Klärung der unterschiedlichen Verarbeitungseigenschaften von Rundprofilen aus TiAl6V mit Hilfe der sin²ψ - Eigenspannungsanalyse in Kombination mit Methoden der zerstörenden

Werkstoffprüfung"

Dipl. Physiking. Ingo Zahn (Inspektionsdienstleistungen; LVQ-WP Werkstoffprüfung GmbH)

Dipl.-Phys. Daniel Krämer (AG Prof. Dr. R. Frahm; FB C - Mathematik und Naturwissenschaften; Bergische Universität Wuppertal)

Vortrag auf der Frühjahrestagung des FA 13 der AWT am 12.04.2011 bei der Bruker AXS GmbH in Karlsruhe

Situation:

- Rundprofile Ø ca. 50 mm aus TiAl6V4 zweier unterschiedlicher Lieferanten
- Die vorherige Lieferung machte beim Drehprozess keine Schwierigkeiten.
- Die aktuelle Lieferung lässt sich schlecht verarbeiten, obwohl sich die Ergebnisse der Werksprüfzeugnisse vergleichen lassen.
- Die Spezifikationen nach WL 3.7164.1 werden von beiden Lieferungen erfüllt.

Kein Typischer Schadensfall gemäß VDI 3822

Wikipedia:

Ein **Schaden** ist ein Nachteil durch Minderung oder Verlust an materiellen oder immateriellen Gütern.

Nachteil, der infolge unerwünschter Materialeigenschaften entsteht: Wirtschaftlicher Schaden infolge von

- Stärkerem Werkzeugverschleiß
- Höherem Arbeitaufwand
- Ggf. Veränderung der Nutzungseigenschaften

Verkstoffprüfung GmbH

Hypothese

- Durch unterschiedliche metallurgische Prozesse liegen nicht vergleichbare Eigenspannungszustände vor.
- Fertigungsfolgeschaden

Normen

- DIN EN ISO 13 925-1 + -2: 2003-07 (XRD Phasenanalyse)
- DIN EN ISO 15 305: 2009-01 (XRD-Stressanalyse)
- DIN EN ISO 3785: 2006-05 (Bez. Der Koordinaten im Halbzeug)

Abnahme-Regelwerke (AW)

• WL 3.7164.1

Werkstoffprüfung GmbH

Probennahme: Sampling:

Röntgendiffraktometrie Aufnahmeparameter XRD-PA

- Goniometer
- Sample stage
- Diffractometer system
- Startposition [°2Th.]
- Endposition [^o2Th.]
- Schrittweite [^o2Th.]
- Schrittzeit [s]
- Scan Modus
- OED Betriebsart
- OED Länge [°2Th.]
- Art der Divergenzblende
- Bestrahlte Länge [mm]
- Probenlänge [mm]
- Temperatur der Messung [°C]
- Anodenmaterial
- K-Alpha1 [Å]
- Generatoreinstellung
- Goniometer Radius [mm]
- Abstand Focus-Div.blende [mm]

Ja

- Primärstrahl-Monochromator
- Probendrehung

PW3050/60 (Theta/Theta); IR Stage (Phi, Tilt, X, Y, Z) **XPERT-PRO** 30 120 0,0330 118,5187 Continuous Scanning 2,12 Automatisch 10,00 10,00 25,00 kstoffprüfung Gmb-Cu 1,54060 45 mA, 40 kV 240,00 100,00 Nein

Farbe	Score	Verbindungsname	Formel	Chemischer Name	PDF-Nr.	Baun- gruppe	RIR	Habquart [Massen-%]	Habquart [Vol%]
	45	Titas lum	TI	eTl	01-089-5009	P63Immc	6,430	78	76
	19	Titan lum	TI	β-TI	01-089-4913	in-3n	9,610	6	6
	14	Alumiaum Titaalum	AbaTha	Hex.	00-052-0859	P63/mmc	4,850	10	10
3	10	Alumia um Titarium	ALTI	Tetr. Ms	03-065-2667	14/m mm	4,990	6	8

Reflexilate:

Pos. [2Th]	Hölle [cts]	FWHM [2Th]	dF/Weint 凶	Rel. Int	Fläche [cts1*2Th]	Erklärtdurch
35,3339	3348,75	0,2772	2,53819	13,78	1237,70	01-089-5009
38,5051	24298,68	0,237.6	2,33513	100,00	7697,82	01-089-5009; 00-052-0859; 01-089-4913
39,5189	2303,94	0,2376	2,27851	9,48	729,89	03-065-2667
40,4272	16548,51	0,3564	2,22938	68,10	7863,85	01-089-5009
53,3008	3695,45	0,3564	1,717.33	15,21	1756,56	01-089-5009; 00-052-0859
57,2062	210,22	0,7920	1,60902	0,87	221,99	
63,5616	2845,85	0,4752	1,46258	11,71	1803,13	01-089-5009; 00-052-0859
70,9475	7096,53	0,3960	1,327.35	29,21	3746,97	01-089-5009; 00-052-0859
71,6604	244,00	0,0900	1,31588	1,00	29,28	00-052-0859
74,8851	285,76	0,3564	1,257.01	1,18	135,79	03-065-2667
76,7590	5298,37	0,3960	1,24068	21,81	2797,54	01-089-5009
78,0460	1651,22	0,3564	1,22341	6,80	784,66	01-089-5009; 00-052-0859
82,5292	2138,58	0,3564	1,167.94	8,80	1016,25	01-089-5009; 03-065-2667
87,3695	368,99	0,4752	1,11525	1,52	233,79	01-089-5009
93,0852	1171,83	0,3564	1,05118	4,82	556,85	03-065-2567
103,2109	1008,66	0,7920	0,98283	4,15	1065,14	03-065-2667
105,8747	205,64	0,9604	0,95903	0,85	261,85	03-065-2667
110,2031	1562,31	0,5544	0,93920	6,43	1154,86	03-065-2567
115,0802	2443,87	0,7920	0,91293	10,05	2580,72	

ng GmbH

Farbe	Score	Verbindungsname	Chemische Formel	Chemischer Name	PDF-Nr.	Raungruppe	RIR	Habquart [Massen-%]	Habquart [Vol%]
	49	Titan lum	TI	eTl	01-089-5009	P63/mmc	6,430	71	68
100	28	Titas lum	TI	β-ΤΙ	01-089-4913	in-3n	9,610	7	7
	17	Alumium Thatlum	AUTI	Hex.	00-052-0859	P63mmc	4,850	13	13
	13	Alumbum Titatium	AL TI	Tetr. Ms	03-065-0429	14.fn fnfn	4,760	9	12

Reflectiste:

Pos. ["2Th]	Höhe [Cts]	FWHM [2Th]	d=Mert Pi	Rel. Int[%]	Fläche [ots112Th]	Erklärtdurch
35,3194	2632,47	0,4356	2,53920	15,86	1528,94	01-089-5009
38,4925	15509,79	0,2772	2,33686	93,46	5732,42	01-089-5009; 00-052-0859; 01-089-4913
39,4373	2552,25	0,2376	2,28303	15,38	808,56	03-065-0429
40,4099	16594,33	0.4752	2,23030	100,00	1051 4,17	01-089-5009
53,27 12	3008,62	0,3564	1,71821	18,13	1429,70	01-089-5009
54,37.20	14,00	0,0900	1,68500	0,08	1,68	03-065-0429
56,8629	135,39	0,7920	1,61791	0,82	142.97	
62,7828	112,00	0,0900	1,47884	0,67	13,44	01-089-5009; 00-052-0859; 03-065-0429
70,1888	176,00	0,0900	1,33982	1,05	21,12	01-089-4913
70.9075	5447.78	0.4356	1,32800	32,83	3164.07	01-089-5009: 00-052-0859
74,7251	184,15	0,3960	1,26933	1,11	97,23	01-089-5009; 03-065-0429
76,1192	548,00	0,0900	1,24951	3,30	65,76	01-089-5009; 00-052-0859
76,5566	2766,92	0.2772	1.24346	16,67	1022,65	01-089-5009
76,7042	3072,91	0,1980	1,24143	18,52	811,25	01-089-5009
78,0379	1321,84	0,7128	1,22352	7,97	1256,27	00-052-08:59
82,4842	1730,10	0,4356	1,16846	10,43	1004,84	01-089-5009; 03-065-0429
87,0246	112,00	0,0900	1,11879	0,67	13,44	01-089-5009
87,3859	374,42	0,3960	1,11509	2,26	197,70	01-089-5009
93,1221	945,62	0.2376	1.06086	5.70	299,57	03-065-0429
103,0816	929,30	0,7128	0,96371	5,60	883,20	03-065-0429
106,8582	110,71	0,9504	0,95913	0,67	140,29	03-065-0429
110,2729	890,00	0,9504	0,93880	5,36	1127,81	03-065-04/29
114,9329	1623.33	0,3168	0.91368	9.78	685,69	procession and the second s

ing GmbH

WOWE:

Dap.PL-2	utscher na ditierungs		Prüfbe	Report No.	1164/09	ę		P		
Auftraggeber		T			1	Selle 1 v	von 2			
Auftrags-Nr.	(Kunde)	: -	-		Auftrags-Nr. (LVQ-V	VP)	3 091214 116	4		
Prūtobjekt	(Cusomer)	.: T	litan Stäbe		Anzahl der Proben	8	: 2			
Abmessungen Dimension	57. T	: 0	ð 50. mm		Werkstoff Material		Titan Al6V4 G	R.6		
Chargen-Nr. Charge no.	8	÷			Wärmebehandlung Heat treatment		: gegiüht			
Prüftechnik Testing equipmen		: 1	eica DM 4000	kop: A	ip: Auflichtmikroskop: Oympus BX 51					
	-	1 12	Gege	nstand der	Untersuchung	9				
Oberprüfung d	er Werkstof	teiger	nschaften und b	ler Gefügestn	uktur.					
		Me	tallographisc	her Untersu	chung (siehe Bildar	hang)				
			Beschreibun	g des Metall	ographische Befund	es				
Probe-Nr.:	be-Nr.: Charge-Nr.:		Bereich	Anteli β-Phase	Streckungsgrad * (L:B)	Bei	merkungen	Siehe Bild		
1164/09-1		gut	Gesamt	225.9		Textu	rrichtung quer Längsachse	1		
1164/09-2	sc	hiech	t Gesamt		14 A	Textur	richtung parallel Längsachse	2		
1164/09-1	6	put	Rand	ca. 15%	-	Sta	rk verlormte Oberlläche	з		
1164/09-2	sc	hiech	t Rand	ca. 16%	-	Kau	m verformte Derfläche	5		
1164/09-1		gut	Kern	ca. 10%	von 1 bis 2			4		
1164/09-2	sc	hiech	t Kern	CB. 11%	von 1 bis 10	6	-	6		
* Verhältnis m Bemerkunger Remerks	aximale Län 1	ge (L) zu maximale i	Breite (B) <mark>d</mark> es	Komes					
Prüfort Pace Prüfdatum Datu	Mülhelm/	Ruhr	Prüfberik Test report	cht akzeptier accepted	t Dipi-ing. M. Kri Prübulsicht	âmer	A. Lam Prükr	ik		

DAP-I	Bat IS-4035.99	PI	rüfbericht- Repo	Nr. 1164/09	. 1	ę)- WP
Auftragge	ber	100			Sel 1 Par	to 2 vo	in 2	
Auftrags-N	Ir. (Kunde)			Auttrags-	Nr. (LVQ-WP)	-	3 091214	4 1164
Order no. Průfobjekt	(Customer)	Tring Cit	-	Order no. Anzahi d	er Proben		0	
Object Abmessun	090	indii old		Number of t	tem	-	-	
Dimension	Beri	: Ø 50. r	nm	Matanal		-	Titan 6A	4V GR.5
Chargen-N	ar.			Wärmebe	handlung	-	geglüht	
Prüftechn Tesiling equip	lk pmane j	Modell: Serien Nr	Panalytical	X'Pen MPD Pro	Ausw.sof Ref.daten	ew.	X"Pert Hi ICDO PD Sets 1-52	ghScore Plus F-2 (2002)
		Röntgend Auswertur	diffraktometri ng mit der "Full	sche Phasenan Pattern* Method	e – Standardio	6 1 6		
	Chemiso	he Formel	Ti	Al ₂ Ti	Ti	A	laxTi ₁₄	Auswertung
Probe-Nr.:	Charge-Nr.:	Phase	Titanium o-Ti	Aluminium Titanium (Tetr. Ms)	Titanium β-Ti	Aluminium tanium Titanium β-Ti (Hax.)		siehe Anlege
1164/09-1	. gut		78	6	6		10	1
_								

Aufnahmeparameter XRD-RSA

Cu

- Anodenmaterial
- K-Alpha1 [Å]
- Blenden
- Zähldauer
- Messbereich 2 Θ
- φ =
- $sin^2(\Psi) =$

1,54060 0,5°/1°/0,5° 59,690 s $68 - 74^{\circ}$ ({103} α -Ti = 70,769°) 0, 45, 90° 0; 0,1; 0,2; 0,3; 0,4; 0,5; 0,6 (jeweils in + und -)

Werkstoffprüfung GmbH

File Edit View Report Tools Help

gut Phi = 0°

Stresses in the specimen reference frame

Phi	SigmaPhi	StdDev	TauPhi	StdDev	Sig11+Sig22	StdDev
(*)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)
0.00	-768.2	114.4	-96.9	27.7	-1298.6	174.3
90.00	-1681.4	162.1	-128.7	39.3	-1446.2	247.0
135.00	-690.3	156.0	0.7	37.8	-1212.2	237.7

0.8

0.7

0.6

0.5

0.4

sin² (Psi)

1.316 -

1.314 --1.312 -

1.310-

0.0

0.1

0.2

0.3

röntgendiffraktometrische Eigenspannungsanalyse sin²Ψ - Methode

					Eigenspan	nung o				Vergleichss			oannungen ¹
Proben - Nr.	gen	φ=0 tangen	° tial	φ=	45°	φ= rad	90° Iial		.е	Vergleichsspa t ⁰ G _{VM} ² [MPa] [MPa] [MPa] [12 -456,5 16582 2,7 -191,5 1214,7	σ _{īr} ³	σ _N ⁴	
	Bemerkun	σ _{φ=0} .=σ _x =σ ₁₁ =σ ₁ [MPa]	τ _{⊷0} . [MPa]	ठ _{∳= 45} • [MP a]	τ _{φ≁45} . [MPa]		τ _{φ−90} . [MP a]	တ _ာ (MPa)	Rotation [*]		[MPa]	[MPa]	[MPa]
-		Richtun	gX			Richtung Y						6 - 3	
1164-09-1		-1681,0 ± 162,0	-129 ± 39	-690 ± 156	1 ± 38	-768 ± 114	-97 ± 28	534,5 ± 18,0	-24,8 ± 1,2	-456,5	1658,2	1291,2	836,8
1164-09-2		-1312,0 ± 203,0	16 ± 49	-547 ± 129	-6 ± 31	-929 ± 96	-47 ± 23	573,5 ± 20,5	-35,8 ± 2,7	-191,5	1214,7	541,6	532,1
		±	±	±	±	±	±	±	±	6		1	
		±	±	±	±	±	±	±	±	1. je		3	L
and a strength of the	and the second second second	±	±	±{	±	±	±	3 ± 32	±				1

$$\sigma_{ij} = \sqrt{\sigma_i^2 + \sigma_j^2 - \sigma_j \sigma_j + 3\tau_i^2}$$

$$\sigma_{\pi} = \sqrt{(\sigma_{\pi} - \sigma_{\pi})^2 + 4\tau_{\pi}^2}$$

Für die Hauptnormalspannungshypothese gilt:

$$\sigma_{ij} = \frac{1}{2} + \left[\left(\sigma_{ij} + \sigma_{jj} \right) + \sqrt{\left(\sigma_{ij} + \sigma_{jj} \right)^2 + 4 \mathbf{r}_{ij}^2} \right]$$

siehe auch: http://de.wikipedia.org/wikiW/eigiteloksspaning

$$\varphi' = \frac{1}{2} * \arctan\left(\frac{2\sigma_{12}}{\sigma_{11} - \sigma_{22}}\right)$$
(42)
$$\tau = 0.5 * (\sigma_{11} - \sigma_{22})$$

B. Eigenmann, E. Macherauch: "Röntgen ographische Untersuchung von Spannungszuständen in Werkstoffen" Teil I, Matwiis. Und werkstofftechnik Heft 3/1995, S. 148-160

Untersuchungen - Ergebnisübersicht

Röntgendiffraktometrische Phasenanalyse

 Auf der Drehoberfläche ließen kaum signifikante Unterschiede in der Phasenzusammensetzung beider Proben erkennen.

Röntgendiffraktometrische Eigenspannungsanalyse

Metallographischer Befund

Die Halbzeuge stammen aus unterschiedlichen metallurgischen Prozessen.

Werkstoffprüfung GmbH

- F_c Schnittkraft in N
- A Spanungsquerschnitt in mm²
- ap Schnitttiefe in mm
- f Vorschub je Umdrehung in mm
- h Spanungsdicke in mm
- *κ* Einstellwinkel in Grad (°)
- C Korrekturfaktor für die Schnittgeschwindigkeit
- v_c Schnittgeschwindigkeit in m/min
- k_c spezifische Schnittkraft in N/mm² (Seite 299)
- Pc Schnittleistung in kW
- P1 Antriebsleistung der Maschine in kW
- η Wirkungsgrad der Maschine

Korrekturfaktor C Schnittgeschwind	für die ligkeit
Schnitt- geschwindigkeit v _c in m/min	с
10 30	1,3
31 80	1,1
81400	1,0

Spanungsquerschnitt

$$A = a_{\rm p} \cdot f$$

Schnittkraft

 $F_{\rm c} = A \cdot k_{\rm c} \cdot C$

Aus: Tabellenbuch Digital, Europaverlag Haan- Gruiten

Die spezifische Schnittkraft k_c wird benötigt, um einen Span mit dem Spanungsquerschnitt $A = 1 \text{ mm}^2$ vom Werkstück zu trennen. Die Werte werden in Drehversuchen ermittelt. Sie bilden die Grundlage zur Berechnung der Schnittkräfte und der Antriebsleistungen bei spanenden Bearbeitungsverfahren.

- kc spezifische Schnittkraft in N/mm²
- h Spanungsdicke in mm
- f Vorschub in mm
- ap Schnitttiefe in mm
- я Einstellwinkel in Grad (°)

Die Spanungsdicke *h* hängt vom Bearbeitungsverfahren ab. Berechnung der Spanungsdicken: Seite 298 und Seite 300.

Aus: Tabellenbuch Digital, Europaverlag Haan- Gruiten

Richtwerte fü	r die spezi	fische	Schnitt	(raft ¹⁾									
Workstoff				spezifi	sche Schn	ittkraft _k ir	n N/mm² fü	r die Spanu	ingsdicke <i>h</i>	in mm			
vverkston	0,05	0,08	0,10	0,15	0,20	0,25	0,30	0,40	0,50	0,80	1,00	1,50	2,00
S235	3850	3555	3425	3195	3040	2930	2840	2705	2605	2405	2315	2160	2055
E295	5635	4990	4705	4235	3930	3710	3535	3285	3100	2740	2585	2330	2160
E355	4565	4215	4055	3785	3605	3470	3365	3205	3085	2850	2745	2560	2340
C15, C15E	4575	4125	3925	3590	3370	3210	3085	2895	2755	2485	2365	2165	2030
C35, C35E	4425	3895	3670	3290	3045	2865	2725	2525	2375	2095	1970	1765	1635
C45, C45E	4760	4210	3975	3575	3320	3130	2985	2770	2615	2315	2185	1965	1825
C60, C60E	4750	4365	4190	3895	3700	3555	3440	3265	3135	2880	2770	2575	2445
11SMnPb30	2675	2460	2360	2195	2085	2000	1935	1840	1765	1625	1560	1450	1375
16MnCr5	5950	5265	4965	4470	4150	3915	3735	3465	3270	2895	2730	2455	2280
20MnCr5	5775	5135	4855	4385	4085	3860	3690	3435	3245	2885	2730	2475	2295
18CrMo4	4955	4575	4405	4110	3915	3770	3655	3480	3350	3095	2975	2780	2645
34CrAlMo5	4930	4360	4115	3705	3435	3245	3095	2870	2710	2395	2260	2035	1890
42CrMo4	7080	6265	5915	5320	4940	4660	4445	4125	3890	3445	3250	2925	2715
50CrV4	6290	5565	5250	4725	4385	4140	3945	3660	3455	3060	2885	2595	2410
102Cr6	5895	4910	4500	3840	3435	3145	2930	2620	2400	2000	1835	1565	1400
90MnCrV8	5610	5080	4850	4455	4195	4000	3850	3625	3460	3135	2990	2745	2585
X210CrW12	5155	4565	4305	3875	3595	3395	3235	3005	2835	2510	2365	2130	1975
X5CrNi18-10	5730	5190	4955	4550	4285	4085	3935	3705	3535	3200	3055	2805	2640
X30Cr13	5155	4565	4305	3875	3595	3395	3235	3005	2835	2510	2365	2130	1975
TiAl6V4	3340	3025	2890	2655	2495	2385	2295	2160	2060	1865	1780	1635	1540
GJL-150	2315	2100	2005	1840	1730	1650	1590	1500	1430	1295	1235	1135	1065
GJL-200	2805	2495	2360	2130	1985	1875	1790	1670	1575	1405	1325	1200	1115

Aus: Tabellenbuch Digital, Europaverlag Haan- Gruiten

			Z E ent	RT sprechend <u>Stäbe</u>	IF DIN 1 e Grad	IKA 10204 - 3.1 <u>d 5</u>	T								KII ach DIN <u>Stäbe</u>	F I 10204 – Grad 5	N A 3.1	1
Materia	al: S	tähe					Kund	le (Customer)			Materi	al: St	täbe					Kunde
(Materia Werkst (Alloy) Spezifil (Specifi	al) toff: T kation: I ication)	itan 6AL DIN 3.71	4V GR.5 64.1			ve	rherige Ch	arge =	gut		(Materi Werkst (Alloy) Spezifi (Specifi Ausfüh	al) coff: T kation: cation) I rung:	itan 6AL4' W3.7164.1 H11 zugru geglüht	V wie W3. nde geleg	7164 Teil	2,	Aktuelle	Charge :
(Layout	t)	- Brann,									(Layou	ern Cod	le	ühernom	men aus	1	Kun	deninfor
Int	ern. Coo	le	übern Werk	ommen au sattest-Nr.		Ki (C	ustomer in	rmationen formations)						Werksat	test-Nr.	_	(Cus	tomer info
														_		_		
							1.1.1.0	last to a star	-		Ch	arge (He	at)	Diameter	(Diamete	er) Gew	icht (We	right)
Ch	arge (He	eat)	Diame	ter (Diamo	eter)	Gewicht (\	Veight)	(more detail	s)		50, mm				165,50	Kg		
ł		5(). mm			166 kg												
			handraha	Figuresh	after ()	Machanical	Properties	6		-			Mecha	nische E	genschaf	ten (Mec	hanical P	roperties)
Zugfest	tigkeit(T MPa	ensile)	Streel MPa Min >	kgrenze(Y	ield)	Dehngr % Min >10	enze(Elong	g.) Brucheins (Reduction Min	of Area) > 25%		Zugfest	igkeit(To Pa >= 89	ensile) 6	Streckg MPa>=	renze(Yie 827	ld) D	ehngren ‰ ≻=10	ze(Elong.
920	1111 > 900		855		1	14		42				960		8	85		19	
-		Che	mische 7	Lusammen	setzun	g (Chemica	l Analysis)					Chem	ische Zus	ammense	tzung (C	hemical	Analysis)
N2 Max 0,05	C Max 0,08	H2 Max 0,012:	FE Max 0,30	02 Max 0,20	Al 5.5-6.1	75 3.5-4.5	TITAN	Andere Werkst (other material) Einzels Max 0,1	Andere Werkst (other material). Gesamt Max 0,4		N2 Max 0,05	C Max 0,08	H2 Max 0,010	FE Max 0,40	02 Max 0,20	AI 5.5-6.75	V 3.5-4.5	TITAN
0,029	0,032	0,0063	0,093	0,15	6,24	4,09		< 0,1	< 0,4									
											0,011	0,02	0,0002	0,13	0,14	6,30	4,16	REST
-	1	-	We	itere Infor	mation	nen (Also I	Meets)							Weiter	e Inform	ationen (Also Me	ets)
Abme Macro Micro	essungen ostruktu ostruktu	und Be rtest OI rtest OK	sichtigun K	g Ok							Abmess Ultrasel Oberflä	ung und nalltest: chenvers	Besichtig OK schmutzur	ung: OK 1gstest: O	к			

Kunde (Customer)

Aktuelle Charge = Schlaht

Kundeninformationen

(Customer informations)

Weitere Angaben (more details) Länge: 2900 - 3100 mm

6 Stück Losnummer

(Reduction of Area) min 20 %

Andere Andere

Werkst. (other

material) Einzeln Max 0,1

< 0,10

47

Werkst

(other material). Gesamt Max 0,4

< 0,40

090601

Dehngrenze(Elong.) Brucheinschnürung

Gegenüberstellung der Eigenspannung im Vgerbleich zu den Kennwerten im Zugversuch (WZ) von TiAl6V4-Halbzeugen

Erklärungsansatz:

- Im Drehprozess wird der vorliegenden Scher- (τ) und der Druckeigenspannung (δ_N) die Verarbeitungsspannung (ebenfalls in Scher- und in Druckrichtung) des aufgestauten Spanes überlagert.
- Wird die Scherfestigkeit bzw. Druckfestigkeit des Materials überschritten, bricht der Span ab.
- Die Zugfestigkeit der guten Probe liegt mit 920 MPa deutlich niedriger als bei der schlechten (960 MPa).
- Durch die hohen Druck- (δ_N) und Schereigenspannungen (τ) kommt es bei der guten Probe im Stauchbereich des Spanes eher zum Spanabbruch als bei der schlechten.

Die Spezifikationen nach WL 3.7164.1: 1990-11 reicht zur Gewährleistung einer guten spanenden Verarbeitbarkeit von TiAl6V4 – Rundprofilen nicht aus.

Lösungsvorschlag:

In einer eigenen Spezifikation könnte der Klient festlegen:

- Die Festlegung der metallurgischen Prozesse:
 - Abguss
 - Warm und Kaltumformprozesse
 - Wärmebehandlungsprozesse
- Einführung einer oberen Grenze für die Zugfestigkeit
- Die Ausweisung des Eigenspannungszustandes
- Eine vorübergehende Überwachung des Eigenspannungszustandes bei jeder eingehenden Charge und
- eine statistische Auswertung der Zugfestigkeit aus den Werkszeugnissen (z.B. Auswertung Archivmaterial von bereits positiv verarbeiteten Chargen) wurde empfohlen.

Literatur:

- (1) B. Eigenmann, E. Macherauch: "Röntgenographische Untersuchung von Eigenspannungszuständen in Werkstoffen", Teil I – Teil IV; "Materialwissenschaften und Werkstofftechnik"; Jg. 1995; S148-160, 199-216, 426-437, 491-501
- (2) H. J. Hunger u.a.: "Ausgewählte Untersuchungsverfahren in der Metallkunde"; 2. Auflage 1987; VEB Deutscher Verlag der Grundstoffindustrie; Leipzig, Seite 117 ff.
- (3) L. Spieß u.a.: "moderne Röntgenbeugung"; 1. Auflage 2005; Teubner Verlag; Wiesbaden; Seite 295 ff.
- M. Häting, G. Fritsch: "Depth Resolved non-destructive Residual Stress Measurements in TiAl6V4"; International Conference of Residual Stresses; 4, 1994, Baltimore, Md., Page 189-194
- (5) D.S. Kurtz, P.R. Moran u.a.: "Apparatus for rapid sin²Y measuerements and its application to titanium alloys", The 5th international Conference on Residual Stresses; 1997; Linköping; Page 744-749
- (6) P. Rangaswamy u.a.: "The influence of thermal-mechanical processing on residual stresses in titanium matrix compounds"; Material Science and Engeneering, Jg. 1997; page 200-209; Elsevier – Verlag; Ansterdam; NI
- (7) F. Beutinger: "Verformungsverhalten und Verformungskinetik von Titan technischer Reinheit und der Titanlegierung TiAl6V4 im Bereich niedriger homologen Temperaturen von 0,22 (180 °C) bis 0,48 (650 °C)"; Diss. an der TU Erlangen – Nürnberg 2006
- (8) Veröffentlichung des Fachlabors für Titan und Titanlegierungen an dem Institut für Werkstoffe der Technischen Universität Braunschweig, 2007, Seite 17 ff.

