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SUMMARY 

Due to increasing energy cost and the challenges in the context of climate change there 
is a permanent demand to enhance the energy efficiency of fans. This paper discusses 
the theoretical aerodynamic efficiency limit that cannot be exceeded regardless of the 
effort made to optimize the fan. It is distinguished between two efficiency definitions 
(total-to-total and total-to-static) and four fan types (axial rotor-only, axial with guide 
vanes, radial rotor-only and radial with volute). For each fan type, the inevitable aero-
dynamic losses are estimated as a function of the design point and the Reynolds num-
ber. Inevitable losses are e.g. friction losses, shock losses and exit losses. Aiming at the 
insuperable efficiency limit, the models to estimate the friction losses are based on a set 
of idealizing assumptions and the exit losses are minimized by an optimal spanwise load 
distribution. Since the focus is on the aerodynamic efficiency limit, losses in the motor 
and the drive drain are neglected. 

The resulting efficiencies are depicted assuming an exemplary Reynolds number of one 
million. It is found that the impact of the design point is very strong, especially with re-
gard to the exit losses which increase with decreasing specific fan speed and diameter. 
Friction losses become relevant at design points with high pressure coefficients. At such 
design points, the width of radial impellers becomes very small and axial fans feature 
large hub-to-tip ratios wherefore the wall effects from hub and shroud increase. The ef-
ficiency of radial fans is further impaired by increased friction between the bottom disc 
and shroud with the surrounding air. 
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INTRODUCTION 

High energy efficiency has always been a major concern in fan design. In classic design methods, 
the pursuit of high efficiency is mainly based on empirical knowledge, see e.g. Pfleiderer [1, 2] or 
Bommes [3] for radial fans. Due to increased computational capacities, the flow field analysis by 
means of Computational Fluid Dynamics (CFD) has gained importance in the last decades and 
proved to be an adequate tool to overcome the restriction to empirical knowledge. Today, CFD is 
often coupled with optimization algorithms that indentify the optimal geometrical parameters for a 
given aerodynamic objective function. The efficiency that can be achieved with CFD-based optimi-
zation strongly depends on the parameterization of the fan geometry and the quality of the CFD 
model. Generally, it is not possible to estimate how much potential for further improvement was 
unexploited due to limiting the optimization problem to a specific geometrical parameter space. Pre-
knowledge about the theoretical efficiency limit would hence be of great value. Previous work on 
efficiency limits of axial rotor-only fans was e.g. performed by van Backström et al. [4] and in an 
earlier study of the authors of this paper [5]. 

The present study also discusses the efficiency limit, but is more universal as it takes four distinct 
fan types into account: axial rotor-only, axial with guide vanes, radial rotor-only and radial with vo-
lute. Moreover, the efficiency limit is treated as a function of Reynolds number and design point. 
Definitions of Reynolds number, design point and efficiency are provided and discussed below. 

The Reynolds number is defined with the fan diameter D, the tip speed u and the kinematic viscos-
ity of the working fluid (mostly air) ν: 

 
2
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N is the rotational speed. The design point is characterized by the flow rate Q and the total-to-total 
pressure rise ∆ptt = pt2 - pt1 where the index "t" means total and the indices "1" and "2" refer to posi-
tions upstream and downstream of the impeller, respectively. For the sake of universality, the de-
sign point should rather be defined in a non-dimensional way. There are two common ways to de-
fine the non-dimensional design point. One way is to non-dimensionalize the flow rate Q and the 
total-to-total pressure rise ∆ptt with the fan diameter, the fan speed and the fluid density ρ yielding 
the flow coefficient ϕ and the total-to-total pressure coefficient ψtt, respectively. The product of 
both coefficients yields the power coefficient λ: 
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Alternatively, the fan speed and the fan diameter can be non-dimensionalized with the aerody-
namic quantities Q and ∆ptt yielding the specific fan speed σ and the specific fan diameter δ, re-
spectively: 
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Both definitions of the non-dimensional design point are relevant in this work. ϕ and ψtt are used to 
estimate the inevitable losses and hence the maximum possible efficiency as a function of the de-
sign point. The results, however, are depicted in σ-δ diagrams to be comparable to the fundamental 
work by Cordier in the 1950s [6]. 
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The efficiency is defined as the quotient of the flow power and the shaft power: 
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Tshaft is the torque of the driving shaft. Eq. (7) is general in the sense that no index is applied to the 
efficiency η and the pressure rise ∆p. Two distinctions are common in praxis. Firstly, the pressure 
rise can be defined as the difference between the static pressure downstream of the fan p2 and the 
total pressure upstream of the fan pt1 yielding the total-to-static pressure rise ∆pts and the total-to-
static efficiency ηts. In this definition, the dynamic pressure downstream of the fan pdyn2 is regarded 
as a loss which is a useful assumption for fans that exhaust into the free environment. In other in-
stallations, however, pdyn2 is relevant and needs to be considered in the computation of the effi-
ciency. This generally represents a challenge as the determination of pdyn2 requires knowledge about 
the velocity field downstream of the fan including the swirl velocity and all local non-uniformities. 
The international standard ISO 5801 [7] suggests a simplified method to calculate the total-to-total 
pressure which only uses the area-averaged meridional velocity to compute the dynamic pressure, 
but neglects the swirl and the non-uniformity of the flow field: 
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Pressures and efficiencies computed in that way are called "pseudo" in this paper and indicated with 
the superscript "*" to distinguish them from the physically correct total-to-total pressure and effi-
ciency which also take into account the swirl velocity and the non-uniformity of the flow field. The 
exit areas A2 are defined according to eq. (9): 
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b2 is the distance between the bottom disc and the shroud at the outlet of a radial impeller. 

 

METHODOLOGY 

General concept 

Inevitable losses occur due to internal friction (index "if "), external friction (index "ef ") and Car-
not-diffuser type shock losses (index "s"). While internal friction is a general phenomenon of all fan 
types, external friction is only relevant for radial fans where the rotating bottom disc and shroud 
interact with the surrounding air. Shock losses are only relevant for the transition from the exit of a 
radial impeller to the volute. A partial efficiency is defined for each of the three loss mechanisms 
and the product of all partial efficiencies yields the total-to-total efficiency: 

 tt if ef sη η η η= ⋅ ⋅  (10) 

The volumetric efficiency was neglected since it is assumed that all gaps are sealed in optimal fans. 
Next, the exit losses need to be considered. To this end, the degree of reaction 
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is introduced. ψdyn,2 is the pressure coefficient associated with the dynamic pressure in the exit plane 
and λdyn,2 is the corresponding power coefficient. The product of the degree of reaction and the to-
tal-to-total efficiency eventually yields the desired values of ηts and *

ttη : 

 , * *
ts tt ts tt tt ttR Rη η η η= ⋅ = ⋅  (13, 14) 

In the following, equations to calculate the partial efficiencies and the degree of reaction as a func-
tion of the design point and the Reynolds number are derived. The derivations are based on a set of 
idealizing assumptions wherefore the resulting efficiencies can be regarded as an upper limit which 
cannot be exceeded. 

Maximum efficiency of axial rotor-only fans 

The flow field in an ideal axial impeller is two-dimensional, i.e. the velocity vectors have no com-
ponent in the radial direction. Given this idealizing assumption, the flow field around the blade at a 
specific radial position equals the flow field around a two-dimensional airfoil and the airfoil drag-
to-lift ratio can be used to estimate the losses. Near hub and shroud, however, three dimensional 
wall effects are very strong and the corresponding losses need to be considered even for ideal fans. 
Both loss mechanisms belong to the internal friction with the associated partial efficiency ηif. Ex-
ternal friction and shock losses are not relevant for axial fans. Altogether, the total-to-total effi-
ciency of axial rotor-only fans can be computed by eq. (15):  
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The middle term on the right hand side considers the profile losses of aerodynamically optimized 
airfoils after Molly [8]. The last term considers the wall effects after Marcinowski [9]. This term 
contains the hub-to-tip ratio ν which is unknown so far. However, optimal values of ν will be found 
in the context of the exit loss minimization, see below. 

In order to calculate the desired efficiencies ηts and *
ttη , the degrees of reaction Rts and *

ttR  must be 
known in addition to ηtt. They depend on the spanwise velocity distribution and on the hub-to-tip 
ratio. Velocity distributions and hub-to-tip ratios that lead to maximal degrees of reaction are inden-
tified by an optimization scheme. The objective function, the constraints and the free optimization 
parameters are derived hereafter. The method to solve of the optimization problem is described in 
the appendix. 

The maximization of the degrees of reaction is identical to the minimization of the power associated 
with the exit losses Pdyn,2. Pdyn,2 is calculated as the integral of the local dynamic pressure pdyn,2 with 
respect to the local flow rate dQ in the exit plane A2: 
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cm,2 is the meridional velocity, cu,2 is the circumferential velocity and the indices "h" and "s" stand 
for hub and shroud, respectively. Note that eq. (16) assumes constant velocities cm,2 and cu,2 in 
circumferential direction representing a further idealizing assumption. Applying eq. (4) to non-
dimensionalize Pdyn,2 and introducing the non-dimensional velocity coefficients ϕc = c/u and the 
non-dimensional radius r* = 2·r/D yields the power coefficient associated with the exit losses: 
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This power coefficient shall be minimized. Its magnitude depends on the radial distributions of ϕcm,2 
and ϕcu,2 and the hub-to-tip ratio ν. Generally, the velocity distributions are arbitrary and continu-
ous. For the purpose of optimization, however, the radial velocity distributions had to be discretized 
which was performed using 1,000 equally spaced points between hub and tip. λdyn,2 is hence ap-
proximated by 
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where ∆r* is the radial distance between two points. The minimization of λdyn,2 is subject to a set of 
constraints. The first constraint deals with the radial distribution of ϕcm,2 which must yield the de-
sired flow coefficient ϕ: 
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The second constraint ensures that the radial distributions of ϕcm,2 and ϕcu,2 yield the desired power 
coefficient. The power coefficient is calculated as the integral of the local total-to-total pressure co-
efficient with respect to the local flow coefficient. The local pressure coefficient is computed as the 
product of the local theoretical pressure coefficient according to Euler's equation of turbomachinery 
and the total-to-total efficiency ηtt (see eq. (15)) which is assumed to be constant over the blade 
height. Altogether, the second constraint can be expressed as follows: 
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The third and forth constraint limits the allowable values of ϕcm,2 and ϕcu,2, respectively. ϕcm,2 must 
always be positive, i.e. local backflow is prohibitive. ϕcu,2 must also be positive. In addition, it must 
not exceed the value of 1 which is corresponds to cu,2 = u and represents the theoretically maximal 
swirl velocity in fans. 

 20 cm, ,iϕ≤  (21) 

 20 1cu , ,iϕ≤ ≤  (22) 

The fifths and last constraint takes the radial equilibrium after Horlock [10] into account which 
stipulates that ϕcm,2(r

*) and ϕcu,2(r
*) are not independent from each other. The dependency follows a 

differential equation which was non-dimensionalized for the present work: 
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As a consequence of eq. (23), ϕcm,2 is not regarded as a free optimization parameter because it is 
fully governed by the swirl distribution ϕcu,2(r

*). Hence, the optimization problem reduces to find-
ing the optimal swirl distribution and the optimal hub-to-tip ratio that minimize eq. (18) subject to 
the constraints stated in eq. (19) to (23). The optimization method used to solve this problem is de-
scribed in the appendix. Once the optimization was performed, the optimal degrees of reaction and 



FAN 2018   6 
Darmstadt (Germany), 18 – 20 April 2018 

the total-to-total efficiency as obtained from eq. (15) are inserted into eq. (13) and (14) yielding the 
maximum achievable efficiencies ηts and *

ttη  of an axial rotor-only fan. 

Maximum efficiency of axial fans with guide vanes 

The model to estimate the internal friction losses of an axial impeller is also applied to the guide 
vanes. Hence, the efficiency of both components is computed according to eq. (15) and the overall 
efficiency of the whole fan stage becomes: 
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The computation of the exit losses is much easier as compared to the axial rotor-only fan. The swirl 
is assumed to be fully recovered by the guide vanes wherefore is does not contribute to the exit 
losses. The meridional velocity is assumed to be constant over the radius which - according to the 
radial equilibrium stated in eq. (23) - occurs if the product r*

·ϕcu,2 is held constant in radial direc-
tion. In that case, the power coefficient associated with the exit losses becomes 
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Clearly, eq. (24) and (25) suggests making the hub-to-tip ratio as small as possible - irrespective of 
the design point. In order to obtain more realistic hub-to-tip ratios, the hub-to-tip ratios as obtained 
from the rotor-only optimization were also applied to the axial fans with guide vanes. 

λdyn,2 as obtained from eq. (25) is used to calculate the degrees of reaction according to eq. (11) and 
(12) which - together with the total-total efficiency obtained from eq. (24) - yield the maximum 
achievable efficiency of axial fans with guide vanes using eq. (13) and (14). 

Maximum efficiency of radial rotor-only fans 

The internal friction of radial impellers is calculated with a similar model as used for the axial im-
pellers, i.e. the profile losses are estimated with the model by Molly [8] and the wall effects are es-
timated with the model by Marcinowski [9]. The application of those models to radial impellers im-
plies weaknesses. The model by Molly was developed for airfoils. While one blade segment of an 
ideal axial impeller acts like an airfoil, this assumption is only a rough estimate for blade segments 
of radial impellers. The model by Marcinowski involves the hub-to-tip ratio ν to estimate the im-
pact of the wall effects. The model is constructed such that the losses become infinite if the distance 
between the walls (hub and shroud) becomes zero and decreases with increasing distance. The same 
qualitative effect is obtained for radial impellers when replacing the role of ν with b2/D. However, 
the model is quantitatively unproven and only represents the best estimate that is available at pre-
sent. Altogether, the total-to-total efficiency is calculated by 
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External losses originate from friction between the rotating walls (bottom disc and shroud) with the 
surrounding air. Sigloch [11] suggests that the power loss coefficient of a rotating plate is computed 
by 
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Eq. (27) can be readily applied to estimate the losses at the bottom disc. The shroud, however, has 
an inner hole which forms the impeller inlet. The size of that hole is calculated based on recom-
mendations by Bommes [3] and the loss coefficient is reduced accordingly. The power loss due to 
external friction needs to be compensated by additional shaft power wherefore the efficiency asso-
ciated with the external friction becomes 

 ef
loss ,ov

λη
λ λ

=
+

, (28) 

where λloss,ov is the overall loss coefficient comprising the contributions from bottom disc and 
shroud. The product of eq. (26) and (27) yields the total-to-total efficiency: 
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The exit losses contain contributions from the meridional and the circumferential velocity compo-
nent. Minimal exit losses occur if the velocities are constant over the exit plane. In contrast to axial 
impellers where the velocities are linked via the radial equilibrium, constant distribution of both ve-
locity components is a valid assumption for ideal radial impellers. The power coefficient associated 
with the exit losses thus becomes 

 ( )2 2
2 2 2 2dyn, dyn, cm, cu ,λ ϕψ ϕ ϕ ϕ= = + . (30) 

In order to obtain a constant velocity profile, cm,2 is calculated as the quotient of flow rate Q and 
exit area A2. The corresponding velocity coefficient ϕcm,2 is obtained by normalizing cm,2 with the 
tip speed u: 

 2
2

22 2 4

m,
cm,

c Q Q
bu A u Db u
D

ϕϕ
π

= = = =  (31) 

Euler's equation of turbomachinery yields the theoretically required circumferential velocity to ob-
tain the desired pressure rise. This velocity is divided by the total-to-total efficiency according to 
eq. (29) to obtain the actually required circumferential velocity. Normalizing it with the tip speed u 
finally yields: 
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Unfortunately, ϕcm,2 and ηtt not only depend on the design point and the Reynolds number but also 
on the geometric quantity b2/D. A similar problem is already known from the axial fans where ade-
quate values of the hub-to-tip ratio ν had to be found. In contrast to ν, b2 should not be demined by 
an optimization scheme. Eq. (26) and (31) clearly suggest making b2 as large as possible - without 
any natural limit. In practice, this would strongly increase the friction losses and eq. (29) would be-
come too optimistic. Therefore, the empirical recommendation by Bommes [3] was used to obtain 
b2/D. 

The thus obtained values of ϕcm,2, ϕcu2 and ηtt can be inserted into eq. (11) to (14) to obtain the de-
grees of reaction and eventually the maximum achievable efficiencies of radial rotor-only fans. 
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Maximum efficiency of radial fans with volute 

The internal and external friction of an isolated radial impeller (eq. (29)) persists in a radial fan with 
volute. Additionally, the internal friction in the volute and the shock losses associated with the sud-
den expansion between the impeller exit and the volute inlet must be taken into account. Idelchik 
[12] estimates that the efficiency of diffusers that reduce the dynamic pressure to a negligible 
amount is approximately 91 %. Assuming that the volute acts like such a diffuser, the partial effi-
ciency associated with the internal friction in the volute becomes ηif,volute = 0.91. 

According to Idelchik [12] the shock loss coefficient of a sudden expansion can be estimated by 
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where n is the expansion ratio. For the present case of application, we assume n = 2 and hence 
ζ = 0.25. This loss coefficient is multiplied with the dynamic pressure at the impeller exit to obtain 
the exit loss. The corresponding efficiency is obtained as the flow power after expansion divided 
by the flow power prior to expansion: 

 20 25 dyn,
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Multiplying the efficiencies of the shock and friction losses in the volute to the previously derived 
total-to-total efficiency of a radial rotor-only fan eventually yields the total-to-total efficiency of a 
radial fan with volute: 
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 (35) 

Since it was assumed that the volute reduces the dynamic pressure to a negligible amount, the de-
grees of reaction are not needed and the maximum achievable efficiency of radial fans with volutes 
becomes 

 *
ts tt ttη η η= = . (36) 

 

RESULTS 

Preliminary remarks 

The equations derived above are suitable to identify the maximum achievable efficiency as a func-
tion of four parameters: the flow coefficient ϕ, the pressure coefficient ψtt, the Reynolds number Re 
and the fan type. For reasons of space and clarity, the effect of the Reynolds number is not dis-
cussed in the following since its influence is small compared to the influence of the design point 
and since the qualitative effect of Reynolds number is readily known (η increases with Re). As an 
example, all of the following results are based on a Reynolds number of one million. 

Although the efficiency limit was derived as a function of ϕ and ψtt, the results are depicted in σ-δ 
diagrams to be comparable to the fundamental work by Cordier in the 1950s [6]. The relationship 
between the two ways to express the non-dimensional design point is 

 1 3ϕ σ δ− −=  and 2 2
ttψ σ δ− −= . (37, 38) 
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Fig. 1 illustrates this relationship through colored areas in a σ-δ and a ϕ-ψtt diagram where utiliza-
tion of the same color in both diagrams indicates that the design points are identical. Axial fans are 
typically used for high σ and ϕ but low δ and ψtt (reddish area). Radial fans are typically used for 
low ϕ and σ but high ψtt and δ (greenish area). Cordier [6] found that feasible design points are 
placed in a narrow band in the σ-δ diagram. The design points used for Fig. 1 and all subsequent 
figures are restricted to this band. 

Discussion of the efficiency limits 

Fig. 2 depicts the maximum achievable efficiency of axial fans with guide vanes. *ttη  reaches values 
between 80 and 95 %. The lowest values are obtained at design points with large specific fan di-
ameters. Such design points lead to large hub-to-tip ratios that increase the wall effects according to 
eq. (15). ηts is similar to *

ttη  at design points with small high specific fan diameters. Decreasing spe-
cific fan diameters (= increasing flow coefficients), however, increase the exit losses associated 
with ϕcm,2 and cause a major difference between ηts and *

ttη . 

Compared to axial fans with guide vanes, axial rotor-only fans have lower friction losses but higher 
exit losses associated with ϕcu,2. Fig. 3 shows that the effect of increased exit losses dominates at 
almost all design points. The additional exit losses are highest at design points with large ψtt and 
low σ and δ. 

As described in the methodology section, the exit losses of radial fans with volute are negligible 
wherefore ηts and *

ttη  are identical. Fig. 4 shows that most design points feature efficiencies be-
tween 80 and 85 %.  A decay of efficiency is observed at large specific fan diameters which are as-
sociated with high external friction losses and increased wall effects, see eq. (29). 

Omitting the volute decreases the friction losses but increases the exit losses which is the more rele-
vant effect at most design points, see Fig. 5. At very low pressure coefficients, however, the recov-
erable swirl energy is low and a volute potentially decreases *ttη . In contrast, ηts always profits from 
volutes due to the pressure recovery from the meridional velocity. 

 

 

 

Figure 1: Relationship between the two ways to express the non-dimensional design point. Utilization of the same colors 
in both diagrams indicates that the design points are identical 
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Figure 3: Efficiency limit of axial rotor-only fans (Re = 106) 

 

 

Figure 4: Efficiency limit of radial fans with volute (Re = 106) 

 

   

Figure 5: Efficiency limit of radial rotor-only fans (Re = 106) 

   

Figure 2: Efficiency limit of axial fans with guide vanes (Re = 106) 
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CONCLUSIONS 

A model-based analytical method to estimate the maximum achievable aerodynamic efficiency of 
fans was presented. Four fan types (axial rotor-only, axial with guide vanes, radial rotor-only and 
radial with volute) and two efficiency definitions (total-to-static and total-to-total) were considered. 
The maximum achievable efficiency of each fan type was estimated as a function of the design 
point and the Reynolds number. To this end, loss models estimating internal friction, external fric-
tion, shock losses and exit losses were derived. Aiming at the theoretical efficiency limit that can by 
no means be exceeded, a set of idealizing assumptions was applied in the loss models. 

This work is theoretical in the sense that the developed method does not yield the fan required to 
actually reach the estimated efficiency limit. In fact, it is doubtful if the efficiency values can be 
realized in practice. Therefore, current research focuses on the estimation of practically achievable 
efficiency limits stemming from CFD-based optimization. 
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APPENDIX 

Maximization of the degrees of reaction of axial rotor-only fans 

The objective function is to minimize the power coefficient λdyn,2 which depends on several vari-
ables. It is distinguished between design variables α that shall be optimized (here: swirl distribution 
ϕcu,2 and hub- hub-to-tip ratio ν) and state variables U which are a direct consequence of the design 
variables and are therefore not varied freely in the optimization scheme (here: ϕcm,2). 

The optimization problem was solved with the conjugate-gradient method which belongs to the 
class of nonlinear gradient-based optimization methods, see Nelles [13] for a detailed description. 
Application of a gradient-based optimization method requires knowledge about the gradient of the 
objective function with respect to the design variables. A general formulation the objective function 
of a constrained optimization problem is 

 minimize L J k R= + ⋅  (39) 

where L is called the Lagrange function, J is the original objective function (without accounting for 
constraints), R measures the violation of the constraints and the weighting factor k is called the La-
grange multiplier. In the present case of application, however, the constraints associated with the 
fulfillment of the design point and the minimum/maximum values of ϕcm,2 and ϕcu,2 were also as-
signed to J via penalty terms wherefore the term k·R only accounts for the radial equilibrium stated 
in eq. (23). Note that due to the discretization of the velocity profile at 1,000 points, k and R are 
vectors with 1,000 elements each. 

The easiest way to obtain the gradient of L with respect α is to use the method of finite differences 
in which each element of α is changed by a small but yet finite value, the corresponding value of L 
is calculated and the quotient of the changes in L and α is used as an approximation of the partial 
derivative. The associated computational cost, however, would be immense because the state vari-
ables would need to be recomputed for each variation of the design variables involving the numeri-
cal solution of eq. (23). For that reason, the method of finite differences was only used to obtain the 
gradient with respect to ν. The gradient with respect to the 1,000 values of ϕcu,2 was calculated us-
ing the adjoint method which has the overwhelming advantage that the computational cost is inde-
pendent from the number of design variables. Giles and Pierce [14] provide a general introduction 
into the discrete adjoint method which was used as the basis for the present case of application. The 
total derivative of L with respect to α is 

 
d d

d d

L J R U J R
k k

U Uα α α α
∂ ∂ ∂ ∂   = + ⋅ + + ⋅   ∂ ∂ ∂ ∂   

. (40) 

The trick behind the adjoint method is to select the Lagrange multiplier k such that the derivation of 
the state variables with respect to the design variables vanishes from eq. (40): 
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Therefore, the gradient only depends on the computationally cheap partial derivatives of J and R 
with respect to α and U. The computational cost for computing the required Lagrange multiplier k is 
in the same order of magnitude as a single computation of U for one set of design variables - irre-
spective of the number of design variables. 


