Werkstofftechnik II

Eisenwerkstoffe

Verfasser:
Prof. Dr.-Ing. Hans-Jürgen Christ

- Korrosion und Korrosionsschutz
- Normgerechte Werkstoffkennzeichnung
- Vom Rohstoff zum Bauteil
- Eisenwerkstoffe
- Das System Eisen-Kohlenstoff
- Wärmebehandlung im gleichgewichtsnahen Zustand
- Wärmebehandlung im Ungleichgewichtszustand
- Aluminiumlegierungen
- Keramische Werkstoffe
- Polymerwerkstoffe
- Verbundwerkstoffe

Die Wärmebehandlung im Ungleichgewichtszustand wird großtechnisch zur Festigkeitssteigerung benutzt und hängt ab von:

1. Chemischer Zusammensetzung der Stähle
2. Kühlmedium (Wasser, Öl, Luft)
3. Größe und Form des Bauteils

Die beiden wichtigsten Verfahren sind:
Ausscheidungshärtung = eine rasche Abkühlung (Abschrecken) aus dem
Gleichgewichtszustand (einphasig), um eine Umwandlung zu vermeiden (\Rightarrow übersättigter Mischkristall, in dem durch Auslagern eine Ausscheidung hervorgerufen wird).

Umwandlungshärtung (bei Stahl bevorzugt) = die Abkühlung führt zur Umwandlung (Martensitbildung). Anschließend kann durch eine Wärmebehandlung, dem Anlassen, der durch zwangsgelösten Kohlenstoff gekennzeichnete Martensit zur Gewinnung ausreichender Duktilität teilweise in Richtung Gleichgewichtzustand (Ferrit und Karbid) abgebaut werden.

Temperatur-Zeitfolge bei einer Vergütungsbehandlung bestehend aus Härtung und anschließendem Anlassen

- Je nach der Temperatur und Dauer der Anlassbehandlung erfolgt eine Gefügeveränderung, die zu einer Entzerrung des tetragonal verzerrten Martensits durch Diffusion des Kohlenstoffs führt.
- Es werden Karbide gebildet und eventuell noch vorhandener Restaustenit (nicht in Martensit umgewandelter Austenit) zerfällt.
- Die Vorgänge sind mit Längenänderungen verbunden und können bei kontrollierter Aufheizung in einem Dilatometer verfolgt werden.

Beispiel: Zugfestigkeit von unlegiertem Stahl in Abhängigkeit vom Kohlenstoffgehalt

- Durch die Parameter der Vergütungsbehandlung können die mechanischen Kennwerte in einem weiten Bereich gezielt eingestellt werden.
- Die Variationsbreite wird maßgeblich von der Zusammensetzung (insbesondere dem C-Gehalt) mitbestimmt.

Spannungs-Dehnungskurven von Ck 35 in Abhängigkeit von der Temperatur der Anlassbehandlung:
Je höher die Anlasstemperatur ist, desto höher ist die Duktilität und desto niedriger ist die Festigkeit.

- Für die Sicherheit eines Bauteils gegen Versagen unter mechanischer Überlast ist eine ausreichende Kerbunempfindlichkeit und Bruchzähigkeit erforderlich.
- Hohe Festigkeit führt meist zu sprödem kerbempfindlichen Verhalten (d.h. geringe Duktilität, z.B. niedrige Bruchdehnung).
- Durch das Anlassen kann die gewünschte Kombination von Festigkeit und Duktilität eingestellt werden.
- Die Fläche unter der SpannungsDehnungskurve gibt die Verformungsarbeit bis zum Bruch wieder.

Grundlagen der Umwandlungshärtung

Erster Schritt einer Umwandlungshärtung ist die Austenitisierung des Stahls, deren Temperatur etwa $30^{\circ} \mathrm{C}$ bis $50^{\circ} \mathrm{C}$ über A_{3} (untereutektoider Stahl) oder über A_{1} (übereutektoider Stahl) liegt (siehe Normalglühen).

Wird nun der austenitische Werkstoff mit erhöhter Geschwindigkeit abgekühlt, so
 erfolgen die Umwandlungsreaktionen nicht mehr gemäß dem
Zustandsdiagramm. Vielmehr werden die Umwandlungslinien zu niedrigeren Temperaturen hin verschoben.

- Die Verschiebung der A_{3}-Linie (Beginn der $\gamma \rightarrow \alpha$-Umwandlung) ist ausgeprägter als die der eutektoiden Reaktion bei A_{1}.
- Bei A^{\prime} fallen A_{1} und A_{3} zusammen, d.h. gleichzeitiger Beginn des Austenitzerfalls und der Perlitbildung.

Mit steigender Abkühlgeschwindigkeit steht immer weniger Zeit für die Kohlenstoffdiffusion zur Verfügung, so dass schließlich durch diffusionsloses Umwandeln (Umklappen) ein martensitisches Gefüge entsteht.

- Das erste Auftreten des Martensits erfolgt bei der unteren kritischen Abkühlgeschwindigkeit UK.
- Ab der oberen kritischen Abkühlgeschwindigkeit OK wird ausschließlich Martensit gebildet.
- Die Martensitbildung erfolgt dann geschwindigkeitsunabhängig. Die Menge ist allerdings temperaturabhängig. Die Martensitbildung beginnt bei M_{s} und endet bei M_{f}.
- Im Schliffbild führt der Martensit zu einem platten- und nadelförmigen homogenen Gefüge.

Neben der Bildung von Ferrit, Perlit und Martensit spielt bei mittleren
Abkühlgeschwindigkeiten die Bildung eines Zwischenstufengefüges technisch eine Rolle.

- Die verminderte Diffusionsfähigkeit

Zur Festlegung der geeigneten Temperaturführung dienen die Zeit-Temperatur-Umwandlungs-(ZTU) Diagramme. Eingezeichnet sind die Grenzlinien für die einzelnen Gefügebestandteile.

- Kontinuierliche ZTU-Diagramme beziehen sich auf eine kontinuierliche Abkühlung
- Isotherme ZTU-Diagramme gelten für isothermes Halten

Abkühlkurve 1: Es resultiert ein Gefüge bestehend aus:

- 10\% Ferrit
- 80\% Perlit
- 5\% Zwischenstufe
- 5\% Martensit

Abkühlkurve 2:

- 30\% Ferrit
- 70\% Perlit

Einflüsse auf die Zeitabhängigkeit der Umwandlung

- Durch Zugabe von Legierungselementen wird meist der Diffusionskoeffizient des Kohlenstoffs herabgesetzt. Der Stahl wird somit umwandlungsträger, d.h. die "Umwandlungsnasen" im ZTU-Diagramm verschieben sich nach rechts. Dabei können aber die unterschiedlichen Umwandlungen unterschiedlich stark verzögert werden.
- Die vollständige Umwandlung in Martensit setzt voraus, dass ausreichend schnell abgeschreckt werden kann, um die konkurrierenden Umwandlungen (zu Ferrit, Perlit und Zwischenstufe) zu vermeiden. Legierungselemente verbessern somit die Härtbarkeit.

- Die zur vollständigen Martensitbildung erforderliche obere kritische Abkühlgeschwindigkeit ist entscheidend für den Querschnitt und die Form eines Bauteils, das noch einer Härtung unterworfen werden kann.
- Über die Stahlzusammensetzung lässt sich diese Eigenschaft der Härtbarkeit den Anwendungsanforderungen entsprechend einstellen.
a) Wasserhärtende Stähle - Die notwendigen hohen Abkühlgeschwindigkeiten werden bei größeren Querschnitten nur noch an der Oberfläche erreicht. Somit ergeben sich durch Wasserabschrecken hohe Randhärten bei hoher Kernduktilität (Schalenhärter).
b) Ölhärtende Stähle - Im Vergleich zu den Wasserhärtern wird aufgrund der verminderten kritischen Abkühlgeschwindigkeit eine größere Einhärtung erreicht.
c) Lufthärtende Stähle - Eine niedrige kritische Abkühlgeschwindigkeit erlaubt ein Durchhärten auch großer Querschnitte durch Luftabkühlung.
- Kohlenstoff verzögert die diffusionskontrollierten Umwandlungsreaktionen, da für deren Ablauf mit zunehmender Kohlenstoffkonzentration größere Kohlenstoffmengen transportiert werden müssen, was längere Zeit in Anspruch nimmt.
- Darüber hinaus sinken die Temperaturen der Martensitbildung (M_{s} und M_{f}).

Begründung: Bei der Martensitbildung bleibt der Kohlenstoff im Gitter zwangsgelöst. Es entsteht ein
 stark verzerrtes tetragonales Gitter.

- Die Verzerrungsenergie ist um so größer, je höher die Kohlenstoffkonzentration ist.
- Der mit der Martensitbildung verbundene Energieaufwand wird durch die chemische Energie geliefert (\cong Triebkraft zur Umwandlung in α).
- Diese nimmt mit zunehmender Unterkühlung d.h. mit abnehmender Temperatur - zu. Bei jeder Temperatur bestimmt die verfügbare Energie den Martensitanteil.

Konsequenz: Ab Kohlenstoffkonzentrationen von ca. 0,7\% liegt die M_{f}-Temperatur unterhalb der Raumtemperatur.

- Damit verbleibt nach dem Abschrecken auf Raumtemperatur Austenit - sog. Restaustenit - im Gefüge zurück.
- Da der Austenit weicher ist als Martensit, nimmt die Härte von Proben, die aus dem Austenitgebiet auf Raumtemperatur abgeschreckt werden, mit zunehmendem Kohlenstoffgehalt ab 0,7\% wieder ab (Kurve 1).
- Die Härteabnahme bei $c_{c}>0,7 \%$ kann vermieden werden, indem die Austenitisierung bei übereutektoiden Stählen nur etwas oberhalb von A_{1} erfolgt. Damit bleibt Zementit erhalten und die gelöste C-Konzentration ist auf Werte unter 0,9\% beschränkt (Kurve 2).

Jominy - Test

(Stirnabschreckhärteversuch):

- Eine zylindrische Probe wird austenitisiert und an der Stirnfläche durch Wasser abgeschreckt.
- Die Abkühlgeschwindigkeit nimmt bei dieser Stirnabschreckung mit zunehmendem Abstand von der Stirnfläche ab, so dass lokal im kontinuierlichen ZTU-Diagramm unterschiedliche Abkühlkurven durchlaufen werden.

Das sich einstellende Gefüge wird indirekt über die Härte, welche an einer angefasten Mantellinie bestimmt wird, ermittelt.

- Langsamer Härteabfall
\Rightarrow gute Härtbarkeit
- Schneller Härteabfall
\Rightarrow schlechte Härtbarkeit

Beispiele: Abstandsspezifikation „J"

- J 40-18: In einem Abstand von 18 mm von der Stirnfläche muss eine Härte von 40 HRC vorhanden sein.
- J 45-8/16: In einem Abstand von mindestens 8 mm, höchstens 16 mm von der Stirnfläche muss eine Härte von 45 HRC vorhanden sein.
a) Direkthärtung - Direkte Abkühlung von der Austenitisierungstemperatur auf Raumtemperatur. Kann zu starken Wärme- und Umwandlungsspannungen führen!
b) Warmbadhärtung - Zur Vermeidung der Eigenspannungen wird in zwei Stufen abgekühlt. In der ersten Stufe dient ein Warmbad (Salz- oder Metallschmelze) mit $T>M_{s}$ als Kühlmedium. Nach entsprechender Haltezeit (Abbau von Wärmespannungen) erfolgt in der zweiten Abkühlstufe die Martensitbildung.
Hinweis: Es wird um die Nase im ZTU-Diagramm herum wärmebehandelt.

c) Zwischenstufenvergütung - Die Abkühlung erfolgt in zwei Stufen. Eine lange Haltezeit führt aber zur Zwischenstufe. Eine anschließende Anlassbehandlung kann dadurch entfallen!
d) Thermomechanische Behandlung - Die thermische Behandlung wird durch gezielte Verformung ergänzt (z. B. Verformung des metastabilen Austenits mit direkt anschließender Umwandlung in Martensit: Austenitformhärtung).
e) Tieftemperaturbehandlung - Zur Vermeidung von Restaustenit wird in flüssigem $\mathrm{CO}_{2}\left(-79^{\circ} \mathrm{C}\right)$ oder flüssigem $\mathrm{N}_{2}\left(-196^{\circ} \mathrm{C}\right)$ mehrere Stunden gehalten.

In vielen Fällen wird an der Oberfläche eine hohe Verschleiß- und Erosionsbeständigkeit gewünscht, während im Bauteilinneren die Festigkeit und Bruchsicherheit im Vordergrund stehen.
Die Kombination dieser Eigenschaften kann durch eine thermische
Oberflächenbehandlung (ohne Änderung der Zusammensetzung der Randschicht) und durch thermisch-chemische Verfahren erreicht werden.

Thermische Verfahren:
Ohne Veränderung der Randschichtzusammensetzung kann eine Randschichthärtung erfolgen, wenn

- nur der Rand in das Austenitgebiet erwärmt wird
- nur im Randbereich die kritische Abkühlgeschwindigkeit erreicht wird

Beispiele: Aufheizen der Randschicht durch Brenner (Flammhärten), Hochfrequenzheizung (Induktionshärtung) oder Laserstrahl (Impulshärtung)

Durch die Eindiffusion von Elementen aus gasförmigen, flüssigen oder festen Spendermedien wird die chemische Zusammensetzung so verändert, dass eine Härtbarkeit der Randschicht resultiert oder in der Randschicht harte Phasen entstehen.

- Verfahren ohne weitere Wärmebehandlung ${ }^{1}$
- Aluminieren
- Borieren
- Chromieren
- Nitrocarburieren
- Nitrieren
- Silicieren
- Verfahren mit weiterer Wärmebehandlung ${ }^{1}$
- Einsatzhärten (Aufkohlen)
- Borieren
- Carbonitieren
- Chromieren

[^0]

- Nitrieren - Beim Nitrieren wird der Randzone geeigneter Stähle aus dem Stickstoff abgebenden Medium durch Diffusion Stickstoff zugeführt ($T=500^{\circ} \mathrm{C}$ bis $570^{\circ} \mathrm{C}$).
- Karbonitrieren - Erfolgt gleichzeitig eine Kohlenstoffaufnahme.
- Plasmanitrieren - Erhöht die Aufnahmegeschwindigkeit und senkt T, da die kathodische Werkstoffoberfläche von den Stickstoffionen "bombardiert" wird
Es entsteht eine Nitrierschicht, die aus einer dünnen Verbindungsschicht und einer Diffusionsschicht besteht. In der Diffusionsschicht liegt Stickstoff zwangsgelöst im Mischkristall vor (hohe Abkühlgeschwindigkeit), oder wird in Form von Nitridnadeln ausgeschieden. Nitrierstähle enthalten Nitrid- oder Karbonitridbildende Elemente, deren Verbindungen sehr hart sind und einen guten Verschleißwiderstand hervorrufen.

[^0]: ${ }^{11}$ zwecks Härtung der Randschicht und gegebenenfalls des Grundwerkstoffs

