D. Eifler

Herausforderung Radsatzstähle – Materialverhalten von hochbelasteten Eisenbahnradsätzen im VHCF-Bereich

www.uni-kl.de/WKK

The locomotive "Amstetten" derailed on the railway line Salzburg-Linz (Austria). The accident was caused by a broken axle (1875).

Historical examples

- Introduction
- Measurement techniques
- Material

SAE1050 (R7)

- Results

Load increase tests Constant amplitude tests Ultrasonic VHCF tests

- Conclusions

Outline

Fatigue tests in the VHCF-regime

Schematic fatigue life diagram

Measurement techniques and investigated material

Measurement techniques and investigated material

The resistivity ρ^* is directly influenced by <u>deformation induced changes of the</u> <u>microstructure</u>

- ⇒ dislocation density
- ⇒ dislocation arrangement
- ⇒ vacancies
- ⇒ micro-shrinkage cavities
- ⇒ micro-pinholes and micro-cracks

⇒ ...

Change in electrical resistance $\Delta \mathbf{R}$

TECHNISCHE UNIVERSITÄT KAISERSLAUTERN

Institute of Materials Science and Engineering

Measurement methods during fatigue tests

ICE 3

Microstructure

Specimen position

SAE 1050 (R7)

Elements	С	Si	Mn	Cr	Cu	Мо	Ni
[wt%]	0.50	0.31	0.75	0.23	0.02	0.01	0.14

Chemical composition of SAE 1050 (R7) and specimen positions

TECHNISCHE UNIVERSITÄT KAISERSLAUTERN

Institute of Materials Science and Engineering

Strand casting ingot 1300°C

Manufacturing

SAMT 2020, Universität Siegen, 09.07.2015

Flanging

press

Specimen position

TECHNISCHE UNIVERSITÄT KAISERSLAUTERN

Institute of Materials Science and Engineering

 $R_{\sigma} = -1$, $\sigma_{a, \text{ start}} = 100 \text{ MPa}$, $\Delta \sigma_{a} = 20 \text{ MPa}$, $\Delta N = 9 \cdot 10^{3}$, f = 5 Hz

Load increase test

Load increase test

 $R_{\sigma} = -1$, $\sigma_{a, \text{ start}} = 100 \text{ MPa}$, $\Delta \sigma_{a} = 20 \text{ MPa}$, $\Delta N = 9 \cdot 10^{3}$, f = 5 Hz

Load increase test

TECHNISCHE UNIVERSITÄT KAISERSLAUTERN

Institute of Materials Science and Engineering

TECHNISCHE UNIVERSITÄT KAISERSLAUTERN

Institute of Materials Science and Engineering

Fatigue life calculation "PHYBALLIT"

Load increase and constant amplitude tests

Fatigue life calculation method "PHYBALLIT"

Calculation of the S-N curve on the basis of one load increase and two constant amplitude tests

Fatigue life calculation method "PHYBAL_{LIT}"

- The plastic strain amplitude, the change in temperature and the change in resistance can be equivalently used for the detailed characterisation of the fatigue behaviour and the precise fatigue life calculation of metallic materials.
- On the basis of generalised Morrow and Basquin equations the physically based fatigue life calculation method "PHYBAL_{LIT}" was developed.
- This new short-time procedure allows the fast and accurate calculation of Woehler curves using cyclic deformation data of only three fatigue tests.
- With a total running time of about two days per material and heat treatment "PHYBAL_{LIT}" yields an enormous saving of time and costs compared to the conventional determination of Woehler curves with about 30 days for constant amplitude tests with f = 5 Hz until N = 2.10⁶ cycles.

Conclusions

Measurement techniques and investigated material

VHCF testing facility

Data measured during the fatigue test

Amplitude course

Load increase test (LIT) with an ultrasonic testing facility

LIT: analysis of the power and energy course

LIT: analysis of the power and energy course

Electrical resistivity course

SAMT 2020, Universität Siegen, 09.07.2015

TEM-investigations at defined fatigue states

Cementite lamellae distance: 0,168 µm

TEM-micrographs: initial state, N = 0

TEM-micrographs: $N = 10^7$, $s_a = 385$ MPa

Cementite lamellae distance: 0,175 µm

TEM-micrographs: $N = 10^9$, $s_a = 385$ MPa

LIT: SEM-investigations

TECHNISCHE UNIVERSITÄT KAISERSLAUTERN

Institute of Materials Science and Engineering

LIT, interruption of the test at $P_{max} = 1000 W$

In- / Extrusion

In- / Extrusion

LIT: SEM micrographs, $N = 4.07 \cdot 10^7$

LIT: SEM micrographs, $N = 4.07 \cdot 10^7$

- Load increase and constant amplitude tests at the railway wheel steel SAE 1050 (R7) were carried out with the ultrasonic testing facility of the type UltraFAST-Kaiserslautern
- The physical quantities
 - generator power
 - specimen temperature and
 - electrical resistance
 - can be used to characterize the cyclic deformation behavior in the VHCF regime
- SEM investigations prove that there exists a direct relation between the measured physical quantities and the observed microstructural changes
- On-line monitoring of power and temperature changes can be used as indicators of an increasing defect density in the bulk of the material during VHCF
- Especially the generator power can be used as a non-destructive testing method to characterize the actual fatigue status in the very high cycle regime

Conclusions

Thank you very much for your attention

M. Koster, S. Heinz, P. Starke, D. Eifler

www.uni-kl.de/WKK