direction. In the denominator, the sign of the local 
mass flow rate is taken into account to the effect that the 
positive and negative parts of circulating flow cancel out. In 
the numerator, only the absolute value of the local mass flow 
rate is considered to the effect that circulating flow increases 
the sum. The formula for the quotient xmr is stated in Equa-
tion 11. The index i is the cell number and H is the number of 
cells in the volume between D1 and D2. 
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Significant discrepancies between CFD and experiment 
were observed for w < 0.7 Pa or xcr > 1.1. As it can be ob-
served in Figure 4, the agreement between CFD and ex-
periment is very good for operating points which do not vio-

late the two criteria for instationary flow. It is hence concluded 
that the CFD model is suitable to compute the performance of 
fans with a decent flow field and to detect operating points with 
strong secondary flows. Since optimized fans are unlikely to 
be associated with strong secondary flows, the CFD model 
appears to be suitable for optimization purposes, too. 

The operating points sorted out in the four validation ex-
amples comprise the operating area of strong partial load in 
case of VAL1, VAL2 and VAL4 but the complete characteristic 
curve of VAL3. 

 
2.3 Achievable Design Points 
It is commonly agreed that not all design points can be real-
ized with centrifugal fans. Cordier [17] found that there is a 
correlation between the specific fan speed  and the specific 
fan diameter  which limits the achievable design points to a 
narrow band in the - diagram. Moreover, not all specific fan 
speeds are suitable for centrifugal fans. Carolus [13] presents 
a - diagram in which the classic realm of centrifugal fans is 
assumed to be in the range 0.1 ≤  ≤ 0.5. Smaller magnitudes 
are typically realized by displacement machines, larger magni-
tudes are typically realized by mixed-flow or axial fans. 

Figure 5 depicts a - diagram in which the typical correla-
tion between  and  is illustrated by a black curve based on a 
formula by Pelz [18]. The grey area represents the range of 
the operating points that were simulated in the context of the 
DoE. It can be observed that this area forms a band around 
the curve suggested by Pelz in the range 0.07 ≤  ≤ 2. Hence, 
it is confirmed all typical design points of centrifugal fans can 
be realized with the present input space. In fact, the design 
space is even extended since much smaller or larger specific 
fan speeds than usually used for centrifugal fans can be real-
ized, too. In contrast, an extension of the design space to-
wards unusually small or large specific fan diameters for a 
given specific fan speed cannot be observed. This might be 
realized by applying the meta-models in optimization algo-
rithms targeting at the realization of extraordinary design 
points which is planned in the near future. 
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Figure 5. Cordier diagram with indication of all operating 

points simulated so far (grey area). 
 
2.4 Comparison of Different Meta-Model Ap-

proaches 
As mentioned previously, two different model types were 
tested which are the LMN and the MLP. Moreover, two differ-
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ent approaches to predict the characteristic fan curves were 
presented, i.e. the direct prediction of ts and ts using  as 
an input and the prediction of curve parameters that only de-
pend on the impeller geometry. Regarding the second ap-
proach, it is either possible to predict all curve parameters by 
a single meta-model or to use an individual meta-model for 
each curve parameter. Altogether, these options lead to six 
different approaches of how to predict the impeller perform-
ance by meta-models. The assessment of an approach can-
not be based on the validation error since this would favor 
the MLPs over the LMNs. The reason is that the validation 
error is much more involved in the training of MLPs as com-
pared to LMNs. It is used as the target function of the struc-
ture optimization of the MLPs and to select the best MLP 
after testing numerous different weight initializations. As a 
consequence, the validation error of the final MLP might 
benefit from random effects. An objective comparison is only 
feasible using a test dataset which by no means was in-
volved in the training method. The test data used here con-
sists of the 150 most recent geometry variations which are 
not part of the aforementioned 622 geometries used for train-
ing and validation. The test error was computed as the root 
mean squared error (RMSE) between all CFD results of the 
test data and the corresponding meta-model predictions. 
Operating points violating at least one of the two criteria for 
instationary flow were not considered. 

Table 4 lists the RMSE of all six approaches. Although 
the MLP approach with individual prediction of the curve pa-
rameters currently works best regarding both ts and ts, it is 
too early to draw a final conclusion because the difference to 
other approaches is small. Moreover, there is neither a uni-
versal tendency regarding the choice between LMN or MLP 
nor regarding the choice between the distinct approaches to 
model the characteristic curves. It is planned to observe the 
development of the ranking as the available CFD data in-
creases. This will reveal to which extent the present ranking 
is biased by random effects. 
 

Table 4: Meta-Model approaches ranked by the test error 
ts ts 

Rank Type1 RMSE Rank Type1 RMSE
1 MLP-ind 0.052 1 MLP-ind 0.052 
2 LMN-col 0.055 2 MLP-unmod 0.057 
3 MLP-col 0.062 3 LMN-ind 0.059 
4 LMN-unmod 0.063 4 LMN-col 0.059 
5 LMN-ind 0.066 5 MLP-col 0.062 
6 MLP-unmod 0.077 6 LMN-unmod 0.064 

1 ind/col = modeled characteristic curve with individual/ 
collective prediction of the curve parameters 

  unmod = unmodeled characteristic curve 
 
2.5 Suitability of the Meta-Models for Optimization 
Meta-model of very high quality are required if they are to be 
used to evaluate the target function in optimization algo-
rithms. The reason is that any weak point of the meta-model 
(where the predicted efficiency is unrealistically high) will be 
exploited by the optimization algorithm instead of finding the 

real aerodynamic optimum. The assessment if the present 
meta-models are suitable for optimization was performed by 
conducting unconstrained optimizations with the target of 
maximumts. The resulting geometries were then simulated 
by means of CFD and the CFD results were compared to the 
meta-model prediction. An evolutionary optimization was used. 
The implementation is an in-house Matlab code which was 
inspired by the work by Thévenin and Janiga [19]. The number 
of individuals per generation was 1000. The generation of an 
offspring generation was mostly conducted with the "cross-
over" method and only a small portion of the offspring genera-
tion was based on the "averaging" method. Moderate and ran-
dom mutation was applied after the generation of the offspring. 
Given these settings, the algorithm converged after a couple 
of hundred generations and yielded repeatable results that 
were independent of the initialization of the first generation. 
The algorithm was run two times predicting ts,max with the 
LMN-ind or MLP-ind method, respectively. 

The resulting geometries are similar in many respects, 
e.g. a middle-sized inner diameter, flat inflow and outflow an-
gles, large shroud radii and negative lean. However, there are 
also differences which indicate that at least one design (but 
most probably both of them) are not aerodynamically optimal. 
CFD simulations revealed that the geometry suggested by the 
LMN has a slightly higher efficiency. Nevertheless, also the 
LMN optimization was only partly successful. On the one 
hand, it led to a total-to-static efficiency as high as 63 % which 
exceeds the efficiency of all operating points simulated in the 
context of the DoE. On the other hand, the MLP prediction of 
ts was still considerably higher (67 %) wherefore it is as-
sumed that the optimization result is still biased by weak-
nesses of the meta-model. For that reason, the optimal ge-
ometries are not discussed in detail and no characteristic 
curves are presented in the present publication. Making the 
meta-models suitable for optimization problems is the highest 
priority in the ongoing research. 
 
3. CONCLUSIONS 
A promising methodology to train CFD-based meta-models for 
centrifugal impellers was demonstrated. It was shown that the 
selected geometrical input space is sufficient to design impel-
lers for the complete classic realm of centrifugal fans accord-
ing to the Cordier diagram. Due to an optimized DoE and an 
optimized order in which the DoE was simulated, meta-models 
with satisfactory performance were obtained after only 622 
CFD-simulated geometry variations. This is a small number in 
view of a nine-dimensional input space and wide ranges be-
tween the minimum and maximum value of each parameter. 
The computational cost to generate the CFD dataset was re-
duced by optimizing the computational grid with the target of 
finding the best compromise between accuracy and computa-
tional cheapness. Experimental validation with four prototypes 
proved that sufficient accuracy can be achieved with 650,000 
nodes if the distribution of the nodes within the grid is optimal. 
In addition, computational cost was reduced by an adaptive 
selection of the time scale and the operating points to be simu-
lated. 



Article Title — 10 

The main drawback of the methodology was encoun-
tered when coupling the meta-models with optimization algo-
rithms targeting at maximum ts. It was observed that differ-
ent meta-model types lead to different optimization results 
and that the actual performance of the resulting geometry 
differs from the meta-model prediction. Nevertheless, the 
efficiency of the optimized design was still higher than any 
other efficiency obtained during the simulation of the DoE 
which proves the high potential of the methodology. 

In order to obtain better results in the future, a larger 
CFD dataset is required. A total of 2138 curve simulations 
are sought based on DoE. Afterwards, a so-called active 
learning phase will follow. The basic idea is to exploit infor-
mation from the already simulated points with the help of 
meta-models based on the available data. This procedure is 
called hierarchical local model tree for design of experiments 
(HILOMOTDoE) and tries to find locations in the input space 
where the most information gain can be expected by discov-
ering regions where the current meta-model performs worst. 
See Hartmann et al. [20] for more detailed information. 

Once the accuracy of the meta-models is good enough 
for application in aerodynamic optimization problems, it is 
planned to seek for the same findings as recently obtained 
with meta-models for axial impellers. These findings com-
prise the estimation of the achievable total-to-static efficiency 
as a function of the design point [21], design guidelines for 
the optimal choice of geometrical parameters as a function of 
the design point [22] and aerodynamic explanations for the 
enhanced performance [23]. 
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