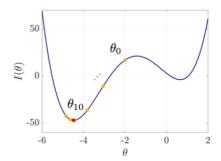

Neue Veranstaltung im Sommersemester 2022


Modulelement in BSc-TEC-2 Mechatronik Prof. Dr.-Ing. Oliver Nelles

Prädiktive Regelung und Optimierung

4MAB92200V, 3 LP, 2 SWS

Modul BSc-TEC-2 Mechatronik (6 LP benötigt)				
Modulelemente	Nummer	Sem.	Dozent	LP
Prädiktive Regelung und Optimierung	4MAB92200V	SoSe	Nelles	3
Digitale Regelung	4MAB92100V	SoSe	Nelles	3
Getr. u. Mech. in der Fahrz.technik	4MAB20400V	SoSe	Lohr	3
Mechatr. Systeme im Auto I	4MAB15100V	SoSe	Müller	3
Exp. Methoden d. Mechanik	4MAB11810V	SoSe+ WiSe	Kraemer	6

In der Veranstaltung wird intuitiv auf die Ideen der prädiktiven Regelung eingegangen und die gängigsten Algorithmen hierzu vorgestellt. Die beiden Kernkomponenten der prädiktiven Regelung sind das Prozessmodell und die Optimierung. Daher werden auch die verschiedenen Strategien zur Optimierung für lineare und nichtlineare Probleme ausführlich behandelt. Damit kann diese Veranstaltung u.a. auch als eine Einführung in die Optimierung für Ingenieure gehört werden.

Inhalt der Vorlesung

- 1. Optimierung: Linear in den Parametern
 - a. Least-Squares
 - b. Quadratische Programmierung
- 2. Prädiktive Regelung
 - a. Lineare Prädiktive Regelung
 - b. Nebenbedingungen in der Prädiktiven Regelung
 - c. Nichtlineare Prädiktive Regelung
- 3. Optimierung: Nichtlinear in den Parametern
 - a. Lokale Suchverfahren
 - b. Globale Suchverfahren
 - c. Behandlung mehrerer Kriterien (*multi-objective*) und Nebenbedingungen

Übung Der Übungsteil ist großzügig bemessen. Die Übung wird aus kleinen praxisnahen Programmieraufgaben bestehen. So können auch Methodenkenntnisse erworben werden, die sich direkt auf Praxisprobleme anwenden lassen. Ein eigener Rechner mit MATLAB ist von Vorteil. Dabei ist viel Interaktion und Gruppenarbeit erwünscht.

Prüfung Mündliche Prüfung

Formale Voraussetzung Regelungstechnik sollte gehört worden sein. Die Prüfung muss noch nicht bestanden sein, aber das Regelungstechnik-Know-How ist erforderlich.

Ansprechpartner

Christopher Illg, M.Sc., <u>christopher.illg@uni-siegen.de</u>
Tarek Kösters, M.Sc., <u>tarek.koesters@uni-siegen.de</u>
Max Schüssler, M.Sc., <u>max.schuessler@uni-siegen.de</u>

