Dr.-Ing. Jörg Franke Lehrstuhl für Fluiddynamik und Strömungstechnik

Name:	Vorname:
MatrNr.:	MB-DI / MB-DII / IP-DII / WIW-DII BSc-MB / BSc-MBD / BSc-BIBME
	Aufgabe 1)
Beurteilung:	Gesamtpunktzahl
Platz-Nr.:	

KLAUSUR STRÖMUNGSLEHRE

Studiengänge Maschinenbau

und

Wirtschaftsingenieurwesen

Aufgabe 1:

(3,5 **Punkte**)

Der Füllstand H_2 des Öls in einem Tank wird durch ein angeschlossenes U-Rohr Manometer über die Meniskendifferenz Δh_1 bestimmt, siehe Abbildung 1. Die Messflüssigkeit hat die Dichte ρ_M (> $\rho_{\ddot{O}l}$). Über der Messflüssigkeit und dem Öl herrscht der konstante Atmosphärendruck p_a .

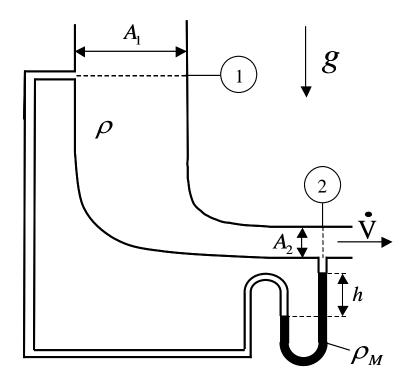
a) Man bestimme die Füllhöhe H₂ in Abhängigkeit gegebener Größen.

Durch Regen gelangt Wasser mit der Dichte ρ_W in den Tank, siehe Abbildung 2. Dadurch ergibt sich die neue Meniskendifferenz Δh_2 im U-Rohr Manometer. Über der Messflüssigkeit und dem Wasser herrscht der konstante Atmosphärendruck p_a .

b) Man bestimme die Höhe der Wasserschicht H₁ in Abhängigkeit gegebener Größen.

Gegeben sind: ρ_{Ol} , ρ_{M} , ρ_{W} , Δh_{1} , Δh_{2} .

Abbildung 1 Abbildung 2

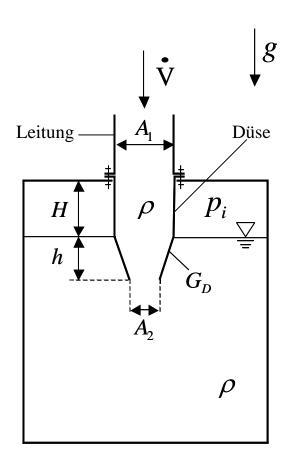

Aufgabe 2:

(3,5 Punkte)

Eine Flüssigkeit mit der Dichte ρ strömt stationär und reibungsfrei durch ein gekrümmtes Rohrstück, dessen Querschnittsfläche sich zwischen den Stellen 1 und 2 von A_1 auf A_2 verringert. Die Strömung in dem Rohrstück ist eindimensional, d.h. Druck und Geschwindigkeit sind über die jeweiligen Querschnitte konstant. Zwischen den Wandanbohrungen bei 1 und 2 befindet sich ein U-Rohr Manometer, in dem die Messflüssigkeit mit der Dichte ρ_M (> ρ) die Meniskendifferenz h hat.

Wie groß ist der Volumenstrom \dot{V} durch das Rohrstück in Abhängigkeit gegebener Größen?

Gegeben sind: A_1 , A_2 , h, g, ρ , ρ_M .

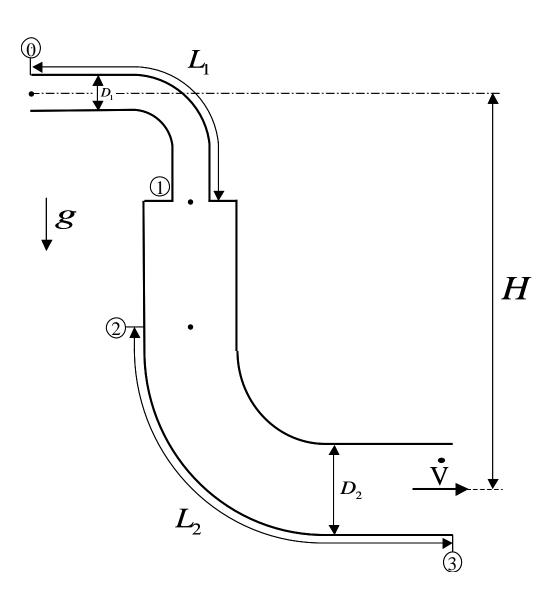

Aufgabe 3:

(6,5 Punkte)

Wasser (Dichte ρ) strömt stationär mit einem gegebenen Volumenstrom \dot{V} durch eine Leitung mit rechteckiger Querschnittsfläche A_1 und eine ebenfalls rechteckige Düse mit Austrittsquerschnittsfläche A_2 in einen großen Behälter. Leitung und Düse haben dieselbe Tiefe. Die Düse hat das Gewicht G_D und ist an der oberen Behälterwand festgeschraubt, siehe Abbildung. Die Wandstärke der Düse ist vernachlässigbar klein. Der Düsenaustritt liegt um h unterhalb der freien Oberfläche, über welcher der konstante Druck p_i herrscht.

Unter der Annahme reibungsfreier Strömung in Leitung und Düse bestimme man die Haltekraft \vec{F}_H , die in der Verschraubung wirkt und die Düse im Gleichgewicht hält, nach Größe und Richtung.

Gegeben sind: ρ , \dot{V} , A_1 , A_2 , G_D .


Aufgabe 4:

(6,5 Punkte)

Eine NEWTONsche Flüssigkeit (Dichte ρ , dynamische Viskosität μ) strömt mit gegebenem Volumenstrom \dot{V} durch das abgebildete Leitungssystem. In dem Rohr mit Durchmesser D_1 und Länge L_1 , welches einen 90° Krümmer mit Verlustbeiwert ξ_{Kr} enthält, liegt zwischen Stelle 0 und 1 ausgebildete Strömung vor. Bei Stelle 1 befindet sich eine plötzliche Querschnittserweiterung auf den Durchmesser D_2 . Ab Stelle 2 liegt in dem Rohrstück der Länge L_2 bis zur Stelle 3 wieder ausgebildete Strömung vor. Der 90° Krümmer hat ebenfalls den Verlustbeiwert ξ_{Kr} .

Wie groß ist der Druckverlust $p_0 - p_3$ im abgebildeten Leitungssystem in Abhängigkeit gegebener Größen?

Gegeben sind:
$$\rho = 1000 \ kg/m^3, \ \mu = 40 \cdot 10^{-6} \ kg/(m \ s), \ \dot{V} = 1.256 \cdot 10^{-5} \ m^3/s, \ D_1 = 0.1 \ m, \\ D_2 = 2 \ D_1, \ L_1, \ L_2, \ H, \ g, \ \xi_{Kr}.$$

