Univ.-Prof. Dr.-Ing. Wolfram Frank Lehrstuhl für Fluiddynamik und Strömungstechnik

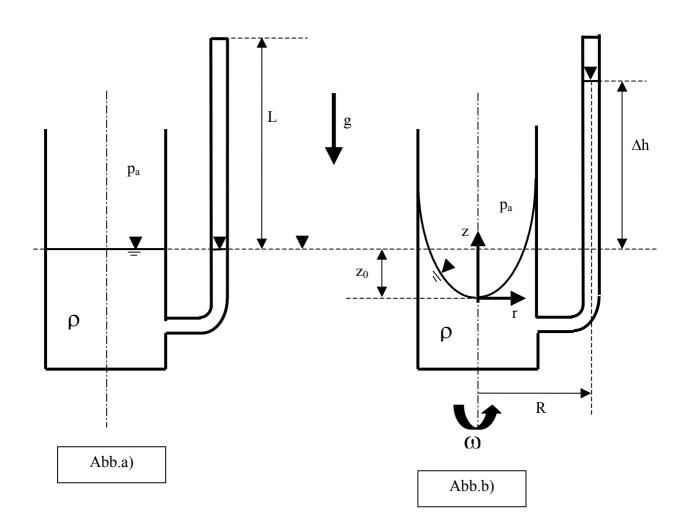
Name:	Vorname
MatrNr.:	HS I / HS II / IP / WI Aufgabe 1) Aufgabe 2) Aufgabe 3) Aufgabe 4) Zusatzpunkte/ Testklausur
	Gesamtpunktzahl
Beurteilung:	
Platz-Nr.:	

KLAUSUR STRÖMUNGSLEHRE

Studium Maschinenbau

und

Wirtschaftsingenieurwesen

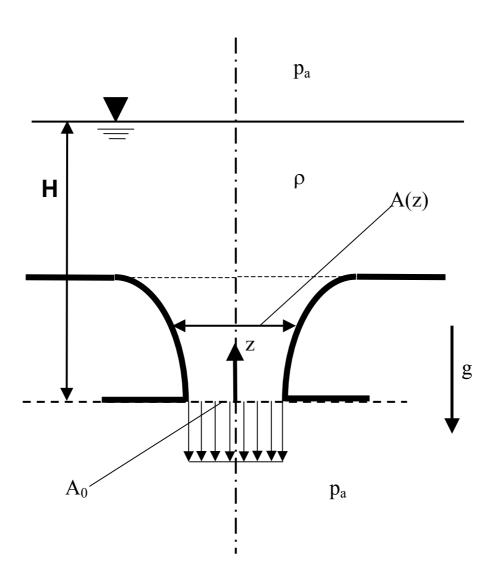

Aufgabe 1: (5 Punkte)

An einem kreiszylindrischen, offenen Behälter ist ein Steigrohr mit konstantem Querschnitt montiert, dessen vertikale Achse den Abstand R von der Behälterachse hat und dessen oberes Ende verschlossen ist. Behälter und Steigrohr sind, wie in Abb.a) zu sehen, mit einer inkompressiblen Flüssigkeit (Dichte ρ) gefüllt, deren Menisken im Ruhezustand im Behälter und im Steigrohr dieselbe Höhe haben. Der obere Teil des Steigrohres, der die Länge L hat, ist mit Luft (= ideales Gas) gefüllt (siehe Abb.a)).

Behälter mit Steigrohr und Flüssigkeit sollen nun mit konstanter Winkelgeschwindigkeit ω um die vertikale Behälterachse rotieren. Dadurch wird der Meniskus im Steigrohr um Δh angehoben, während sich der tiefste Punkt der freien Oberfläche um die Höhe z_0 absenkt. Über der Oberfläche herrsche der konstante Außendruck p_a (s. Abb.b)).

Man bestimme in Abhängigkeit gegebener Größen die Oberflächenabsenkung z_0 . Dabei soll für die im Steigrohr eingeschlossene Luft isotherme Zustandsänderung angenommen werden. Die Meniskenoberfläche im Steigrohr kann näherungsweise als horizontal angenommen werden. Man verwende das eingezeichnete Koordinatensystem.

Gegeben sind: L, R, ρ , ω , p_a , g, Δh .

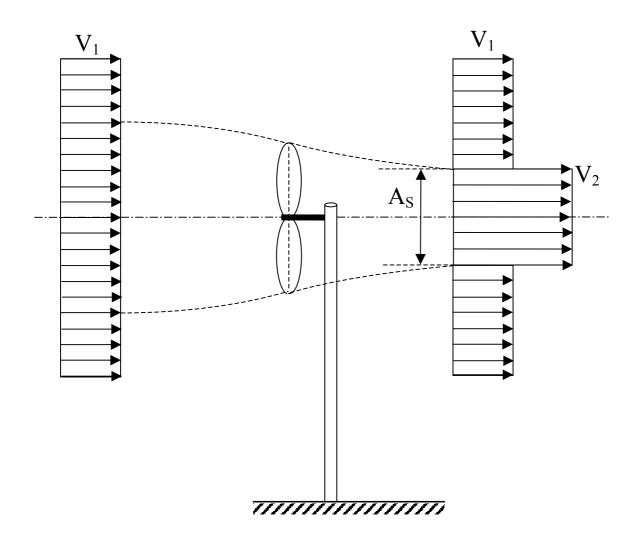


Aufgabe 2: (3 Punkte)

Aus einem großen Behälter mit der konstanten Spiegelhöhe H strömt eine Flüssigkeit (konstante Dichte ρ) durch einen Auslaufstutzen mit vertikaler Achse und veränderlichem Querschnitt A(z) in die Umgebung aus. Über dem Flüssigkeitsspiegel und am Ende des Auslaufstutzens herrsche der konstante Umgebungsdruck p_a . Die Strömung sei stationär, reibungsfrei und eindimensional.

Man bestimme in Abhängigkeit gegebener Größen, bei welchem Querschnitt A(z) im Auslaufstutzen sich der statische Druck $p(z) = p_a \cdot (1 + \alpha \cdot z)$ einstellt.

Gegeben sind: $H,\,\rho,\,\alpha,\,g,\,p_a,\,A_0,.$

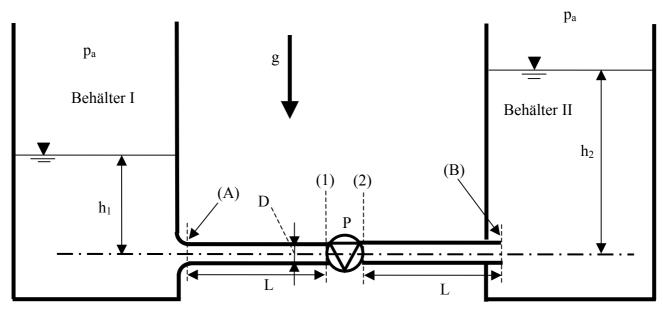


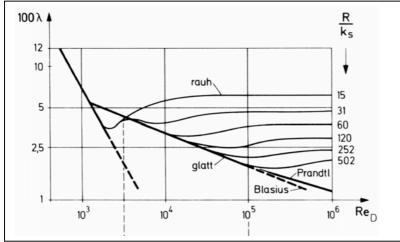
Aufgabe 3: (6 Punkte)

Die Rotorblätter eines Ventilators werden von Luft (konst. Dichte ρ) mit der konstanten Windgeschwindigkeit v_1 angeströmt. In einiger Entfernung stromab des Ventilators habe sich die Strömung soweit ausgeglichen, dass die Stromlinien wieder parallel zueinander sind. Die Geschwindigkeit des Ventilatorstrahles mit dem Strahlquerschnitt A_S sei v_2 . Außerhalb des Ventilatorstrahles sei die Geschwindigkeit wieder v_1 (siehe Abb.).

Man berechne in Abhängigkeit gegebener Größen, welche Kraft F_H durch die Strömung auf den Ventilator ausgeübt wird.

Gegeben sind: v_1, v_2, ρ, A_S .




Eine Pumpe P (Nennvolumenstrom \dot{V}) fördert Wasser (Dichte ρ ; kinematische Zähigkeit v) durch ein innen rauhes Rohr (Rohrdurchmesser D=1 m; Sandkornrauhigkeit $k_S=2$ mm) aus einem großen Behälter I mit der konstanten Spiegelhöhe h_1 in einen großen Behälter II mit der konstanten Spiegelhöhe h_2 , wobei $h_2 > h_1$ sein soll (s.Abb.). Die Strömung in den beiden Rohrteilen mit der Länge L sei jeweils über die Rohrlänge L voll ausgebildet. Die Strömung im Behälter I kann bis zur Rohreintrittsöffnung (A) als reibungsfrei angesehen werden. Am Rohrende bei (B) ströme das Wasser als Freistrahl in den Behälter II ein. Oberhalb der Spiegelhöhen im Behälter I und II herrsche jeweils der konstante Umgebungsdruck p_a .

Man bestimme in Abhängigkeit gegebener Größen

- a) den Druck p₁ am Pumpeneintritt (1)
- b) den Druck p₂ am Pumpenaustritt (2)
- c) Man skizziere qualitativ den Druckverlauf entlang der eingezeichneten Rohrmittelachse vom Behälter I über die Rohrleitung und Pumpe bis in den Behälter II.

Gegeben sind:
$$\dot{V} = 0.63 \frac{m^3}{s}$$
; $v = 10^{-6} \frac{m^2}{s}$; $D = 1$ m; h_1 ; h_2 ; L ; g ; ρ ; p_a ; $k_s = 2$ mm.

