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Abstract—The order in which measurements are carried out,
determines the accuracy of models in early stages of the mea-
surement process, i.e. while measurements are still in progress.
Reliable models in early stages of the data acquisition phase allow
for model-based investigations like optimization runs or an earlier
switching to an active learning phase. This paper compares
different methods to determine the order of experimentation for
regression problems in metamodeling tasks. The data distribution
and the data density in the input space are varied for several
randomly generated synthetic functions in order to find the most
promising determination strategy for the order of experimenta-
tion. As an application example, all strategies are also applied
to a computational fluid dynamics (CFD) metamodel. The order
of experimentation based on the intelligent k-means clustering
algorithm turns out to be the best overall order-determination
strategy.

I. INTRODUCTION

In the context of experimental modeling (identification),
gathered data plays the key role to build reliable models.
Therefore an experimental design has to be determined in
order to set locations in the input space, where information
should be collected. An often neglected aspect and main topic
of this paper regards the order in which the measurements
are conducted to yield the best possible model performance
with fractions of the whole experimental design. No literature
could be found addressed to order of experimentation aiming
at this specific goal. For example, [1] and [2] consider the
order of experimentation only in the context of neutralizing
influences of undesirable factors on the experimentation or
efforts needed to change factor levels. Additionally, these two
publications deal only with factorial designs, whereas methods
proposed in this paper can be applied to arbitrary experimental
designs. The method presented in [3] aims at a reduction of the
training set size in order to decrease computational demands
and to improve convergence speed of the model training. In
differentiation to that, our proposed method aims to improve
the convergence with respect to the data amount and does not
consider computational demands at all. Good models in early
stages of the measurement process yield several advantages,
e.g. time can be saved because demanded model qualities can
be reached with less data. In addition the model can be used
earlier, while the measurement process is still in progress. For
example, model-based optimization runs become more reliable
with small data subsets. Active learning strategies enlarge the
experimental design in an iterative and adaptive way, based
on models trained with the currently available training data,

such that the information gained by additional measurements is
maximized. Typically, an initial experimental design is needed
before the active learning phase can start [4]. Through a
good order of experimentation the necessary amount of data
serving as initial experimental design might be decreased. Note
that throughout this paper the term “measurement” is used
synonymously for obtained data points, regardless of their
origin. For example, the data might originate from real-world
measurements as well as from computer simulations.

This paper compares different methods to determine the
order of experimentation for regression problems in metamod-
eling tasks. Metamodels try to describe the true input/output
relationship of deterministic computer simulations [5]. There-
fore, a metamodel is a computationally inexpensive ”model of
a model”, that tries to approximate a computationally expen-
sive simulation with high accuracy [6]. Since all data gathered
for the generation of a metamodel is completely deterministic,
basic principles of experimental design for controlling noise
and bias like replication, blocking or randomization don’t
have to be considered [7]. In contrast to real-world test
benches, there are no resources required to change the value of
any actuating variable for computer experiments. These facts
simplify the order of experimentation determination in the
special case of metamodeling tasks. However, an extension
of the order determination strategies proposed in this paper
for real-world measurement scenarios is possible, as will be
outlined in Sec. V.

II. STRATEGIES FOR THE ORDER OF EXPERIMENTATION
DETERMINATION

The goal of all strategies is to achieve the best possible
model performance with subsets of an already determined (and
fixed) experimental design. Therefore it is assumed, that it is
beneficial to gather information from all areas of the input
space as soon as possible to achieve reliable metamodels in
early stages of the measurement process. Having a similar
task for real-world applications, more restrictions and effects
resulting from environmental influences have to be considered
for the order of experimentation determination, as already
outlined in the introduction.

In the following, all strategies for the order of experi-
mentation determination used for this paper are explained.
For the explanations it is always necessary to distinguish
between three sets of data points. Set N contains all points
of a data set. S, containing all already sorted points, and



F, containing all not yet sorted points, are non-overlapping
subsets of N. Here and throughout the rest of the paper,
“sorted” refers to the successional order of experimentation,
i.e. the order in which the measurements should be conducted.
The relationships between the previously defined sets can
mathematically expressed as:

N= S∪F and S∩F= /0 . (1)

At the beginning of each method, F contains all data points.
Then points are sequentially moved from F to S until F is
empty.

A. Biggest Gap Sequence (BGS)

For the biggest gap sequence (BGS), the first point to be
added to S is the one closest to the center of all data points.
In the following, one iteration of the BGS is explained and
illustrated in Fig. 1. Here one iteration refers to all steps
necessary to determine one data point, that should be added
to the sorted list next. In Fig. 1a there are two already sorted
points in S (orange crosses), whereas all other points still
belong to set F (blue circles). Each point in F is now assigned
to its nearest neighbor (NN) from subset S. The dashed lines
in Fig. 1b connect each point in F with its NN in S. The
corresponding distances (lengths of the dashed lines) from all
points in F to their NN in S are calculated. The point with
the maximum distance to its NN is selected and is moved
from F to S, see Fig. 1c. After adding a point to S, the next
iteration starts and the whole procedure continues until F is
empty. Note that S is incremented in size only after the last
step of each iteration.

B. Median Distance Sequence (MDS)

The median distance sequence (MDS) starts similar to the
BGS algorithm, i.e. the first point added to S is the one closest
to the center of all data points. After that, each point in F is
assigned to its NN from subset S, like in the BGS strategy,
see Fig. 1b. Again, the distances from all points in F to their
NN in S are calculated. Now the point that corresponds to the
median value of all calculated distances is moved from F to
S, instead of the one with the maximum distance. An update
of the NN relationships between F and S has to be performed.
After that the procedure continues until F is empty.

C. Intelligent k-means Sequence (IKMS)

Clusters according to the intelligent k-means algorithm [8]
are determined. The number of clusters nc is automatically
chosen by this algorithm. Then all data points belonging to a
cluster Ci, i = 1 . . .nc are sorted according to the BGS strategy
described in Subsection II-A. As a result there are nc sorted
data point lists or cluster lists respectively. To get the final
order of experimentation, the first element of each list is
added to S. In that way the first nc points to be simulated are
the ones closest to the cluster centers. After that, the second
element of each cluster list is added until all data points are
ordered according to the intelligent k-means sequence (IKMS).
Figure 2 demonstrates the IKMS procedure for 12 points. First

(a) Two already sorted points (x)

(b) Assigning each point in F (o) to its
NN in S (x)

(c) Maximum NN is added to S (x)

Fig. 1: Illustration of the procedure for the MDS and BGS
strategies

the intelligent k-means algorithm determines three clusters and
assigns each point to one cluster, see Fig. 2a. The numbers
shown in Fig. 2b represent the final ordering determined by
the IKMS algorithm.

D. Random Sequence

The sequence of data points to be measured is chosen
through a random permutation of points from an arbitrary
initial sequence. For all comparisons of the different strategies,
ten of such random orders are generated and averaged.

E. Reasoning

The above proposed algorithms are based on the following
considerations. Models relying only on small amounts of data
are limited in their possible model accuracy. Through a clever
placement of measuring points, the possible model accuracy
can be influenced. The aim of all order determination strategies
is to find subsets of points from the overall experimental
design, that lead to the possibly best model qualities. Therefore
a wide and nearly uniform coverage of the whole input
space with small subsets is the goal. BGS tries to tackle the
described considerations straight forward, filling the biggest
gap of the input space with each additional point. One possible
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Fig. 2: Explanation of the IKMS with the help of a demon-
stration example

weakness of BGS might be the exclusive concentration on
points near the boundary at the beginning of the algorithm,
especially in high-dimensional input spaces. This potential
issue leads to the MDS algorithm, that tries to avoid only
boundary-near points at the beginning. Adding the next point
corresponding to the median distance instead of the maximum
distance should lead to a better balance between points at the
boundary and inside the input space for very small subsets.
The IKMS algorithm exploits in a first step possibly existing
structures in the experimental design by the intelligent k-
means algorithm. All resulting clusters represent a specific
area in the input space. Starting with all points next to these
cluster centers should obtain information from all input space
areas and in addition avoids only points at the boundary for
very small subsets. It is somehow a mechanism to balance
the exploration and exploitation of the whole experimental
design. At the beginning all areas of the input space covered
by the experimental design are explored and then successively
exploited in more detail.

III. COMPARISON ON SYNTHETIC FUNCTIONS

This section describes the experimental setup, that was
chosen to compare the different strategies for the order
determination based on synthetic test functions. A function
generator is used to create random test functions for each input

dimension p ranging from p = 2 to p = 8. Three different
input distributions are used to generate training data sets for
each random function and input dimension. Additionally, one
huge test data set is generated for each random function and
input dimension in order to assess the model quality. For each
training data set the order of experimentation is determined
according to the strategies proposed in Sec. II. Then, for
training data increments of 10 % (in the determined order) a
model is trained and its performance is assessed using the test
data. Strategies for the order determination are compared based
on how quick the model performance increases. Therefore
results are averaged over all random functions created with
the function generator. Here a big advantage of a function
generator is exploited, i.e. designing synthetic functions with
desired properties such as the input dimensionality, the amount
of data and the data distribution, to name only a few.

A. Function Generator

The function generator described below is proposed in
[9]. Basis for the used function generator are p-dimensional
polynomials with M terms, that build a function g(·):

g(u1,u2, . . . ,up) = · · ·
M

∑
i=1

ci · (u1− si1)
qi1 · (u2− si2)

qi2 · · · · · (up− sip)
qip . (2)

All inputs ui are assumed to be normalized, such that they vary
in the unit hypercube [0,1]p. The coefficients ci are drawn from
a normal distribution N(0,1) and the shifts si j from a uniform
distribution U [0,1]. Together with the normalized inputs, the
latter ensures all the bases u j− si j to be in the range [−1,1].
Thus this range is kept after raising to the powers independent
of the magnitude of the exponents qi j. The powers qi j are non-
negative integer values. This is ensured by taking the floor of
values drawn from an exponential distribution with expected
value µ:

f (x|µ) = 1
µ

e−x/µ . (3)

The expected value µ serves as a design parameter to control
the probability of high exponents and the probability of high-
order interactions, since exponents equal to zero make an input
irrelevant for a certain term.

Since the usage of polynomial based random functions
would favor model architectures that are at least partly based
on polynomial approaches and the missing ability to mimic
saturation characteristics, a transformation is proposed in [9].
The resulting polynomial g(·) is sent through a sigmoid
function h(·):

h(u1,u2, . . . ,up) = · · ·
1

1+ exp(−α ·g(u1,u2, . . . ,up))
, (4)

with tuning parameter α , controlling the amount of saturation.



B. Training and Test Data

In order to conduct the comparison, basically three different
input distributions are used. Maximin Latin Hypercube (LH)
designs, optimized according to the algorithm proposed in
[10], data samples drawn from a uniform distribution and data
samples drawn from two normal distributions with different
mean values and equal standard deviations are employed.
Figure 3 shows the different data distributions exemplarily
in a two dimensional input space. It can be recognized, that
the input coverage from the maximin LH design over data
drawn from a uniform distribution down to the drawing from
two normal distributions decreases. Additionally the chance
to inhabit the same input twice or more often grows from
Fig. 3a to 3c. These different properties are desired and
should reveal distinct strengths and weaknesses from the order
determination strategies. The number of training samples for
all data distributions is kept constant at N = 300, while the
number of inputs varies from p = 2, . . . ,8. Due to the constant
training samples and the increasing input dimension, different
data densities arise.

In case of the uniform distribution and the two normal
distributions 20 random test functions are used and 20 different
instances (per input dimensionality) are generated for the
comparisons. Because there is only one LH design (per input
dimensionality), the number of test functions is increased to
100. For each input dimension the number of test samples
is kept constant at Nt = 1 · 105. The location of the test data
samples is determined by a Sobol sequence [11] for each input
dimension and is fixed for all synthetic functions.

C. Training Algorithm

The training algorithm used here is called HILOMOT
(HIerachical LOcal MOdel Tree) and leads to the model class
of local model networks (LMNs). The construction algorithm
corresponds to the one presented in [12] and is based on the
ideas of hinging hyperplane trees, which are described in [13],
[14] and [15].

LMNs can be expressed in a basis function context, which
means the model output ŷ is calculated as sum of L so called
local models ŷi weighted with their validity functions Φi:

ŷ =
L

∑
i=1

ŷiΦi . (5)

The validity functions describe the regions where the local
models are valid; they represent the contribution of each local
model to the output. For a reasonable interpretation of LMNs
it is mandatory that the validity functions form a partition of
unity:

L

∑
i=1

Φi = 1 . (6)

A training algorithm for LMNs has to determine the param-
eters of the validity functions - leading to the input space par-
titioning - and the parameters of the local models. HILOMOT
typically uses local linear models. The validity regions are
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Fig. 3: Data used for the comparison of different order
determination strategies

generated by sigmoid splitting functions, that are linked in a
hierarchical, multiplicative way, see [12] for more details. The
procedure of the HILOMOT algorithm can be explained with
the help of Fig. 4. Starting with a global linear model, in each
iteration an additional local linear model is generated. The
local model with the worst local error measure is split into two
submodels, such that the spatial resolution is adjusted in an
adaptive way. The linear parameters of the new submodels are
estimated locally by a weighted least squares method, nested
in a nonlinear optimization for the determination of the split-
ting function parameters. In that way the separability of the
nonlinear least squares problem is exploited as recommended
by [16], leading to a computationally very efficient solution.
A major advantage of HILOMOT is the possibility to perform
axes-oblique splits, which makes this training algorithm very
suitable for high-dimensional input spaces. This is achieved
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Fig. 4: Procedure of the HILOMOT algorithm for the first 4
iterations partitioning a 2-dimensional input space

by optimizing the current split direction and position in each
iteration. Only the new split is optimized, all already existing
splits are kept unchanged. The initial split direction for the
optimization is either one of the orthogonal splits or the
direction of the parent split.

D. Synthetic Function Comparison Results

The achieved test errors for an increasing amount of training
data are presented in Fig. 5 for all three data distributions
and input dimensions p = 2, p = 5 and p = 8. Each column
corresponds to one input dimensionality, each row to a data
distribution. Most diverse results are yielded in case of Fig. 5g,
where the experimental design is drawn from two normal
distributions and the input dimensionality is p= 2. In this case
the IKMS turns out to be the best method, since the resulting
test error is for almost all amounts of training data the lowest.
The BGS method lays in between random sequences and
the MDS procedure, which is the worst performing method.
With an increasing input dimensionality, the benefit of IKMS
vanishes and the test errors of all methods get closer to each
other. For input distributions yielding a better coverage of the
input space, all procedures perform equally well except for
MDS, which at least for two dimensional input spaces turns
out to be the worst method. In summary, IKMS seems to
be the most promising approach for the order determination.
Significant advantages can be observed for input distributions
that incorporate a specific structure, while no drawbacks for
uniformly covered input spaces are visible.

IV. COMPARISON ON A CFD METAMODEL

This section compares the effect of different order deter-
mination strategies on the quality of CFD metamodels. CFD
(Computational Fluid Dynamics) is a numerical method to
solve the Navier-Stokes equations which describe the state
of a flow field. The training and test data used in this
section is identical to the CFD dataset used in reference [17]
which discusses metamodels for the prediction of the specific
pressure rise (ψ) and the efficiency (η) of centrifugal fans.
ψ and η represent the metamodel outputs. They depend on
nine geometrical input parameters and one operational input
parameter (the specific flow rate Φ). An optimized LH design
according to [10] is used to generate sets of geometrical inputs.

For each geometry variation, numerous specific flow rates are
simulated by CFD and the corresponding outputs are stored in
the dataset. Altogether the dataset contains the results of 5528
CFD simulations consisting of 928 geometry variations and an
averaged number of approximately 6 flow rate variations for
each fan geometry. All details regarding the gathering of the
data (e.g. a full description of the CFD model) can be found
in [17].

A. Comparison Procedure

In order to compare all order determination strategies on a
fixed data set, where it is not possible to generate an arbitrary
amount of test data, the determination of the test errors differs
from the method described in Sec. III. All available data is
randomly split into 85 % for training and 15 % for testing
purposes. This is done 50 times, such that there are 50 different
training and test data sets. Measurement sequences are only
determined for the training data sets. Again, in steps of 10 % of
the training data, models are generated with HILOMOT (see
Subsec. III-C) and the error on the corresponding test data
is evaluated. As a result, 50 different test errors are obtained
for each amount of training data. The mean value of all 50
normalized root mean squared errors (NRMSE) on test data
serves as comparison criterion.

B. CFD Metamodel Comparison Results

Figure 6a and 6b show the mean NRMSE values on test data
versus the percentage of training samples for the prediction
of ψ and η respectively. Comparing all algorithms, IKMS
and BGS perform equally well whereas MDS has the slowest
increase in terms of model quality. Now, only the worst and
best case of the randomly chosen orders of experimentation
are shown. For each of the 50 data splitting realizations,
ten random sequences are generated, such that there are 500
different random sequences in total. Showing the best and
worst case should provide a feeling how good or bad the
strategies perform on an absolute scale. Note that the NRMSE
values of the worst and best random order do not coincide
with the NRMSE values of the other determination strategies
at 100 % of the used training data. This is due to the fact, that
each of the two shown random sequence curves is generated
with only one of the 50 resulting training data sets. The IKMS
and BGS curves are very close to the best case of all random
sequences for all amounts of used training data. Therefore,
these strategies are not only performing well compared to the
other strategies, but also on an absolute scale.

V. CONCLUSIONS

Models can already be used, while the measurement process
is still in progress. The accuracy of models in early stages
of the measurement process highly depends on the order, in
which the measurements are carried out. This paper presents
several strategies for the order of experimentation determi-
nation given an already existing experimental design for
regression problems in metamodeling tasks. With the help of
a function generator, the data distribution and the data density
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is varied for several randomly generated synthetic functions.
It is shown, that especially dense and structured input data
benefits from well ordered measurements. For sparsely and
uniformly covered input spaces almost all presented ordering
strategies perform equally well. In sum, the proposed IKMS
strategy yields the best results on synthetic functions.

The applicability to real metamodeling tasks is proven with
the help of an existing data set for a CFD metamodel. The
BGS and the IKMS strategy perform equally well and their
average performances are near the best out of 500 randomly
generated orders. Considering the results from the synthetic
functions together with the ones from the CFD metamodel,
the IKMS strategy is recommended to be used.

With the help of the proposed order determination strategies
it is possible to enhance the accuracy of models in early
stages of the measurement process. Especially in combination
with active learning strategies, where additional measurement
queries are determined based on models trained with the
currently available data, improvements can be expected.

For the application on real-world test benches additional
considerations are necessary. The proposed strategies are all
based on distance measures. If there are hard-to-vary factors
on the test bench, a specific input weighting can be used
to influence the algorithms. Through the input weighting,
points appear closer or farther away, such that sequences can
be generated, where hard-to-vary factors are only changed
slightly going from point to point of the ordered list. In a
similar way the concept of blocking can be realized. The
concept of randomization is somehow already included in the
favored methods, i.e. IKMS and BGS, since biggest gaps are
filled. As a result, points that are close to each other in the
input space will be far away in the ordered lists generated by
IKMS and BGS. Thus, the time between the measurements of
two similar measuring points is increased and effects resulting
from factors, that can not be controlled, can average out.
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