Werkstofftechnik II

Eisenwerkstoffe

Verfasser:
Prof. Dr.-Ing. Hans-Jürgen Christ

- Korrosion und Korrosionsschutz
- Normgerechte Werkstoffkennzeichnung
- Vom Rohstoff zum Bauteil
- Eisenwerkstoffe
- Das System Eisen-Kohlenstoff
- Wärmebehandlung im gleichgewichtsnahen Zustand
- Wärmebehandlung im Ungleichgewichtszustand
- Aluminiumlegierungen
- Keramische Werkstoffe
- Polymerwerkstoffe
- Verbundwerkstoffe
- Korrosion und Korrosionsschutz
- Normgerechte Werkstoffkennzeichnung
- Vom Rohstoff zum Bauteil
- Eisenwerkstoffe
- Das System Eisen-Kohlenstoff
- Wärmebehandlung im gleichgewichtsnahen Zustand
- Wärmebehandlung im Ungleichgewichtszustand
- Aluminiumlegierungen
- Keramische Werkstoffe
- Polymerwerkstoffe
- Verbundwerkstoffe

Einteilung der Eisenwerkstoffe

Classification scheme for the various ferrous alloys

Eisenwerkstoffe = wichtigste Maschinenbauwerkstoffe
Vorteile: reichlich eisenhaltige Erze
ökonomische Herstellung hervorragende (mechanisch) Eigenschaften

Nachteil: Korrosion

Grauguss mit lamellarem Graphit

a
b

c
d

Die Form der Ausscheidung aus dem γ Mischkristall - Zementit oder Graphit ist abhängig von der Abkühlgeschwindigkeit und von der Anwesenheit bestimmter Legierungselemente.

- Langsame Abkühlung und die Anwesenheit von Silizium begünstigen die Erstarrung im stabilen Fe-C-System. Weiterhin kann der Graphit in unterschiedlicher Form gebildet werden. Mögliche Formen des Graphits: (a) groblamellar, (b) feinlamellar, (c) Flocken und (d) Kugeln.

- Die Festigkeit von Grauguss ist abhängig von der Dicke des gegossenen Querschnitts (Wanddicke).
- Ursache ist die geringe

Abkühlgeschwindigkeit bei großer Wanddicke. Bei langsamer Abkühlung werden die Grafitlamellen größer und die Grundmasse wird eher ferritisch als perlitisch.

- Die Grafitlamellen können nur kleine Zugkräfte übertragen und sind im Gefüge als innere Kerben anzusehen.
- Die Bruchdehnung liegt unter 1 \%.

Legierungselemente können durch Eisen aufgenommen werden durch:

- Bildung eines Mischkristalls (substitutionell/interstitiell)
- Bildung einer zweiten Phase (z.B. Pb, Cu als Reinstoff)
- Bildung einer intermediären Verbindung

Einige ausgewählte Gesichtspunkte:

- Interstitielle Lösung von Legierungselementen - Die Atome des Legierungselementes müssen klein sein im Verhältnis zum Eisenatom (trifft zu für $\mathrm{C}, \mathrm{N}, \mathrm{B}, \ldots$). Die Aufnahmefähigkeit des Gitters ist wegen der zunehmenden Gitterverzerrung begrenzt. Die Löslichkeit in der krz-Struktur ist geringer als im kfz-Gitter, da zwar die krz-Anordnung mehr aber kleinere Lücken als das kfzGitter besitzt.
- Wirkung des Siliziums - Begünstigung der Graphitausscheidung in Gusseisen.
- Karbidbildende Legierungselemente - Viele technisch wichtige Eigenschaften (z.B. Verschleiß- und Warmfestigkeit) können gezielt durch in der Matrix feinverteilt vorliegende Karbide erzielt werden. Die Karbide bilden sich aus der Reaktion von karbidbildenden Elementen mit dem gelöst vorliegenden Kohlenstoff. Die Neigung zur Karbidbildung nimmt zu in der Reihenfolge

$$
\mathrm{Mn}-\mathrm{Cr}-\mathrm{Mo}-\mathrm{W}-\mathrm{Ta}-\mathrm{V}-\mathrm{Nb}-\mathrm{Ti} .
$$

- Mikrolegierungselemente - Bei niedrigen C-Gehalten kann die Festigkeit durch Mikrolegierung mit starken Karbidbildnern (meist $\mathrm{Nb}, \mathrm{V}, \mathrm{Ti}$) stark gesteigert werden. Wirkung: Ausscheidungshärtung durch feinstverteilte Karbide und Rekristallisationsbehinderung (mikrolegierte Feinkornstähle).
- Nitridbildende Legierungselemente - Die harten Nitride (bis 1.200 HV) sind ebenfalls von großer Bedeutung, sie werden z. B. beim Nitrieren technisch genutzt. Die wichtigsten Nitridbildner sind:

$$
\mathrm{Al}-\mathrm{Cr}-\mathrm{Zr}-\mathrm{Nb}-\mathrm{Ti}-\mathrm{V}
$$

- Alle wesentlichen Umwandlungspunkte werden durch Legierungselemente verschoben.
- Die Punkte S und E werden von den meisten Legierungselementen nach links, d. h. zu geringeren Kohlenstoffgehalten verschoben.
- Die Austenitbildner erniedrigen den A_{3} Punkt und erhöhen den A_{4}-Punkt. Dadurch ergibt sich ein erweiterter Beständigkeitsbereich des Austenits.
- Die Ferritbildner erhöhen den A_{3}-Punkt und erniedrigen den A_{4}-Punkt. Der Existenzbereich der γ-Mischkristalle wird eingeengt, so dass ab einem bestimmten Legierungsgehalt der Ferrit bis zur Schmelztemperatur beständig bleibt.
- Austenitbildner - Vorwiegend im Austenit lösliche Elemente vergrößern den Bereich des γ Eisens im Zustandsdiagramm (γ Öffner).

Merkregel: „Niccomann" für die Elemente Ni, C, Co, Mn, N.

- Ferritbildner - Entsprechend lösen sich diese Elemente bevorzugt im Ferrit und verkleinern den Bereich des γ Eisens im Zustandsdiagramm (γ Schließer).
Merkregel: „Craltitasimovw" für die Elemente $\mathrm{Cr}, \mathrm{Al}, \mathrm{Ti}, \mathrm{Ta}, \mathrm{Si}, \mathrm{Mo}$, V, W.
- Ni-Cr-Stähle - Die beiden

Einfluß des Cr- und des Ni-Gehaltes auf das
Gefüge von Ni -Cr-Legierungen Legierungselemente besitzen gegensätzliche Wirkung auf die Austenitstabilität. Von besonderer Bedeutung sind die korrosionsbeständigen austenitischen Stähle, die aufgrund der kombinierten Wirkung von Cr und Ni auch bei Raumtemperatur in der kfzGitterstruktur vorliegen.

Typische Zusammensetzung:
$10 \% \mathrm{Ni} 18 \% \mathrm{Cr}$
(V2A-Stahl, X5CrNi18-10, Werkstoffnummer 1.4301)

Hinweis: Die Zugabe von Legierungselementen zum Stahl wirkt sich i.d.R. verzögernd auf die Phasenumwandlungsgeschwindigkeit bei Abkühlen oder Aufheizen aus. Dadurch ist u. a. die Möglichkeit gegeben, gezielt die Härtbarkeit zu steuern

- Korrosion und Korrosionsschutz
- Normgerechte Werkstoffkennzeichnung
- Vom Rohstoff zum Bauteil
- Eisenwerkstoffe
- Das System Eisen-Kohlenstoff
- Wärmebehandlung im gleichgewichtsnahen Zustand
- Wärmebehandlung im Ungleichgewichtszustand
- Aluminiumlegierungen
- Keramische Werkstoffe
- Polymerwerkstoffe
- Verbundwerkstoffe

Zweck:

1. Entspannung,
2. Steigerung der Duktilität/Reduktion der Härte,
3. Realisierung spezifischer Gefüge
A. Spannungsarmglühen
B. Rekristallisationsglühen
C. Normalglühen
D. Weichglühen
E. Diffusionsglühen

Spannungsarmglühen

Rekristallisationsglühen
Spannungsarmglühen

Ziel: Eigenspannungsunterschiede abbauen und das Eigenspannungsniveau erniedrigen.

- Dazu werden relativ niedrige Temperaturen angewandt, da eine Gefügeveränderung (d.h. eine Umwandlung) möglichst vermieden werden soll.
- Es findet ein Erholungsprozess statt, der definitionsgemäß mit einer Versetzungsvernichtung und -umordnung verbunden ist.
- Die Spannungsarmglühung verbessert das mechanische Verhalten und hilft, Verzug zu vermeiden.

Rekristallisationsglühen

Ziel: Vollständige Gefügeneubildung, die über Keimbildung und -wachstum abläuft.

- Dazu ist neben einer Mindesttemperatur und einer Mindestdauer auch eine ausreichende vorangegangene Kaltverformung erforderlich.

Um ein gleichmäßig feines Gefüge zu erzielen, wird das Normalisieren angewandt. Dabei entsteht durch zweimalige Umwandlung $\alpha \rightarrow \gamma \rightarrow \alpha$ ein völlig neues Korngefüge. Mit zunehmender Abkühlgeschwindigkeit nimmt die Feinstreifigkeit der Perlits zu.

Untereutektoide Stähle werden über die A_{3}-Linie erwärmt, so dass sich ein einphasiger Zustand einstellt. Abkühlen führt dann zu Ferrit und Perlit.

Bei übereutektoiden Zusammensetzungen wird nur auf Temperaturen knapp oberhalb der A_{1}-Linie erwärmt. Dies geschieht, um die dann im vorliegenden austenitischen Grundgefüge befindlichen Karbidanteile nicht zu lösen und somit eine Karbidausscheidung an den Austenitkorngrenzen bei der Abkühlung zu vermeiden.

Das Grobkornglühen ist eine Abart des Normalglühens. Untereutektoide Stähle werden dabei auf höhere Temperaturen im Austenitgebiet gebracht und langsam bis auf A_{1} abgekühlt. Es entsteht ein grobes Korn, das die spanende Bearbeitung erleichtert.

- Ziel: die Zementitlamellen des Perlits kugelig einzuformen (Zementiteinformung).
- Bei untereutektoiden Stählen erfolgt eine mehrstündige Glühung knapp unter A_{1} zur Vermeidung von Karbidablagerungen an Ferritkorngrenzen.
- Bei übereutektoiden Stählen wird oft eine Pendelglühung um A_{1} durchgeführt, da damit die Einformung des Zementitnetzwerkes (Sekundärzementit) stark beschleunigt wird.
- Längere Haltezeiten als beim Spannungsarmglühen zum Einformen des Perlits (4 bis 24 Stunden)
- Bei längerem Halten bis zu 100 h wird der Zementit vollständig in die körnige Form überführt. Das Weichglühen wird dann als GKZGlühen (Glühen auf kugeligen Zementit) bezeichnet.
- Ziel: Örtliche Unterschiede in der chemischen Zusammensetzung (Seigerung) ausgleichen.

- Es lassen sich nur Gefügeinhomogenitäten in den einzelnen Körnern (Mikroseigerungen) jedoch nicht die Inhomogenitäten in einem Werkstück (Blockseigerungen) vermindern.
- Dazu wird bei Temperaturen zwischen $1000^{\circ} \mathrm{C}$ und $1200^{\circ} \mathrm{C}$ und häufig über lange Glühzeiten (bis zu 50 h) im γ Gebiet geglüht.

[^0]- Korrosion und Korrosionsschutz
- Normgerechte Werkstoffkennzeichnung
- Vom Rohstoff zum Bauteil
- Eisenwerkstoffe
- Das System Eisen-Kohlenstoff
- Wärmebehandlung im gleichgewichtsnahen Zustand
- Wärmebehandlung im Ungleichgewichtszustand
- Aluminiumlegierungen
- Keramische Werkstoffe
- Polymerwerkstoffe
- Verbundwerkstoffe

Die Wärmebehandlung im Ungleichgewichtszustand wird großtechnisch zur Festigkeitssteigerung benutzt und hängt ab von:

1. Chemischer Zusammensetzung der Stähle
2. Kühlmedium (Wasser, Öl, Luft)
3. Größe und Form des Bauteils

Die beiden wichtigsten Verfahren sind:
Ausscheidungshärtung = eine rasche Abkühlung (Abschrecken) aus dem
Gleichgewichtszustand (einphasig), um eine Umwandlung zu vermeiden (\Rightarrow übersättigter Mischkristall, in dem durch Auslagern eine Ausscheidung hervorgerufen wird).

Umwandlungshärtung (bei Stahl bevorzugt) = die Abkühlung führt zur Umwandlung (Martensitbildung). Anschließend kann durch eine Wärmebehandlung, dem Anlassen, der durch zwangsgelösten Kohlenstoff gekennzeichnete Martensit zur Gewinnung ausreichender Duktilität teilweise in Richtung Gleichgewichtzustand (Ferrit und Karbid) abgebaut werden.

Temperatur-Zeitfolge bei einer Vergütungsbehandlung bestehend aus Härtung und anschließendem Anlassen

- Je nach der Temperatur und Dauer der Anlassbehandlung erfolgt eine Gefügeveränderung, die zu einer Entzerrung des tetragonal verzerrten Martensits durch Diffusion des Kohlenstoffs führt.
- Es werden Karbide gebildet und eventuell noch vorhandener Restaustenit (nicht in Martensit umgewandelter Austenit) zerfällt.
- Die Vorgänge sind mit Längenänderungen verbunden und können bei kontrollierter Aufheizung in einem Dilatometer verfolgt werden.

[^0]: Quelle: Internet, www. maschinenbau-student.de

