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Abstract 

The major part of service life of high-cycle-fatigue-loaded components is determined by 

crack-initiation and short-crack propagation at loading conditions where no technical 

crack might be expected. Consequently, microstructural cracks can not be treated by 

conventional methods of linear-elastic fracture mechanics (LEFM). On the basis of a 

thorough experimental study of the interactions between microstructural features, like 

the crystallographic orientation distribution, and the respective crack propagation rate a 

numerical micro-mechanical crack-propagation model has been developed, which 

accounts for the abnormal propagation behaviour of short cracks as compared to long 

cracks in a two-phase austenitic-ferritic duplex steel. In order to simulate real cracking 

events, the barrier strengths of phase and grain boundaries, beside the orientation of slip 

planes the most important input parameters for the model, were determined by means of 

a Hall-Petch analysis using cyclic stress-strain data of single-phase austenitic and 

ferritic steels as well as of the duplex steel.  
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1.  Introduction 

Generally, the fatigue damage process can be subdivided into three phases: (i) crack 

initiation, (ii) short-crack propagation, and (iii) long-crack propagation. Conventional 

fatigue-life prediction methods do either not separate between the individual stages 

(total-life approach, based on S-N curves) or do only take long-crack propagation into 

account (damage-tolerant approach). The latter is based on the characteristic sigmoidal 

shape of the da/dN vs. ∆K curve (see Fig. 1), the slope of which can be given by 

empirical power laws according to Paris and Erdogan [1] or McEvily [2].  

Fig. 1 

However, in many cases, e.g., smooth components loaded in the high-cycle fatigue 

regime, more than 90% of service lifetime lies within the first two phases of the damage 

process, i.e., within stage I according to Fig. 1 [3]. Short crack initiation can occur at 

loading conditions far below the threshold range of the stress intensity factor for 

technical cracks ∆Kth as a consequence of local strain concentrators such as pores, 

inclusions, surface roughness, or the elastic anisotropy of grains and/or second phases 

[4-6]. Once initiated, short-crack propagation is significantly affected by local 

microstructural features. Depending on the crystallographic orientation, cracks may 

grow along individual slip bands, by alternating operating slip systems governed by the 

applied normal stress or in an intercrystalline manner along weak interfaces.  

Grain or phase boundaries act as microstructural obstacles to short crack propagation, 

the strength of which varying with the crystallographic orientation relationship [7,8]. 

The higher the tilt and twist misorientation angle between adjacent slip bands the more 

effective acts the grain boundary as a barrier to the transmission of the plastic 

deformation into the neighbouring grain [5,9,10]. This mechanism, which is responsible 

for the abnormal growth behaviour of microstructurally short cracks, is the theoretical 

backbone of the analytical short-crack models of Taira et al. [11] and Navarro and de 



los Rios [12]. A dislocation pile-up between the advancing crack tip and the grain 

boundaries gives rise to a decrease in the crack propagation rate da/dN and an increase 

of the elastic stress acting on a dislocation source in the adjacent grains. Once a critical 

stress is exceeded, the source becomes activated extending the plastic zone ahead of the 

crack tip into the respective grain, and hence, resulting in a sudden increase in da/dN 

(see Fig. 1). The models have been extended and modified by numerous studies, e.g., to 

take the distribution of crystallographic orientations into consideration [13], or to 

account for work hardening on the activated slip planes [14]. 

Recently, a numerical model has been developed, in which the dislocation pile-up ahead 

of the crack tip is treated by a boundary-element approach. This model is capable to 

handle two-dimensional and multi-phase microstructures with given geometries and 

crystallographic orientations of the grains, based on experimental results obtained by 

automated electron back-scattered diffraction (EBSD). In the present study the model, 

which is introduced and described in section 5, was applied to an austenitic-ferritic 

duplex steel, where local short-crack propagation rates strongly vary depending on the 

present phase area and boundary type. Hence, earlier results on the significantly 

different contribution of the austenite phase and the ferrite phase to the overall 

deformation and damage process, e.g., by Johannson and Óden [15], Llanes et al. [16], 

and Stolarz [17], can be quantitatively discussed in order to contribute to improved 

methods of mechanism-oriented life prediction. 

2.  Materials and experimental details 

The experiments were carried out using the austenitic-ferritic duplex stainless steel 

X2CrNiMoN 22 5 3 (1.4462). Because of their high strength compared to conventional 

austenitic steels and their excellent corrosion resistance, duplex steels are often used in 

the chemical industry or for off-shore components, e.g., shafts in boats or wind-power 

plants. In the as-received condition, it has a very fine, lamellar microstructure, resulting 



from the rolling process, with an average grain size of about d=10 µm and an α/γ-

volume ratio of approximately 0.5. Its chemical composition is given in Table 1. The 

microstructure was coarsened by heat treatment in order to simplify microcrack 

observations (resulting grain size: dα=50µm, dγ=35µm). The determination of the 

barrier strength of the different types of boundaries was done by a Hall-Petch analysis. 

The Hall-Petch analysis required a variation of the grain size of the material. Therefore, 

the as-received material was heat treated at 1250°C for 1, 2 and 4 h and water-

quenched. In addition to the duplex steel, a ferritic steel (1.4511) and an austenitic steel 

(1.4404) with similar chemical composition as the respective phases in the duplex steel 

were studied as single-phase reference materials. Their chemical composition is shown 

in Table 1, as well.  

Table 1 

The quantification of the barrier strength of the boundaries required the determination of 

the cyclic stress-strain curve (CSSC) for the single-phase austenite and ferrite and the 

two-phase duplex steel. For this purpose, incremental step tests (IST) were performed in 

a servohydraulic testing system (MTS810) under plastic-strain control and a constant 

plastic-strain rate of 14
pl s105 −−⋅=ε&  with specimens having different grain sizes. The 

stress response of the saturation hysteresis loop of the IST was used to generate the 

respective CSSC, which led to the cyclic yield stresses Ycσ  of the three steels. 

Push-pull fatigue tests for microcrack characterization were carried out under stress 

control using cylindrical, shallow-notched specimens according to Fig. 2. This geometry 

ensures that cracks initiate in a limited, approximately flat area within the gage length. 

Fig. 2 

The tests were done with a load-ratio of R=-1 and a frequency of f=1 Hz. After certain 

numbers of cycles the specimens were periodically removed from the testing machine 



and the shallow-notch areas were examined in a scanning electron microscope (SEM 

Phillips XL 30) using electron channeling contrast and automated EBSD (TSL OIM™) 

to evaluate microcrack lengths and the crystallographic orientations of the grains 

involved, respectively. For the EBSD investigations, a very smooth and disruption-free 

specimen surface is required. Therefore, the specimens were ground and electropolished 

for 15-30 min at 12°C in an electrolyte consisting of 8 vol.% perchloric acid (70%), 70 

vol.% ethanol, 10 vol. % diethylene glycol monobutyl ether, and 12 vol.% distilled 

water.  

The EBSD technique was also used for the determination of the stereological 

parameters that were necessary for the Hall-Petch analysis. They can be obtained by 

applying the line sectioning method to metallographic samples of the respective 

materials. In case of the single-phase austenitic and ferritic steel, these samples were 

achieved by conventional etching methods. For the two-phase duplex steel the problem 

arose, that one could not distinguish between phase and grain boundaries. Therefore, the 

EBSD technique was applied to electropolished sections of the duplex steel which made 

all different kinds of boundaries visible.  

3.  Results 

3.1 Microcrack propagation 

Resulting from the interrupted fatigue tests it turned out, that crack propagation in the 

short-crack regime followed two different propagation mechanisms, which were termed 

single-slip and double-slip crack propagation. The single-slip mechanism corresponds 

to stage I-crack growth and takes place on exclusively one slip system. It results in 

straight crack paths which follow a slip plane with a high Schmid factor. In the double-

slip mechanism the crack path is assembled from two alternating operated slip systems, 

which is similar to the Neumann description of stage II-crack growth [18]. In this case, 



the crack path deflects towards a direction which is more or less perpendicular to the 

applied stress axis.  

The activated slip planes were identified by measuring the crystallographic orientations 

of the respective grains. With these orientation data it was possible to calculate the trace 

angles between the operated slip planes and the specimen surface in given grains. By 

comparing measured trace angles on the specimen surface with calculated trace angles, 

the activated slip planes could be identified. For the double-slip mechanism, the 

combination of two slip planes by means of vector algebra yields the resulting crack 

plane, which - again in combination with orientation data - revealed the trace angle of 

the new crack plane in a given grain. The respective vector additions are represented 

schematically in Fig. 3.  

Fig. 3 

Fig. 3 shows two simplified fcc unit cells. Each of them contains one {111}-type slip 

plane: a (111) plane in the upper cell and a )111(  plane in the lower cell. The new crack 

front for a crack grown in double slip corresponds to the intersecting line of both planes 

]011[=sr . The new crack growth direction for such a crack is a linear combination of 

four slip directions on the two {111}-type planes (dashed lines in Fig. 3): the effective 

Burgers vector for the upper plane can be calculated according to 

]211[]110[]011[1 =+=effb
r

 and for the lower plane according to 

]211[]110[]101[2 =+=effb
r

. These two partial effective Burgers vectors can be 

added to the effective Burgers vector ]011[21 =+= effeffeff bbb
rrr

, which is the new 

crack-growth direction. Finally, by computing the cross product of the new crack front 

and the new crack-growth direction, the new crack plane is obtained as: )001(=× effbs
rr . 

Now, the trace angle of the new crack plane can be calculated and compared with 

measured trace angles. 



Examples are given in Fig. 4: Fig. 4a shows a short crack that has initiated at an α/γ-

phase boundary. Between  and  the crack has grown in single slip on the denoted 

slip planes, while between  and  crack growth was operated by double slip 

alternating on (111) and )111(  planes. The double-slip part is approximately 

perpendicular to the loading direction. By following the calculation explained above, 

consideration of the two involved slip planes in equal parts would lead to a new (100) 

crack plane and a trace angle of about 20°. This calculated trace angle would not match 

the measured trace angle of about 0°. If the contribution of the (111) plane to the crack 

growth is twice as high as the contribution from the )111(  plane, the new crack plane 

would be a (311) plane with a trace angle of –1° in the respective grain, which is in 

good agreement with the measured trace angle. 

Fig. 4a,b 

Fig. 4b shows a second example. The path of this crack can also be subdivided into 

parts that have grown in single slip on the indicated slip planes and a part that has 

grown in double slip under participation of a (111) plane and a )111(  plane. Again, the 

measured trace angles could be calculated by vector addition of slip increments on the 

participating slip planes.  

Another phenomenon, which becomes evident from Fig. 4b is the ability of the crack to 

return to single-slip propagation after it has grown by the double-slip mechanism. This 

will be discussed in section 5. 

A substantial difference in the crack growth rates was found for the single-slip and the 

double-slip mechanism. From Fig. 5a (which shows the same crack than Fig. 4b) it is 

evident, that crack propagation in single slip is faster than in double slip. The vertical 

lines indicate the crack tip advance after identical intervals of 10,000 cycles. Fig. 5b 

shows another example. Here, the vertical lines show how the crack tip position has 



changed after intervals of 30,000 cycles. When the left crack tip approaches a twin 

boundary it is blocked and almost stopped. By applying 5,000 overload-cycles (with an 

increase in the loading amplitude from ∆σ/2=350 MPa to 450 MPa) the crack-growth 

rate increased dramatically (the distance between the dashed lines shows the crack 

advance after 5,000 cycles) and the crack could be forced to continue its growth over 

this boundary. In the following grain the crack starts to grow in double slip. After 

reducing the amplitude, the growth rate dropped immediately but stayed well above 

zero.  

The grain boundary between the grains α1 and α2 has no significant influence, neither 

on the crack growth rate nor on the crack path direction, even though there is a 

misorientation of θ=49° between these grains (Fig. 5c). By successively removing thin 

layers from a plane parallel to the loading axis (indicated by arrows) the crack path 

underneath the surface of the two grains was made visible. Fig. 5c shows clearly, that 

there is only a small twist misorientation angle between these two planes, i.e., for 

crossing the α1α2 grain boundary the crack had to overcome only a slight change in the 

crack plane. 

Fig. 5a,b,c 

3.2 Quantification of the barrier effect of grain and phase boundaries 

Grain and phase boundaries are known to serve as obstacles to dislocation motion/crack 

propagation. The extent of this blocking effect depends on the nature of the boundary 

and can be quantified by a Hall-Petch analysis. According to Hall [19] and Petch [20], 

plastic deformation leads to a pile-up of dislocations in front of a boundary. This pile-up 

causes stress concentrations at the boundary and in the adjacent grain. When the stress 

concentration is high enough and reaches a critical value, a dislocation source in the 

adjacent grain is activated and plastic deformation can spread out into this grain.  

The original Hall-Petch relation 
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relates the yield stress of a material to its mean grain size. 0
Yσ  is the friction stress 

which is required to overcome the lattice friction, and yk  is the Hall-Petch constant, 

which can be seen as a measure for the boundary resistance to dislocation motion. In 

this form the equation is valid for single-phase materials and monotonic loading only. 

Hence, it has to be extended for multi-phase materials subjected to cyclic loading 

conditions.  

According to Fan et. al. [21], the extension for multi-phase materials can be done by 

combining the contributions of the different types of boundaries to the yield stress. 

These contributions are multiplied with weighting factors, so-called stereological 

parameters, which describe the geometrical arrangement of the phases in space and thus, 

take into account how often a boundary occurs. The extension on cyclic loading was 

done by simply replacing the monotonic yield stress by the cyclic yield stress, which 

was considered to be reasonable, as long as planar slip prevails leading to dislocation 

pile-ups at the boundaries. The resulting equation for the cyclic Hall-Petch constant of 

an α/γ-phase boundary is 
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All parameters on the right hand side of the equation can be determined experimentally, 

while the cyclic Hall-Petch constant for a phase boundary αγ
cycyk ,  has to be calculated. 

c
cycyk , , α

cycyk , , and γ
cycyk ,  are the Hall-Petch parameters of the double-phase duplex steel 

and the single-phase ferritic and austenitic steels according to Table 1. cfα  and cfγ  are 

the continuous volumes of the respective phases in the duplex steel, and sF  is the degree 

of separation of the duplex steel. The three values of cycyk ,  were determined by drawing 



a Hall-Petch plot which shows the cyclic yield stress against the mean grain size or 

“cluster size”, respectively (Fig. 6). The slope of the curves corresponds to the cyclic 

Hall-Petch constant. In case of the duplex steel, the mean cluster size substitutes the 

mean grain size, because not only grain boundaries but also phase boundaries contribute 

to the yield stress, and therefore, the mean “phase size” has to be taken into account, 

too. The mean cluster size αγd  is the mean value of the mean grain sizes for the α and γ 

grains and the mean phase sizes of the α and γ phase, respectively: 

4/)( γαγγαααγ ddddd +++= . 

Fig. 6 

The stereological parameters were determined by applying the line-sectioning method to 

microstructure maps from EBSD scans. The continuous volumes cfα  and cfγ  are 

calculated by multiplying the contiguities αC  and γC  with the volume fractions of the 

two phases in the duplex steel αf  and γf : 

 ααα fCf c ⋅= . (3) 

The contiguity describes the connectivity of a phase and is calculated according to eq. 4: 
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where ααN  and αγN  are the numbers of intersections of αα and αγ boundaries with the 

random lines from the line-sectioning method. The degree of separation sF  describes 

the volume fraction of isolated grains in the microstructure. It is calculated as the sum 

of the isolated volume fractions of the phases: sss ffF γα +=  with sfα  and sfγ  as the 

difference between the volume fraction and the continuous volume of a phase:  

 cs fff ααα −= . (5) 



Table 2 shows the experimentally-obtained cyclic Hall-Petch constants for the ferritic 

(αα GB), the austenitic (γγ GB) and the duplex steel with the respective calculated 

value for the αγ phase boundaries. The αγ phase boundaries have the highest value for 

the Hall-Petch constant, which means that these boundaries should exhibit the highest 

resistance to dislocation motion. The value for the duplex steel is the weighted average 

of the three types of boundaries. Beside the Hall-Petch constants, the microstructural 

cyclic yield stresses were obtained, which are the cyclic pendants of the friction stresses 

of the two phases. It is calculated by extrapolating the curves in Fig. 6 until they 

intersect with the y-axis.  

Table 2 

4.  Modelling Short Cracks 

The model originally designed to simulate short crack propagation in stage I is based on 

the experimental investigations presented above. In many cases, short cracks propagate 

on slip planes inclined by an angle of about 45 degrees to the loading axis, resulting in a 

zigzag-like crack shape (Figs. 4 and 5). Plastic slip deformation on these planes is 

blocked by grain and phase boundaries (Fig. 5), according to the models of Taira et al. 

[11] and Navarro and de los Rios [12]. The model describes the crack and its plastic 

zones by a series of slip band pieces (Fig. 7). Along the slip bands tangential 

displacements of their two faces relative against each other are possible by dislocation 

glide. These displacements are modelled by means of mathematical edge dislocations 

(Hills et al. [22]). The crack is defined as that part of the slip band that is, in addition to 

the tangential displacements, also allowed to exhibit normal displacements, modelled by 

a second set of mathematical edge dislocations. Plastic deformation in front of the crack 

tip occurs if the shear stress on the slip band exceeds a critical value corresponding to 

the resistance of dislocations against motion. Thus, an elastic perfectly-plastic 

behaviour of the plastic zone is simulated. The dislocation distribution is calculated 



numerically by a boundary element method which assumes a constant displacement 

inside each element. Each boundary element consists of a negative edge dislocation at 

the one end and a positive edge dislocation at the other end. This is schematically 

represented in Fig. 7. To determine the stresses on arbitrary positions around the crack, 

so-called “sensor elements” are used, which do not represent any displacement.  

Fig.7 

To formulate the boundary element method, the influence function Gij that describes the 

stress on the center of an element i resulting from the displacement bj in an element j 

has to be calculated. This is performed by superimposing the stress fields of the two or 

four dislocations representing the tangential or tangential and normal displacement in 

the slip band element or in the crack element, respectively. The overall stress on the 

element i results from the summation of the stresses generated by all other elements 

with the applied normal stress ∞i
nnσ  and the shear stress ∞i

tnτ . For p crack elements and q 

elements within the slip bands ahead of the crack tip a linear system of equations can be 

established, which has to meet the following boundary conditions in an element-specific 

coordinate system: 

• any normal stress i
nnσ  must vanish when the crack is open (Eq. 5) and no 

negative normal displacements are allowed (Eq. 7), 

• the crack faces are free of shear stresses ( 0=i
tnτ , no friction), and 

• within the plastic zones ahead of the crack tip the shear stress τ  must not 

exceed the resistance bτ  to dislocation motion (Eq. 6, assumed as to be equal to 

the microstructural cyclic yield stresses as derived in section 3). 

These conditions lead to a linear system of inequalities that yields the displacements of 

all elements in normal direction i
nb  and tangential direction i

tb  and thus the crack tip 



slide displacement CTSD. By allowing only positive normal displacements within the 

crack elements, geometrical crack closure can be taken into account (Eq. 7). 
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 nb  0≥  pi K1= . (7) 

The crack propagation rate da/dN is calculated from the range of the crack tip slide 

displacement ∆CTSD (obtained by a cyclic calculation of the system of inequalities) by 

means of the power law function  

 mCTSDC
dN
da

∆⋅= . (8) 

C is a material-specific constant and m is an exponent (mostly equal to one). The crack 

tip opening displacement CTOD is zero because the model does not allow normal 

displacements in the plastic zone. Therefore, crack growth operates only by slide 

displacement on slip bands parallel to the crack plane. According to Wilkinson and 

Roberts [23], eq. 8 is based on the idea that plastic sliding due to external loads causes 

dislocation emission at the crack tip and that during reverse loading dislocations of 

opposite sign are emitted. Hence, vacancies are produced leading to crack advance. For 

a more detailed description of the model, see Schick [24] and Krupp et al. [5].  

The barrier effect of grain and phase boundaries, as described in section 3, leads to a 

deceleration of the crack due to a dislocation pile-up at the boundary until a dislocation 

source in the neighbouring grain is activated. This is simulated by adding sensor 

elements in the neighbouring grains representing the possible slip systems, depending 

on the orientation of the individual grains (Fig. 8a). With increasing crack length, the 

shear stress on these sensor elements increases. If a boundary-dependent critical stress 



value τcrit is reached, the corresponding slip band is meshed and plastic deformation can 

propagate across the boundary (Fig. 8b). The value of  

 rM

k cycy

S

,
crit 2

=τ , (9) 

depends on the value of ky,cyc, which is the Hall-Petch coefficient of the respective 

boundary (see section 3). MS is the Schmid factor and r is the distance between the 

centre of the sensor element and the boundary. After propagation of slip through the 

boundary, the dislocation pile-up is vanished and thus, the crack growth rate increases 

until the next boundary is reached resulting in a new dislocation pile-up. 

Fig. 8a,b 

As it can be derived from section 3, crack propagation takes place on single slip planes 

in stage I only for a few grains. Then, the propagation mechanism changes to crack 

propagation on multiple slip systems. In order to determine the point of transition, a ring 

of sensor elements was placed at the tip of an inclined crack (Fig. 9a). These sensor 

elements were used to calculate the elastic stress field (grey curve in Fig. 9b)  and the 

linear elastic perfectly-plastic stress field with plastic deformation on one slip plane 

only (black curve in Fig. 9b) around the crack tip in a constant radius. 

Fig. 9a,b 

The stress distribution for the elastic crack calculated by the boundary-element model is 

identical to the analytical solution. However, the stress distribution for the elastic 

perfectly-plastic crack exhibits a decrease of the shear stress near the slip plane until the 

plastic shear stress bτ  is reached. In a larger distance from plastic deformation, the 

shear stress is nearly as high as for the elastic crack.  

In Fig. 10a, additional sensor elements representing further slip planes of the grain are 

positioned at the crack tip to determine the shear stress on these planes. As soon as a 

critical stress value is exceeded at one of these sensor elements, the respective slip plane 



is considered to become “activated” and plastic deformation occurs on this second slip 

plane (Fig.  10b). This is in accordance to Lin and Thomson [25], stating that a certain 

stress intensity has to be reached to activate additional slip systems in front of an 

advancing crack tip. This happens only above a certain crack length, because the elastic 

shear stress increases with crack length. Accordingly, the shear stress in the elastic-

plastic calculation outside the plastic zone increases. After the activation of the second 

slip plane, the new crack tip position results from the contributions of the plastic slip 

vectors (Fig. 10c). The calculation of the plastic slip vectors is analogous to the 

calculation of ∆CTSD, where plastic deformation only occurs if the shear stress 

τ exceeds the resistance bτ  against dislocation motion. New sensor elements are now 

positioned at the new crack tip, representing new slip planes and again these elements 

are activated. Hence, with growing crack length, the crack becomes deflected onto a 

path perpendicular to the loading axis (stage II, long cracks, Fig. 10d). If the 

orientations of the slip planes change (because the crack tip has reached a new grain) 

and the crack is still relatively short, crack propagation can return to the single-slip 

mechanism because no adequate second slip plane is available. This is in accordance 

with our experimental observations. 

Fig. 10 

The proposed model can also be used to simulate two-dimensional short crack propa-

gation in virtual microstructures, generated by the Voronoi algorithm (Voronoi [26]). 

These microstructures have a statistical grain size and crystallographic orientation 

distribution that can be adjusted to the results of the EBSD orientation measurements. 

Simulations were performed for stage I crack propagation in a duplex steel to estimate 

the influence of the microstructural arrangement as described by stereological 

parameters on short crack growth (Künkler et al. [27]). Furthermore the influence of 

varying loading amplitudes on ∆CTSD can be considered (Schick [24]). 



5.  Verification and discussion 

In order to verify the crack propagation model, it was applied to crack geometries 

observed during fatigue experiments. The starter cracks were defined in the model 

according to the ones obtained in the experiments before they were subjected to cyclic 

loading calculations. As an example, Fig. 11 shows the simulated crack length versus 

number of loading cycles in comparison with experimental data for two short cracks in 

duplex steel. 

Fig. 11a,b 

The observed deceleration of the left-hand crack tip in Fig. 11a can be explained by a 

dislocation pile-up at the phase boundary. This behaviour was reproduced by the 

simulations. In Fig. 11b, the calculated crack-growth rates in stage I of the left-hand and 

right-hand crack tip also fit the experimental data. The difference in the calculated crack 

growth rates of the two tips is mainly due to the difference in the resistance against 

shear deformation in the individual phases and due to the difference in the shear stresses 

acting on the crack planes, which depend on the orientation of the crack paths with 

respect to the loading axis. This has a strong impact on the crack tip slide displacement 

range ∆CTSD and hence the crack growth rate. Therefore, the proposed model is able to 

represent the effect of different kinds of microstructural barriers and different phases on 

stage  I crack propagation in a mechanism-oriented way.  

To verify the simulation of crack propagation operating by a double-slip mechanism, 

experimentally observed cracks growing by alternating operated slip planes were 

defined in the model (Fig. 12, which shows the upper left corner of the crack in Fig. 5b 

after 106 cycles) using the geometry and crystallographic orientation of the respective 

grains. The value for the shear stress bτ  is the same as for the simulations of stage I 

cracks. The length of the additionally activated slip planes is restricted by the grain 



boundaries. The diagram in Fig. 12 shows the simulated crack length versus number of 

loading cycles in comparison with experimental data. 

Fig. 12 

As mentioned in section 3, the left crack tip in Fig. 5b almost stopped in front of a 

boundary. By applying overloads, the blocked crack abruptly accelerated, grew over this 

boundary and entered the next grain, where crack advance took place in double slip. 

After reducing the loading level to the one before, the growth rate dropped immediately 

but stayed above zero. This can presumably be attributed to the fact, that the crack is 

already relatively long and therefore is not longer a stage I-crack. Also the favourable 

orientation of the slip planes involved can play a role in this context. In the model, the 

acceleration of the crack growth rate during the overloads could be simulated, but not as 

high as observed in the experiment. The crack propagation rate after the overloads could 

be reproduced by the model (Fig. 12) with the same value for the constant C as for 

short-crack growth in single slip (Fig. 11b). Also the calculated crack path is in 

accordance with the experimentally observed one. Thus, the model seems to be able to 

simulate crack propagation on multiple slip planes in a mechanism-oriented way. 

6.  Conclusions 

By interrupted fatigue experiments it could be shown that crack propagation in the short 

crack regime can be subdivided into two basic mechanisms: operating either by single-

slip (crystallographic propagation) and double-slip (propagation perependicular to 

laoding axis), giving rise to substantially different propagation rates. Additionally, it 

was found that a crack which has grown in double slip can change to the single-slip 

mechanism again when entering a new grain that exhibits a slip plane with a low 

misorientation angle to the crack path. 

The barrier strength of grain and phase boundaries to dislocation motion was derived by 

means of an extension of the classical Hall-Petch relationship. It was shown that in the 



studied duplex steel phase boundaries are much stronger obstacles to dislocation motion 

than grain boundaries in the respective phases. 

The model introduced in this paper is capable to simulate two-dimensional short-crack 

propagation on single slip planes (stage I) and multiple slip planes, taking geometrical 

crack closure into consideration. The comparison between experimentally-observed and 

simulated cracks demonstrated a good agreement with respect to the crack lengths as a 

function of the number of loading cycles. Due to the simple formulation of the boundary 

element method the model can calculate several thousand cycles in a relatively short 

time. 
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Table 1: Chemical composition of the steels used in this study (wt.%) 

 Fe Cr Ni Mo Mn Si Nb N C 

1.4462 bal. 21,9 5,6 3,1 1,8 0,5 - 0,1871 0,020 

1.4404 bal. 16,6 11,1 - 1,3 0,6 0,01 0,0296 0,018 

1.4511 bal. 16,3 - - 0,7 0,5 0,253 - 0,012 

 



Table 2: Results of the Hall-Petch experiments 

 γγ αα αγ Duplex 

microstructural cyclic yield stress σb, cyc [MPa] 137 198 -- 196 

  cyclic Hall-Petch constant ]mmMPa[,cycyk  4.2 5.0 15.8 10.1 
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Figure Captions 

 

Fig. 1: Schematic representation of the crack-propagation rate vs. crack length for 

long and short cracks interfering with microstructural barriers.  

 

Fig. 2: Geometry of the shallow-notched specimens. 

 

Fig. 3: Assembling new crack planes from slip planes 

 

Fig. 4: Paths of short cracks a) ∆σ/2=400 MPa, N=170,000; b) ∆σ/2=370 MPa, 

N=160,000. 

 

Fig. 5: Crack paths of two short cracks:  (a) ∆σ/2=370 MPa, N=160,000;  

(b) ∆σ/2=350 MPa, N=1,100,000+5,000 overload cycles; (c) crack path in the 

bulk 

 

Fig. 6: Hall-Petch plot of the results from the incremental step tests (IST). 

 

Fig.7: Schematic representation of the short-crack model with boundary elements. 

 

Fig. 8: Crack propagation across phase boundary. 

 

Fig. 9: (a) Crack with sensor elements and (b) shear stress distribution around crack 

tip for a linear-elastic and a linear-elastic perfectly-plastic crack. 

 

Fig. 10: Transition from single slip to multiple slip. 

 

Fig. 11: Crack length versus number of cycles for two short cracks. 

 

Fig. 12: Crack length versus number of cycles for a short crack growing by alternating 

operation of slip planes. 


