Sensorics

by
Prof. Dr.-Ing. Oliver Nelles

Version: 7. Juli 2022 Page 1 Prof. Dr.-Ing.
Oliver Nelles




Contents

A: Measurement Techniques

1.

2
3
4.
S
6

Introduction to Measurement Techniques
Measurement of Electrical Quantities
Measurement of Non-Electrical Quantities
Digital Measurement Techniques
Measurement Errors and Statistics

Static and Dynamic Behavior of Sensors

B: Signal Processing

7.
8.

Introduction to Signal Processing

Time-Discrete Systems and Signals

End B

End A

9. Transformation into the Frequency Domain (Discrete Fourier Transform)

10. Filters

11. Selected Methods in Signal Processing

University

u

of Siegen

&\ utomatic Control

Page 2 Prof. Dr.-Ing.
Oliver Nelles



A: Measurement Technigues

Page 3 Prof. Dr.-Ing.
Oliver Nelles




1. Introduction to
Measurement Techniques

Page 4 Prof. Dr.-Ing.
Oliver Nelles




Contents of Chapter 1

1. Introduction to Measurement Techniques

1.1 Historical Issues

1.2 Sl: International System of Units

1.3 Relevance of Measurement Technigues
1.4 Basics

1.5 Literature

University

u

of Siegen

&\ utomatic Control

1. Introduction to Measurement Techniques Page5  Prof. Dr-Ing.

Oliver Nelles



1.1 Historical Issues

Historical Milestones

. . B\ utomatic Control
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From 3000 B.C. first descriptions of length and
weight measures have been found.

i : In the tower of the Freiburger Miinster
During the medieval, trade and jurisdiction the tower of the Freiburger Munster a
stainless metal bar is built in. Its length is

concentrated on the environment around churches.  ,ne «Ejie* (54 cm), a 1/20 of an “Elle*
First accepted standards have been established equals one inch.
like the Freiburger “Elle”.

: . Schneider Bock
Each trade center defined individual standards. At the in den Streichen von
end of the 18t century 118 different definitions of an Max und Moritz

“Elle” and 80 different definitions of a “Pound” have
been common.

1791 world-wide valid and accepted standards and
1875 the metric system was established in Paris. But in . b
some countries it is not used until today (e.g. USA). Schnelle springt er mit der Elle

_ _ iiber seines Hauses Schwelle, ...
Since 1889 measurement standards made from platinum (Wilhelm Busch)

and iridium for the original “m” and “kg” are displayed in Paris.
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1.2 Sl: International System of Units

MKS System

« 1791 the units Meter, Kilogram and Second were established world-wide for the next
200 years in Paris, the so-called MKS system. From this system many important units
could be derived.

« The Meter was defined as the 40 millionth fraction of the circumference of earth
(orthogonal to the equator).

« The Kilogram was defined as the mass of 10 cubic centimeter (cm?3) of water with
maximal density (at 4°C).

To complete the MKS system and to improve the accuracy and generality of the units by the
help of modern physics, 1960 the SI system (Systeme International d'Unités) consisting of
7 units was founded.

« All units can be derived from the basic 7 Sl units.
« The definition are mainly based on physical constants.

« In principle, these units could be understood by aliens!
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1.2 Sl: International System of Units

Sl base units!'1112]

Unit name | Unit symbol Quantity name Quantity symbol Dimension symbol
metre m length /(alowercase L), x, r L
kilogram [te 1] kg mass m M
second S time t T
ampere A electric current I (an uppercase i) l
kelvin K thermodynamic temperature| T S
candela cd luminous intensity I, (an uppercase i with lowercase non-italicized v subscript) |J
mole mol amount of substance n N
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1.2 Sl: International System of Units

S| System

From the 7 basic Sl units for example the following important units can be derived:

s m
Speed: v=ooo [v]—g

2s

. m
Acceleration: a=—= — [a] ==
t2 g2

_ kgm

Force: F =ma — [F] =N

. M =Fs — [M =N
Torque S [ M] :m> Torque and Energy have identical units!

Does this mean they are the same?

Energy: E=Fs — [E]|= =J
E ke T J Torque throughout this script is named
Power: P = I 1P| = 3 5 W with M, not T as usual in English,
I A because this is the common German
Magnetic Field: H = 3 — [H| = - abbreviation for “Moment”.
. E E kg m?
Electric Voltage: U =—-=— — [U|= =V
] o~ 1 U=T3s
2\ utomatic Control University
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1.3 Relevance of Measurements

Measurement Techniques are the Foundation of Science

« The foundation of science are observations. Science comes up with theories that aim to
explain existing observations and predict future ones. If theory and observations
contradict each other, either the observations are flawed or the theory is wrong
(falsification). The more independent observations support a theory, the more likely it
IS true. But, in principle, it can never be proven (verification)!

« Very concrete and quantitative observations are measurements. Mainly with their help
sciences progresses, in particular natural sciences.

» Discovered patterns within the measurements often lead towards a theory that is
coherent with them.

* New technological possibilities often have supported or refuted theories. Example:
The measured spectrum of black body radiation was in contradiction to the classical
theory. The introduction of quantization of the emitted frequencies by Planck in 1900
could align theory and observations. This was the birth of quantum mechanics (which
ironically Planck never accepted).
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1.3 Relevance of Measurements Kthervna

Erde
Example: Interferometer Experiment by Michelson-Morley \

The experiment by Michelson in 1881 and a refined version by “X.
Morley in 1887 tried to prove that some “stuff” in vacuum exist

(German: “Ather”) that transmits light waves. The theory at this

time stated that any wave needs a medium for its transportation e

In order to propagate the energy. Examples are water waves or

sounds with air as the medium. That vacuum is simply empty was

unimaginable because light can travel through space. So what is  Lcauerem /211232[‘:“'“5””

koharentem Licht

the medium that light needs? ] /?.__

This obscure stuff was not found and called “Ather”. The inter-
ferometer experiment was designed to find out whether it exists.

If the earth travels through “Ather” then turning the interferometer D erekeer
changes the speed direction and should lead to a phase shift because
light should be faster or slower depending on the relative “Ather”
speed. But nothing happened! Light speed always is ¢ in vacuum.
No “Ather” exists. This was explained by Einstein’s theory of
special relativity in 1905.

Spiegel
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1.3 Relevance of Measurements

Measurement for Feedback Control
Control is based on measuring the quantity that shall be controlled. Without the measure-

ment there is no feedback possible, no comparison between desired and actual value.

desired value

controller

manipulated controlled value

variable *| Plant

A

sensor

In many applications in signal processing a delay is not very tragic. If you see a football goal
100 ms delayed because of computations in your digital TV this is no significant drawback.

This is different in feedback control! The controlled variable must be fed back to the
comparison of desired with actual value immediately. Any delay due to a slow sensor

or filtering or other signal processing techniques deteriorates the control performance.
You can never make up for a delay in a subsequent step!

1. Introduction to Measurement Techniques Page 12
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1.4 Basics

Measuring

Definition: Measuring means comparing with an agreed unit.

A measurement consists of a number and a unit. The number describes which multiple of the
unit is assigned:

measurement = number - unit

Examples: Speed =3 m/s=3m-s, Mass=4kg, Force=5kg-m/s2=5N

Requirements:
1. The quantity to be measured must be qualitatively uniquely determined.

2. The standard unit must be defined by a convention.

These requirements are not met by many quantities in our everyday lives, like
wellness, beauty, intelligence.
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1.4 Basics

Measurement Setup

A measurement setup typically consists of 3 blocks:

1. The quantity to be measured by a sensor is converted into an electrical signal. Recently
the term smart sensor has become popular. This means sensors that incorporate an
intelligent signal processing that carries out tasks inside the sensor like filtering, data
reduction, extraction of features, combining different physical principles, ...

2. The electrical signal is converted into another electrical signal which is e.g. of
higher power and/or digital, etc.

3. The amplified and possibly digitized signal is outputted to a display, printer, plotter or

only saved.

Process

7] measurement

Sensor

A 4

@~
/] non-electrical

Probe

Trans-
ducer

electrical

1. Introduction to Measurement Techniques

\ 4

converter,
amplifier, ... output device
e.g. digital
Tsupport energy
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1.4 Basics

Measurement Method [1]

« Deflection Method: The measured quantity is directly converted into the output, e.g. a
display. No support energy is needed from outside. The required energy for the
conversion is taken from the medium or the environment (e.g. gravitation).

Examples: spring balance, expansion thermometer.

« Difference Method: The measured quantity is compared with a quantity from outside.
This quantity for comparison stays constant during the measurement. The difference
between both is the output. Example: volume measurement (displaced liquid).

« Compensation Method: A quantity opposed to the measured quantity is applied. A zero
indicator determines whether both quantities are equal. If so the compensation quantity is
a measure for the original one. The compensation quantity
can be of other kind than the original one.
Examples: Equal-armed balance with weights as
compensation quantity (same kind)
or with an electro-magnet induced force (different kind)

1. Introduction to Measurement Techniques Page 15 Prof. Dr--Ing.
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1.4 Basics

Measuring Technique [1]

« Direct Measurement: Comparison with a gauge. The most fundamental technique.
Example: Length measurement with a ruler.

« Indirect Measurement: The quantity to be measured is determined by other relevant
quantities. Examples: Determination of pressure by measuring force and dividing by the
area. Determination of power by measuring voltage and current and multiplying them.
Determination of speed by measuring distance and time and dividing them.
Determination of acceleration by measuring speed and differentiating.

« Incremental Measurement: From a reference point, increments (= smallest change) are
added or subtracted to determine the actual value. Typically, equidistant markings are
scanned (optically or magnetically or otherwise). Examples: Measuring angles or
displacements.

&\ utomatic Control University
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1.4 Basics

Analog and Digital Measurement Processing

1.4 1.4
1.2 1.2 .
1 . 1 ' ° .
0d Sampling od
0.6 Time: continuous 0.6 Time: discrete
04 Amplitude: continuous 04 Amplitude: continuous
- 02 07 c
2 | o
2 % 2 4 6 8 10 % 4 6 8 10 ©
5 t [sec] t [sed] s
c . ) c
< 1.4 1.4 ]
- >
O 12 1.2 o
1 \/ ] 1
o Sampling od
0.6 Time: continuous 0.6 Time: discrete
0.4 Amplitude: discrete 0.4 Amplitude: discrete
0.2 0.2
% 2 4 6 8 10 % 4 6 10
t [sec] t [sec]
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1.5 Literature

These books are the main basis for these lecture notes:
1. J. Hoffmann: “Taschenbuch der Messtechnik®, 4. Aufl., Hanser, 2004

2. J. Niebuhr, G. Lindner: “Physikalische Messtechnik mit Sensoren®, 5. Aufl.,
Oldenbourg, 2005.

3. E. Schrufer: “Elektrische Messtechnik: Messung elektrischer und nichtelektrischer
Grolken®, 7. Aufl., Hanser, 2001

4. U. Kiencke, R. Eger: “Messtechnik®, 6. Aufl., Springer, 2005.

A reference:

Mayer, J.R. Rene: “Measurement, Instrumentation and Sensors Handbook*, CRC
Press, 1999

A good book in English:

Morris A.S., Langari, R.: “Measurement and Instrumentation: Theory and
Application”, Academic Press, 2012
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4. Digital Measurement
Technigues
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Contents of Chapter 4

4. Digital Measurement Techniques

4.1 Discretisation of Amplitude and Time
4.2 Sampling Theorem

4.3 Quantization

4.4 A/D and D/A Converters
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4.1 Discretization of Amplitude and Time

Advantages of Digital Measurement Techniques
« Digital electronics is insensitive with respect to environmental influences (temperature).

« Digital electronics becomes more powerful, cheaper, smaller, more robust. It can be
integrated together with the sensor (smart sensor).

« Documentation and archiving purposes require or favor a digital form.

« Digital signal processing is much more powerful and flexible than analogue electronic
circuits:
— Digital and adaptive filtering.
— Nonlinear transformation/inversion.
— Transformation of signals into the frequency domain (fast Fourier transform, FFT).
— Parameter estimation, supervision, diagnosis.
— Sensor fusion.
— Storage of data on a digital storage medium (hard disk, flash).
— Transmission of data without any information loss.
— Powerful display technologies.
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4.1 Discretization of Amplitude and Time  sampled

~
Here: Focus on digital signals digital = time-discrete & quantized
« Difference equation and sums are simpler to manage and understand than amp”tu({; in
differential equations and integrals. e.g., 8 or 16 bits

 Digital realizations replace analogue circuits because it is

cheaper in most cases (especially for high quantities),

easy to implement,

more flexible: faster and cheaper to change (even afterwards with updates),

more robust and durable with respect to environmental influences
(wear, temperature, humidity).

Focus of this lecture

« Development of an understanding for the methods and their potential applications.
» No implementation details and tricks.

* No programing of digital signal processors (DSPs).

« More width than depth.
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4.1 Discretization of Amplitude and Time
Abbreviation: u(k) = u(kT,)

Analog/Digital and Digital/Analog Conversion y(k) = y.(kT,)
A/D Convertor

o Sensor U | o-l-\c (Y » A/D uto | Computer
« Sampling time T, can be bet- 0

ween usec (signal proc.) ‘ ‘
and hours (thermal, uc(t) ug(t) u(k)

biological processes) K Wl X

« Amplitude resolution . R 1 R
of 8, 12 or 16 bit. t t k
D/A Convertor k *(t t
Computer y&) » DI/IA () » Hold L

« Computer handles
time-discrete series.

Gl y*(t) | yo(t) |
» Hold of 0. order . .
generates piece-wise . N ” ”
t

constant signals. >
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4.1 Discretization of Amplitude and Time

Analog and Digital Measurement Processing

1.4 1.4
1.2 1.2 .
1 . 1 : ° °
0d Sampling od
0.6 Time: continuous 0.6 Time: discrete
04 Amplitude: continuous 04 Amplitude: continuous
- 02 07 c
2 | o
g % 2 4 6 8 10 % 4 6 8 10 ©
5 t [sec] t [sec] S
c c
< 1.4 1.4 ]
> >
O 12 1.2 o
b \/ 1r
Samplin
0.8 P Ig 0.8
0.8 Time: continuous 0.6 Time: discrete
0.4 Amplitude: discrete 0.4 Amplitude: discrete
0.2 0.2
% 2 4 6 8 10 % 4 6 10
t [sec] t [sec]
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4.2 Sampling Theorem Wheel seams A N N

to freeze!

Sampling of a Continuous-Time Signal

Everybody has seen spoke wheels of a starting carriage or car — at least in the movies. First
the accelerating wheel can be observed. With a certain speed or angular velocity of the
wheel, it suddenly changes direction and seams turn the other way round although the
carriage further accelerates. Further on the wheel slows down before it finally stands still.
That in obvious contradiction to the faster and faster carriage.

This strange effect can be explained by the so-called Aliasing. It exists for all time-discrete
and therefore sampled systems. Obviously problems occur, if the signal is sampled too
slowly for its velocity (or more precisely frequency). This effect becomes prominent, if we
approach half of the sampling frequency. The movie plays the role of the sampler with a
sampling frequency of f, = 24 Hz or 25 Hz, i.e., the refresh rate.

What happens if we sample a signal of frequency f = 1 Hz with f, = 1 Hz?

1¢f 1C

SC<t> 0 x(k)O
-1 b , , , ‘ , E -1 b ‘ , , ,
0 1 2 3 4 5 6 0 1 2 3 4 5 6
t [sec] k
University
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4.2 Sampling Theorem
Aliasing

Obviously the oscillation is completely gone! We get a signal of frequency zero (a dc value).
This happens independently of the phase orientation of the sampler (only the value of the dc

value depends on it). For illustration some further examples with f = 0.9 Hz, 0.7 Hz, 0.5 Hz
and 0.3 Hz sampled with f, =1 Hz.

f=09Hz f=0.7 Hz

1 1 -
Or Or
-1t . -1t
0 1 2 3 4 5 6 0 1 2 3 4 5 6

0 1 2 3 4 5 6

&\ utomatic Control University
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Claude Elwood Shannon, 1916-2001 | "

4.2 Sampling Theorem (w-ww-.wikepedia.org)
\ery entertaining podcast:

Fritterin’ Away Genius
Cautionary Tales with Tim Harford

From the examples on the previous slide we see, that at least the double of the

sampling frequency is required to reconstruct the original signal from its sampled
version (f = 0.5 Hz sampled with f, = 1 Hz). Real signals consist of many (typically infinite
many) frequencies. Then, this requirement relates to the highest contained frequency f

Sampling Theorem

max*

Shannon‘s Sampling Theorem

The signal x(t) shall be sampled. The highest significant frequency component of x(t) is at
fax- 1hen the sampling frequency has to be at least twice this highest frequency component
of x(t):

fO > 2fmax

If this theorem is violated, aliasing occurs, i.e., frequency components above the half
sampling frequency (f > %2f,) are mirrored into a lower frequency range. By this effect high
frequency noise can disturb the signal in any frequency range. Thus aliasing should be
avoided or at least kept to a minimum.

It is practice to choose ~ f,=5...10f

max

University

u

of Siegen

&\ utomatic Control

4. Digital Measurement Techniques Page 27 Prof. Dr-Ing,

Oliver Nelles



4.2 Sampling Theorem

Illustration of the Sampling Theorem and the Aliasing Effect

If the sampling theorem is met, it is possible to reconstruct the original signal from its
sampled version, i.e., no information loss takes place. However, in reality most signals are
not bandlimited. This means they have frequency components up to infinity, i.e., no upper
bound exists (f., = ). Typical signals like steps, ramps, rectangular shapes stretch their
spectrum between zero and infinity. Such signals cannot be reconstructed perfectly.

Signal Spectrum
A . A
1 (t) | X (iw))]
t: w;
A A
x2(t) | X2 (iw)]
t: w:
.. . 2\ utomatic Control University
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4.2 Sampling Theorem

Illustration of the Sampling Theorem and the Aliasing Effect

Spectrum of the continuous signal

X (iw))

bandlimited
/ signal

0 Wmax

v

Spectrum of the sampled signal wp = 2wmax

Spectrum of the sampled signal wop > 2wmax

A

X (0]

T
—Wmax 0 Wmax f wo X w

»

WO — Wmax W0 T Wmax

Spectrum of the sampled signal wg < 2wmax

T1Xs ()] T1Xs ()]
N N N
/7 N\ /7 N\ /7 N\
/ \ / \ / \
/ \ / \ / \
/ \ / \ / \
/ \ / \ /
ya . I \ > V4 \ } >
—Wmax 0 C‘;max wo X w —Wmax 0 fwmax wo X w
Wo — Wmax Wo + Wmax Wo — Wmax W0 T Wmax
4. Digital Measurement Techniques Page 29
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4.2 Sampling Theorem

Aliasing for Sampling a Sin-Signals With Angular Frequency @,

wo > 2wq wo < 2wq
12X (i) F12X i)

f A : ? f A f

I I I I

I I I : I

I I I I
] : ' ] : I '
—Wwo —w1 0 w1 Wo wo w —wo —W1 0 wo w1 wWo S w
W1 — Wo 9 w1 + Wwo W1 — Wo 9 w1 + wo

Each signal component of frequency «; is mirrored through the sampling process to:
w=wi+lwy mitli=...,—-2,—-1,0,1,2,...

As long as «j, lies inside the red area (solid), i.e., the sampling theorem is not violated, the
mirrored components (dashed) keep lying outside the red area (left figure).

As soon as w; lies outside the red area (solid), i.e., the sampling theorem is violated, the
mirrored components (dashed) lie inside the red area (right figure). Aliasing occurs!

If a component changes from @, to «,, a mirrored alias component at @ = 0 Is created.
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4.2 Sampling Theorem

Aliasing in Image Processing

Signal processing is relevant not only for signals over time. It is also important for signals
over space like pictures/photos(2-D: columns & rows) or a combination of both in videos (3-
D). For such spatial signal the same laws and relationships hold. Signals over time can be
filtered, so can signals over space.

Image processing therefore also has to deal with the aliasing effect. A high spatial frequency
corresponds to alternating points of black and white (or differently colored).Without a special
so called anti-aliasing filter, such
components of high frequency can
significantly disturb the picture. Itis 3
particularly prominent for tiny
checkered patterns and known as the
Moire effect. A low-pass anti-
aliasing filter prevents such
destructive effects. Every digital
photo and video camera has build

In such a filter.

With Anti-Aliasing

&\ utomatic Control University
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4.3 Quantization

Quantization Error

Any digital value is quantized in its amplitude. A continuous value has to be mapped to a
discrete value via the A/D converter. This means that each interval in the continuous range
corresponds to some integer number. All values inside of such an interval are
indistinguishable after the A/D conversion.

If we quantize a continuous value in the range from X, t0 X, INto n bits, 2" intervals or
guantization levels exist. In such a quantization the maximum error can be calculated as
Lmax — Lmin

2n
because this is the interval width. The quantization

€Q max —

error with this approach is always positive because XQ
the green line (dashed) always is above the blue one g: T
(SOlld) 54 eQ max el :
Example: X, =0, X = 10, n =3 Bits 4+ H —

3__ P -,
€omax = 10/8=1.25 i“ T

. . 0 >
In practice 8, 12, 16 bit A/D converters are standard.” § 1 o5 55375 5 625 75 8.75 10 X
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4.4 A/D and D/A Converters

It is possible to improve this quantization error by almost Xq
a factor of 2. Instead of always rounding down, we can 7-

draw the green (dashed) line through the average by 61 e =<
. - . . -4 max 2z
shifting it e/2 to the right. Now X,;, and X,, are in the 2__ i
medium values of the intervals, not their limits. This 3+ ——
sacrifices one interval. The maximum quantization error is: 2T [
6 max = 5 e~ i 0143 429 714 10 %
max — . . .
2 2" —1 286 571 857
uantization Noise
Q Jeq (eq)t
Although the quantization error is caused systematically, it appears
to be of random nature. Thus, one speaks of quantization noise that e
any A/D conversion creates in principle. Since all values are of equal —CQmax ¥
probability, it can be modeled by an equal probability distribution. foo (e}
In old synthesizers or CD players quantization noise could be heard
for low volume sounds. >
- €Q max €Q max €Q
2 2
&\ utomatic Control University
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4.4 A/D and D/A Converters

A/D Converters: Fundamentals

The three main characteristics of A/D converters are:
« Resolution

« Speed

« Realization effort / price

These characteristics are in conflict with each other. E.g. a high resolution implies a low
speed or high effort/price (or both).

With resolution we mean the number of bits n which results in 2" quantization levels. It is
not reasonable to request a much higher resolution from the A/D converter than the
measurement noise or other disturbances have as mean amplitude since the accuracy of the
signal then is limited to this value anyway. Otherwise the lowest significant bits are
determined by noise and carry no information.

The speed (bandwidth) determines how fast the A/D conversion is performed and therefore
how fast the sampling is possible (maximum sampling frequency). The effort typically
shows directly in the price.

A low sensitivity with respect to environment conditions is also an important criterion.
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4.4 A/D and D/A Converters

A/D Converter: Parallel Principle or Flash Converter [1]

The voltage which shall be converted Ug is directly compared with n different reference
values. For any of the existing 2"-1 quantization levels one comparator is required.

Properties: Very fast
(10 MHz), low resolution (8 bit).

| - - - . -
‘ Application Field: Video.
Uy T )
e | G—
; Decoder
! > Biniir-
Ausgiinge
1 :
] . Komparatoren i)
: ; 2
0
Ij T : Bild 5.5 Parallel-A/D-
' Umsetzer
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4.4 A/D and D/A Converters

A/D Converter: Successive Approximation or Weighting Method [1]

The procedure is identical to the weighting with a beam balance where the available weights
are 1, ¥, Y4, ..., 1/2". A combination of these weight represents the quantization levels. One
starts with the highest weight and adds or removes weights in descending order to balance
the beam. At the end we have n steps (n times a weight is added and possibly removed). The
remaining weight represent “1”°, the removed “0” in the converted value. Weights are
realized by voltages, the beam balance is realized by comparators.

Properties: Medium speed (1 MHz), medium-high resolution: 12, 16, even 24 bit,
Application Field: Computer plug-in A/D converter cards for measuring signals.

biniirer Ausgang
H L HHL HL H

UF Urct —
D/A-Umsetzer el '._q ______
+ =/ Kompa- | e
rator
o)
2 : Biniir- Bild 5.7
Sukzessive- Aus- Bild 5.6 Sukzessive- Aufbau des bindiren
: ApproxImation- giinge Approximation-A/D- Ausgangssignals beim
Register o) , Sukzessive-Approxi-
Umsetzer o o e R B I e L L DUKZe: Pl
1 2 3 4 5 6 7 8 Takt mation-A/D-Umsetzer
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4.4 A/D and D/A Converters

A/D Converter: Servo Principle [1]

Constantly the difference of the voltage U to be converted and the output of the A/D
converter which is converted back into an analogue signal is compared like in a control
system. If this difference | equal to zero, then the A/D conversion is correct. A positive or
negative difference triggers a count which is counted up or down (feedback!). Because the
has a certain speed, the conversion needs a lot of time that depends on the size of the
difference; this it similar to an integrative controller. However, if the difference is small
because the signal hardly changes (no steps or

U ~ | uy impulses) the converted voltage follows closely.
B /
o D/A-Umsetzer ||~—{
\ o Properties: Speed depends on the size of steps.
Kompa- lHlll ll &
rator
. vt 9 Application Field: continuous conversion,

Binir-

Auf Aus- slowly changing signals.

u&(} (% Zihler ginge
I

['l:,“kl L T - Bild 5.8 Nachlauf-A/D-Umsetzer
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4.4 A/D and D/A Converters

A/D Converter: Dual Slope Principle [1]

The dual slope converter uses an extended ramp method. The input voltage U is integrated
over a fixed period of time t by an integrator circuit. Subsequently, the integrated voltage is
integrated down again until zero by some reference voltage U, ; of opposite sign. During the
latter time period a counter runs whose counting then is proportional to the original input
voltage Ug.

Properties: Excellent quality and suppression of unwanted influences. Is is almost
independent of material properties, temperature changes, etc. because those effects cancel
each other during up- and down-integration. Slow speed since integration takes a lot of time.

0 hitkgrabox Komparator Application Field: Digital volt meter.
ho__l
\ Integrator-
ausgangs-
Ut T spannung
.|, Ubertrag -
qeE——1 L , L lom |
S 8 l“ et —_—e—— ,”I?.
l ' Aufintegration = Abintegration
. (konstante Zeit) (konstante Spannung)
Bild 5.11 Dual-Slope-A/D- Start und
Umsetzer Reset Binirausgiinge Bild 5.12 Funktionsweise des Dual-Slope-A/D-Umsetzers
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4.4 A/D and D/A Converters

A/D Converter: Sigma-Delta- or Charge-Balance- or 1-Bit-Method [1]

In the first part of a sigma-delta-converter a

. . Uy {F—1 stréam digitale Nach-
bit stream is generated whose average value X l: ‘ il > QT | bearbeitung
is proportional to the input voltage U that [ [ ! ] lll l
shall be converted. This is achieved througha , \g— Binir-Ausglinge
control loop in which the difference between “jl)'_l’/'I
U and a positive and negative reference T —
voltage is fed to a comparator. For U = 0V
the up- and down-integration phases are Uk Ur,
equally long. ‘ A .
In the second part the bit series in the bit Integrator- o '
stream is counted and converted into a e e
digital value. 0 AAAAAAAAA - 0 i
Properties: very high resolution (24 bit), Bit. Bit. |
medium speed. U U
Application Field: audio, instrumentation. Mt L v i 1

Bild 5.16 Funktionsweise des Delta-Sigma-Umsetzers
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4.4 A/D and D/A Converters

D/A Converter: Current Weighted Principle [1]
In comparison to A/D conversion is the way back quite simple.
One possibility is to drive a

+U, Bindireinglinge
constant current through a Q q
number f)f resistors with | (e S SN 5 thT _»4'1«_1 - 7";1-( i
geometrically ordered resistances, "’[ ‘ R ‘ ] R ' } ‘ H 2 [ l
l.e., R, 2R, 4R, 8R, ... The voltage ) i r/} | | | g
drop over each resistor corresponds 1 t\ l ( 1 N l “ ] [
.. .. R, I\ | W
to a bit in the digital value 2 l y 1 W
(“1” for “on” and “0” for “off™). % =4 1 R,
The sum of these voltages then " K ’ I L. l
3 i —a AV
corresponds to overall value, 1 D e
e.g., the bit series . [
e . 4%
gives the analogue voltage l l
U= (16R + 8R + 2R)l = 26Rl Upet |
[ Bild 5.17 Stromgewichtete D/A-Umsetzer
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4.4 A/D and D/A Converters

D/A Converter: R-2R Principle [1]

The R-2R converter divides a current in each knot into 2 halves (factor 2). One half drives a
resistor with resistance 2R and thereby creates a proportional voltage drop. The other half is
again divided into 2 halves etc. The main advantage compared to the method explained on
the last slide is that only two kinds of resistors R and 2R are required. They are much easier
and cheaper to manufacture in high quality (low temperature dependence) than all the
different kinds for the current weighted principle R, 2R, ..., 1024R (for a 10 bit converter).

R R R R

T{ o }T'”{ }I 1 >
2/\’} zkﬁ IRH 2R( ZR'W 4] 27 I

2R

=
;:_'::.
® S
» 3
\—A
\—
;_1
T —
>—
3
=L
-
(&)
ay
)
=y
)
oy
| 1
[ L

Bild 5.18 R-2R-D/A-Umsetzer
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4.5 Measurement of Frequency

Fundamentals of Frequency Measurement

In the discussion of velocity and angular velocity measurements in Chapter 3.3 it is explained
how such a measurement can be transformed into a voltage signal of same frequency. The
last step that still is open, is to determine this frequency! The reason for this is that frequency
measurement is typically done digitally — thus it has been postponed up to here.

The task here is therefore to determine the

frequency f of a given voltage signal u(t). U(t)P AN
t frequency f

Two alternative approaches are presented: > BN
measurement

« Measurement of the cycle duration (period): For signals of
low frequency it makes sense to measure the time for one (or even half of an) oscillation
T and calculate the frequency from f = 1/T.

« Counting the number of cycles within one time interval: For signals of high frequency it
makes sense to measure the number of oscillations within a given time interval and to
count them. The frequency can be determined by f = number of oscillations / time
interval.
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4.5 Measurement of Frequency ML g L | [ETTTTT]

Referenz Zeittor Zahler

}

d
_J_—DI—I_

Diskriminator pos. Flanken

Measurement of a Period [4]
Quelle

Abbildung 8.6. Strukturbild zur Periodendauermessung

Well-suited for

. Sensorsignal (1) -
low-frequency signals

Amplituden o TR
Gate time is one or Signal - .. ;M
one half of an oscillation | r 3 4
of the original signal. S [ l

Reference frequency ~ . § N8

is artificially generated.
Zihlimpulse

Zahl der Impulse
im Signalfenster

Abbildung 8.7. Digitalisierung frequenzanaloger Signale durch Periodendauermessung
(winkelsynchrone Erfassung)
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4.5 Measurement of Frequency I" 2 ™ om0

pos. Flanken

Counting of Many Periods [4] | [ ] Froauenteer
Referenz I

Abbildung 8.8. Strukturbild zur Frequenzzihlung

Well-suited for
high-frequency signals.

Sensorsignal

(plll >

Amplituden- 'f?l_

disknminiertes ‘ ’—IJ 1
Frequency come from Signal A HH ll H H I H IHI H Hl
the original signal. A A T T T T T J

Zeittor 5 SESEEL W

Gate time is generated SO Y B 5 e A N 1|
arbitrarily (the long the
more accurate but slower).  Zeiorflanken

Zahnflanken

_—
—
—
— >
—

Zahl der Impulse
im Signalfenster

Abbildung 8.9. Digitalisierung frequenzanaloger Signale durch Frequenzziithlung (zeitsyn-
chrone Erfassung)
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B: Signal Processing
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Contents of Chapter 7

7. Introduction to Signal Processing
7.1 What for?
7.2 Deterministic and Stochastic Signals
7.3 Application Examples
7.4 Literature
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7.1 What For?

What are Signals?
 Signals transfer information.
« Signals are functions, typically of time.

 Signals are measured with sensors and can be available in every physical form like
pressure, temperature, voltage, ...

Some Typical Signals
« Speech, music
« Pictures, videos

* EKG, EEQG, signals of CT, MRT or PET — image processing, conversion in pictures, ...
» Distance measurement with laser, ultrasound or radar, echo lot, GPS, seismic signals, ...
« Data streams via telephone lines, cable TV, satellite, cell phone, bluetooth, internet, ...

» All kinds of measurements at machines, machines in factories, ...

» Pressure in cylinders of a combustion engine

» Stock prices, number of unemployed people, development of populations, ...
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7.1 What For?

What is signal processing?

The analysis, manipulation and integration of signals

Application areas of signal processing?

« Storage, reconstruction

« Separation of desired signal and disturbance (signal-to-noise ratio)
« Compression

» Feature extraction (pre-stage of every classification)

Method/Tools of signal processing

« Transformation, correlation

 Filtering, disturbance suppression

» Detection, classification, pattern recognition
« ldentification, estimation

« Compression, integration, fusion
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7.1 What For?

Applications

77 GHz Infrared Video 24 GHz

Long Ran%e Short Ran

Radar (LRR) Radar (SR

(Lidar)

Long Long Medium | Short

1to 120m 0 to 200m 0to 80m 0.2 to 20m
Driver Assistance

Talefon-SG

Ultrasonic

R

Ultra short
0.2t0 1.5 (25)m

Einparkhi¥e-SG

ZentraksG

Dachmodul — Komfortsystam
TUr-SG, hinten re. Kiimabedienteil Fond

Analoguhr
Tir-5G, Baitshrar

Navigation-SG
ADRSG
Motor5G 1
MotorsG2 [~ S
Gatriabe- |/
s6 |§
a8

Sitz-SG,
Baifahrar

ADR-Sensor KESSY-SG

Bordnatz-SG ABS/ESP

Alrbag-SG Standhekzung

7. Introductionto S

Tiir-5G Fahrer

Kombiinstrument

$itz-SG Fahrer

Klima-5G

Wischerm odul

Integration Sensorics/Control Units

ignal Processing

Tiir-SG hinten i

Lenksiukenmodul

I CAN-Antrisb
CAN-Komfort
B CANdnfotainm.

[T rruosa Voo '

Night Vision Internet
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7.2 Deterministic and Stochastic Signals

Deterministic Signals Do Not Depend on Randomness:

- Dirac impulse Deterministic signal

4
« Step 2
«  Ramp Z

4

« Periodic signals: sine, rectangular, ...

0O 20 40 60 80 100 120 140 160 180 200
time t [s]

Stochastic Signals Depend on Randomness:

* Noise

- Distribution of amplitudes: , Stochastic signal = Random signal
- Gaussian, 2/ |
- uniform, ... 2

« Frequency characteristics: 0 20 40 60 80 100 120 140 160 180 200

. ) time t [s]
- white: all frequencies have the same power,

- band limited: only a certain frequency range is present, ...
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7.2 Deterministic and Stochastic Signals

Motivation for Using Stochastic Signals

Physical effects are truly random (e.g. radioactive decay).

Many tiny disturbances appear like random, but are of deterministic nature each if we

look in close detail (what needs time and dedication).

— In both cases: Modeling of the effects as stochastic signal makes sense!

White Noise

ot

|

_4 ! ! ! ! ! ! ! !
0 20 40 60 80 100 120 140 160 180 200

Violet Noise (high frequency)

time t [s]

t
AN
dt 0 1

Brown Noise (low frequency)

4 0
2l I ‘\ i) ‘AH Il \\ kb b i | g h a ]
Iy w M A |
ol Me\/‘h“‘q“‘v Ui W‘W\\/‘ NI 5 ‘~ ’
1| N
2F v‘ v ‘ 101 ) i
-4 I I I I | | I I I -15 | ! | | ! | | | L
0O 20 40 60 80 100 120 140 160 180 200 0O 20 40 60 80 100 120 140 160 180 200
time t [s time t [s]
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7.3 Application Examples

Acoustic Echo Compensation (Hands-Free Talking)

« Adaptive (automatically self-adjusting) filters eliminate disturbing and annoying
feedbacks by modeling the transfer characteristics between speaker and microphone and
subtracts this signal part from the overall signal.

d=s +% e=S+X—-y=s
A I ‘
% S
min. power of e! P
y -
/ LMS-Algorithmus in MATLAB: / \
. forn=1:N
adaptlve xx = [x(n); xx(1:end-1)];
filter e(n) = d(n)-w*xx:
7 1 pow = norm(xx)"2;
w = w+mu/(pow-+delta)*e(n)*xx;
end =
Universitat Stuttgart 18 11.05.06
[!55 B. Yang

&\ utomatic Control University
/. Introduction to Signal Processin Page 53 Prof. Dr.-Ing. -
g g Oliver Nelles m

of Siegen



7.3 Application Examples

Active Noise Cancelation % e Mot

« By direct measurement of the noise and generation of a T
opposite phase signal (180° phase shift) destructive N
interference annihilates the noise or at least parts of it.

»  Works well in the low-frequency range up to 1000 Hz. Active Noise Reduction

« Damping (active + passive) up to —30 dB possible!
Inside noise-canceling headphones

Sound waves created Noise created
by headphone speaker by external source

~
1}
Electronics
B L e N
4B —_— Passive NR
-30
Active NR
I I —— Maoise Reference Mic
20 500
Frequency (Hz) Headphone
Operational Range of Active and Passive Moise Reduction / Transducer

Dﬂ Time
T i 1_ " Dielay _
2l
ate .
’ Errar
. " er Ml ; Adaptive Filter |
ity A ‘
udic udic '
n In —
Closed-Loop ANR with Internal Mic Adaptive Noise Cancellation Headphones \ = Silence

AdﬂU

Moise-Filtering Headphone
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7.3 Application Examples

Bus/Train

Active Noise Cancellation with Sony Xperia Z2

Airplane

« Works via cell phone, not with headphones alone. Office

« Use processor and battery of cell phone. cancel

Source: https://www.theguardian.com/technology/2014/apr/17/sony-xperia-z2-review-phone-android:

Noise cancelling

The Xperia Z2 is the first smartphone with active noise-cancelling technology

integrated into its body for use with a special headset. The headset contains <
microphones that monitor incoming noise and send it back to the Z2, which then s ) —

blends in noise cancellation to whatever is being played. \ )
. . . . . . \SONy )
Active noise-cancelling is not a new thing, but normally it requires headsets with e —————

Sony MDR-NC31EM Digital Noise Cancelling Headset (A

a bulky battery and electronics pack attached to the headphone wire. Sony has
squeezed the circuitry and software into the Z2, removing the bulk that normally
makes noise-cancelling earphones bulky or heavy.

Because the noise cancelling control system is built into the phone, you can select
an appropriate profile for the noise to block out - the options are planes, trains,

buses and the office - which makes the technology much more effective. I found Cliii Speeeh ” I | ' '“
the office setting to be particularly effective at blocking out the hubbub of an

SO —

l

open-plan office, much more so than most other noise-cancelling ear or Source: http://www.techradar.com/news/phone-and-
communications/mobile-phones/background-noise-reduction-one-
hE‘Eld]]th‘lE‘S. of-your-smartphone-s-greatest-tools-1228924
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7.3 Application Examples ) e——
. e ax. Af | A 2
Face Detection 9{ o EM‘,} . & ’?
N+ R £, 2
« By calculating the gradients in x- and y-direction, a vertical o % ‘v”*
and horizontal edge-image can be generated. A : g e
Vertical and horizontal
« From these edge-image the features can be extracted more easily. edge-image

« This software extracts 22 features per face:
- vertical position of nose and its width,
- vertical position of mouth, its width, and its height,

- vertical position and heights of eyebrows over eye center,

- 11 radii that describe the form of the chin,
- width of face at nose bottom edge, s

- width of face at center of eyes and nose.

22 features used
Quelle: www.markus-hofmann.de for face detection.
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7.3 Application Examples

Supervision of quality welding line

Industrial Image Processing

Component measurement
to supervise tolerances

Lasar

LED LED
Yy s 1
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u

of Siegen

&\ utomatic Control

7. Introduction to Signal Processing Page 57  Prof. Dr-Ing.

Oliver Nelles



7.3 Application Examples

Image Compression Image 279 x 356 pixel: as *.tif (without loss): 394 kB
*.Jpg (100%): 119 kB *.Jpg (60%): 22 kB
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7.3 Application Examples

Image Compression Image 279 x 356 pixel: as *.tif (without loss): 394 kB
*.Jpg (100%): 119 kB *.Jpg (20%): 10 kB
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7.3 Application Examples

Image Compression Image 279 x 356 pixel: as *.tif (without loss): 394 kB
*.Jpg (100%): 119 kB *.Jpg (10%): 5,4 kB
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7.3 Application Examples

Image Compression Image 279 x 356 pixel: as *.tif (without loss): 394 kB
*.Jpg (100%): 119 kB *.Jpg (2%): 2,1 kB
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7.3 Application Examples

Process Automat. for Waste Water Plants

« Graphic description of the plant

« Measurement of many process quantities
- temperatures
- flow rates
- concentrations

« Measurement of disturbances

» Logging of all value for measurements,
manipulated and control variables

« Control of many quantities

« Supervision of limits

« Sensor fault diagnosis

« Optimizat. of profiles for desired values

Manual fine tuning via control system

7. Introduction to Signal Processing

G ht l Vorreinigung l Biologi Schlammbehandiung | Ablaufmessung | Trends | Alarmbehandiung | Betriebstagebuch | Besetzt |
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7.3 Application Examples

Suppression of Disturbances

Filter

Example:
50 Hz disturbance
through power line
Engine Speed ¥ Measurement
test stand o~ i

Goal: Desired signal ,,speed*
can pass (almost) unchanged
but disturbance is suppressed.

as close as possible

to ,,speed

How to design a filter that fulfills its task (disturbance suppression) well?

*  What does “well” mean? — Criterion needed!

» Structure of the filters: linear/nonlinear, FIR/IIR, order, ... to be determined.

o Parameters of the filter to be determined.

» Prior knowledge about the disturbance is required:

- kind: stochastic or deterministic

- frequency range: single frequencies, certain frequency bands, ...

7. Introduction to Signal Processing
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7.3 Application Examples

Detection of Damages in Bearings by Analysis of Structure-Borne Sound

« Humans/experts often are able to detect faults in machines by their sound. Even emerging
faults can be detected early.

« Characteristic features can be found in the spectrum of the sound signal.
« Automatic methods for calculating and analyzing the sound spectrum are required!

' ?
arlng dam"i‘g,e' Sound spectrum

el Bl
2 no
damage
EROOO00O0O0
> Frequency emerging
> Sound cy |,
analysts WJR._..J\L.N damage
BECOO0CO0O0
Juh‘k advanced
damage
EEO00CNNN
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7.3 Application Examples

Notch Filter in Position Control in Aeronautics

Notch filter band-stop filter that address a very small frequency range. They are often used to
remove frequencies that otherwise would harm the system., e.g.:

«  Ship control: Elimination of disturbances caused by periodic waves.

« Control of planes, solar panels, and other weakly damped structures (light construction
becomes more important in almost every application).

« TV-and radio receiver: Interfering and disturbing frequencies are filtered.

Control System With Incorporated Notch Filter for Damping of Ressonances

Notch '
Filter

Plant

A 4
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MMagnitude (48]

Phaze (deg)

-360 -

7.3 Application Examples

Dizcrete-time notch fitker

Strong damping at

Example: Control of a Read/ ;.|
Write Head of a Hard Disk ]

« Improvement of the

Magnitude (

20 L

Sk F

4 kHz pushes
amplitude response
down and increases
the amplitude margin!

frequency characteristics )
of the open loop.

« Notch filter at 4 kHz

Phiaze (deg)

Bode Diagram
Gm =707 dB (at 2 2e+003 Hz) , Pm =554 deg (at 339 Hz)

From: In{11 To: PES
— 1 T

40

+ Notch

360

—_
ux)
)

=
T

—_
o
)

10° 339 Hz 10° 4 kHz 10t

Frequency (Hz)

filter

Magnitude (4B

Phaze (deg)

<360

Bode Diagram
Gm =956 dB (st 1.64e+003 Hz) |, Pt =41 deg (st 628 Hz)

From: Ini1) To: PES
— 1 T

360

=
T

—_
[e)
[

10° 628 Hz o’ 4 kHz 10

Freguency (Hz)
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7.3 Application Examples

Example:
Control of Space Shuttle

Resonances in the
dynamics of the shuttle

Notch filter suppresses
these frequencies

Source: ,,Flight Control Overview of STS-88,
the First Space Station Assembly Flight*

by R. Hall, K. Kirchwey, M. Martin, G. Rosch,

D. Zimpfer, AAS-99-371

Dynamic model of the Shuttle /

Mir obtained from ES/RI

Stability screening performed using
Draper developed stahility tools

Frequency (Hz)

Modeling uncertainty incorporated

A

G(s)

Notch filters designed to attenuate
s;[gniﬁcant Shuttle / Mir modes

Perform analysis and
simulation to certify
control performance

Perform near real-time
model identification

If required, update
notch design

Figure 7: Shuttle Gain Stabilization Design Process
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8. Time-Discrete Systems and Signals
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Contents of Chapter 8

8. Time-Discrete Systems and Signals (Fundamentals: Mainly Home Study)
8.1 Time-Discrete Signals
8.2 Difference Equations
8.3 Z-Transform

8.4 Transfer Functions
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8.1 Time-Discrete Signals

Equidistant Sampling of a Time-Continuous Signal With Sampling Time T,
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" paul Dirac, 1902-1984

(www.wikepedia.orqg)

Leopold Kronecker, 1823-1891 |

(www.wikepedia.orq)

8.1 Time-Discrete Signals

Unit Impulse and Unit Step

The unit impulse in discrete time is called Kronecker delta and has height 1. This is in
contrast to the continuous-time Dirac impulse which has infinite height. Therefore the
Kronecker delta can indeed be realized in practice, while the Dirac impulse is only a
theoretical idealization (or limit). If a Kronecker delta 1s fed to a D/A converter the output’s
length is 1 sampling interval and its energy is proportional to T,,.

ok (k) 1 area = energy = T,
1 D/A converter 1 /

—> >
with hold o

| | | | | | >
I | | v

2-1012345Kk 2T, 0 T, 3T, 5T, ¢t

The discrete-time unit step simply corresponds to the continuous-time unit step sampled
with T,. During the 1. sample the unit step (k) and the delta impulse §y (%) are identical!

o (k)
14 o o o o o Connection: ox(k) =o(k) —o(k —1)

. d t) —o(t — 1
~+—¢——+—+—+—+—+—> This corresponds to §(¢) = —o(t) = lim o(t) —of 0)
2-1012 345 Kk dt Tp—0 To
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8.1 Time-Discrete Signals

time shift operator
| steps of delay

1

Backward shift:

Forward shift:

y(k) = u(k — 1)

u(k) y(k)

=u(k+1)

2t = No delay
| steps of prediction
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8.1 Time-Discrete Signals

Up-Sampling and Down-Sampling

If the sampling rate of an already time-discrete sampled signal shall be changed the
following operations are required:
« Down-Sampling: Increase of sampling time by a factor of M. —| M —

« Up-Sampling: Decrease of sampling time by a factor of M. NNy R

These operations are needed to work with differently sampled signals (multi-rate systems) in
order to synchronize them compress the data. Commonly the sampling time is chosen very
small to make sure that the sampling theorem is not violated. However such an approach
creates huge amounts of data and causes problems with numerical accuracy, particularly in

control. Therefore, in a second step,

these signals can be down-sampled. y(k) . o
y(K) y(K) = u(kM)
u(k)f W .
o« o M = 2 0123 kyp =L ukiM)  k=0xM,x2M[]

L4 &(/{’) y( )__I_ .

S . . . (k) T . 0 . otherwise
-+ 24) °

0123456 Kk .

e
6 7 8 910111213 k
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8.1 Time-Discrete Signals

Aliasing With Down-Sampling

During sampling of a continuous-time signal aliasing arises if the sampling theorem is
violated, i.e., the sampling frequency f, is not larger the maximal signal frequency f__,. The
same is true for sampling an already sampled signal, i.e., down-sampling. Thus, before
down-sampling it is important to run an anti-aliasing filter that ensures no frequency
component above f,/2 (new f,) is inside the signal. In this case, the anti-aliasing filter needs

to be a digital filter (see Chapter 10)! 2-fold \ T = 2msec £ = 500 Hz
| 7 —
down-sampling 1!
Ty = lmsec  fo = 1000 Hz o, Y(k)O *
o I 3 1 aliasing! ’
1f 1 \ﬂ&\ &% 2
‘Z&\ 0O 5 10 15 20 25 30 35 40 45 50
u(k) 0 ] K
1f &) 2 \

_2 I I I I I | | I I (?/1(? .eol[; 1, .
O 10 20 30 40 50 60 70 80 90 100 SI[]
k ¢ y(k)or |
L no
u(k) = sin(27 - 20t) + sin(27 - 350¢) ) aliasing!

_2 ! L L L L | | L L
'\ (new) /2 0 5 10 15 20 25 30 35 40 45 50
0 K
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8.2 Difference Equations

Differential Equations — Difference Equations

For small sampling times T, — 0 a differential equation can be approximated by a difference
equation (discretization) by approximating a differential quotient by a difference quotient:

x(t) — x(t — Tp) o(t) —o(t —To)  x(t) — 2x(t — To) + x(t — 21p)
t(t) ~ T , T(t) = T — T2 Ve

This approximation has significant drawbacks for T, > 0. A differential equation of
ordern (m<n)

y(t)+a19(t) +azii(t) + . .. +any ™ (t) = bow(t) +b1a(t) +boti(t) +. . .4+ bymul™(2)

corresponds to a difference equation of order n:

y(k)+ar1y(k—1)+a2y(k—2)+...+a,y(k—n) = bou(k)+bru(k—1)+bou(k—2)+. . .4+bpu(k—m)

While the simulation of continuous-time systems requires integrations, a discrete-time
system “only” needs the solution of algebraic equations, i.e., simply the isolation of y(K):

y(k) = bou(k)+bru(k—1)+bou(k—2)+.. . +bpu(k—m)—a1y(k—1)—aoy(k—2)—. . .—apy(k—n)

Knowledge about the previous time steps ki—1, k-2, ..., k—n IS required.
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8.2 Difference Equations

Moving Average (MA) System
The output is a weighted average of the previous input signal:
y(k) = bou(k) + bru(k — 1) + bou(k —2) + ... + b,u(k — m)

Such a system is also called FIR (finite impulse response) because its output to an impulse
inputs decays to zero after m steps.

Autoregressive (AR) System
The output is a weighted average the previous output signal
y(k) = —ary(k —1) —agy(k —2) — ... —a,y(k — n)

Such a system also called IIR (infinite impulse response) because its output to an impulse
Inputs never decays to zero.

Moving Average Autoregressive (ARMA) System

A combination of a MA and an AR system. This corresponds to the general linear form.
Because it includes AR terms it possesses an IIR.
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8.2 Difference Equations

Homogeneous Solution: Simulation for u(k) =0

If the input is u(k) = 0 then the output depends only on the initial values. The most simple
example is the following difference equation of first order with b, = 0:

y(k) = bou(k) — ary(k — 1)

If the initial condition y(-1) is known the output y(k) can be calculated for all times k:

k=0: y(0) = bou(0) — ary(—1) = —ary(—1) Stable: a] <1
kE=1: y(1) = bou(1) - a1y(0) = —ary(0) = (~a1)*y(-1) :\Jﬂr;itga.bs!fa;ble: :Zi: Zi
k=2: y(2) = bou(2) — ary(1) = —ary(1) = (—a1)” y(—1)

b y(k) = bou(k) — ary(k — 1) = —ary(k — 1) = (—a1)"" y(-1)

For difference equations of order n with n > 1 it can be calculated correspondingly. However,
In the general case n initial values y(-1), y(-2), ..., y(-n) are required because y(k) depends on

y(k-1), y(k=2), ..., y(k-n).
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8.2 Difference Equations

Stability of a Difference Equation of 1. Order

We can distinguish between three cases:

1
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If a, > 0 we obtain alternating (in turn positive and negative) solutions. It does not exist any
analogue correspondence for time-continuous systems:
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8.2 Difference Equations u(k):(sK(k):{ 1 k=0

0 otherwise
Impulse Response

For u(k) = di(k) the generated output y(k) is called the impulse response. Like for time-
continuous systems the impulse response characterizes completely the dynamic behavior of
any linear system because the impulse contains all frequencies with equal power. In contrast
to the continuous time case, it is a sequence not a continuous function. For simplicity, we
assume all initial condition are = 0, thus the homogenous solution part is zero. For a first
order difference equation with b, = 0 we get:

y(k) = bou(k) —ary(k —1)

In the homogenous case we have y(-1) = 0 and thus the output y(k) for all times k becomes:
k=0: y(0) =bou(0) —aiy(—1) = bg

k=1: y(1) = bou(l) — ary(0) = —asbo

k=2: y(2) = bou(2) — ary(1) = (—a1)” bo

z; : y(k) = (—a1)" bo

We obtain the same power law as in the homogenous case.
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8.2 Difference Equations u(k) = o (k) _{ 1 k>0

Step Response

For u(k) = o(k) the generated output y(k) is called the step response. Like for time-
continuous systems the step response is the most intuitive way to find the picture the
dynamics. For simplicity, we assume all initial conditions are = 0, thus the homogenous
solution part is zero. For a first order difference equation with b, = 0 we get:

y(k) = bou(k) — ary(k — 1)

In the homogenous case we have y(-1) = 0 and thus the output y(k) for all times k becomes:
k=0: y(0)=bou(0) —a1y(—1) = bo (identical with the impulse response)
k=1: y(1) =bou(l) — a1y(0) = by — a1bg = bo (1 — aq)

k=2: y(2) = bou(2) — a1y(1) = bp — a1bo(1 — a1) = by (1 — a1 + ai)

].g . y(k) = bo (1 —a1+aj—... (—al)k) = by i (—a1)"
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8.2 Difference Equations

Relationship Between Impulse and Step Responses

Remember: In continuous time the following relationship holds between the impulse
response g(t) and the step response h(t):

d

(1) = So(t) — g(t) = h(t) ot)= [ syir — b)) = [ g(ryir

In discrete time the relationships are correspondingly:

S(k) = a(k) —a(k —1) — g(k) = h(k) — h(k — 1)

k k
o(k)=> dx(k—1i) — h(k)=_g(k—1)
i=0 i=0
Difference replace differentials, sums replace integrals. In discrete time the handling is much
simpler with the help of a computer. However, in this form, the number of sum terms
(summands) increases with k! Therefore we look for some other way to calculate the output
of a discrete-time system.
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8.2 Difference Equations

Convolution Sum

The impulse response sequence contains all properties of a linear dynamic system in discrete
time. For the time-continuous case the output in response to an arbitrary input signal u(t) can
be calculated by the convolution integral:

y(t) = / g(T)u(t — 7)dr = / g(t — T)u(r)dr u(t) o) y(t)

— 00 — 00

In discrete time the corresponding expression is the convolution sum. With it the output y(k)
to every input signal u(k) can be calculated:

y(k) = Z g(@)u(k —i) = Z g(k —i)u(i) __’u(k) g(k) y(k),

1=—00 1—=—00

Usually we assume that for negative times the input is equal to zero, i.e., u(k) = 0 for k <0.
This means that the first sum must be calculated only up to i = k or alternatively the second
sum has to start at i = 0. Additionally, if the system is causal, i.e., g(k) = 0 for k <0, then the
first sum can start at i = 0 and the second sum run up to 1 = k.
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8.2 Difference Equations

Convolution Sum (simplified)

With these simplifications the first sum can be written as:
k
y(k) = g()u(k —i) = g(0)u(k) + g(L)u(k — 1) + ... + g(k)u(0)
1=0
In the second sum the order is reverse:
k
y(k) =Y gk —i)u(i) = g(k)u(0) + g(k — Du(1) + ... + g(0)u(k)
1=0

Obviously, both sums are identical! With the help of a computer the sums are very fast and
easy to calculate. It is much easier than the convolution integral in the continuous-time case.

WARNING: With increasing simulation times k — oo the number of terms in the sum
Increases linearly. If the impulse response g(k) is of infinite length (1IR) then the
computational and storage demand increases without limits! This means that we have to find
out a way how to calculate the output of IR systems in a more practical and efficient
manner. For systems with finite impulse responses of length L (FIR) the number of terms in
the sum is limited to L.
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8.2 Difference Equations

Convolution with an Impulse

In continuous time the impulse J(t) has the sifting property, i.e., a convolution with a Dirac
iImpulse yields the signal itself. The Dirac impulse is the neutral element in a convolution like
“0” 1 addition or “1”” in multiplication. For the calculation of the impulse response we

choose u(t) = J(t) and this yields: 4 g(t)
y(t) = /_ g(T)o(t — 7)dT = g(1)

In discrete time we choose u(k) = di (k) and calculate with the convolution sum:

y(k) = Y g(i)ox(k —1i) = g(k)

= T =1ifork=i

This is exactly the corresponding result as in the time- o gﬁk)° ® ey(i)
continuous case. 1+ o * ® Sk — i)

0 k i
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8.2 Difference Equations

Hilbert‘s Hotel
This hotel has and infinite number of rooms. It illustrates the understanding of infinite sets.

If all rooms are taken, 1s a room available for additional guests or for 2 of for «o?
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8.2 Difference Equations

Exponential Relationships: Not intuitive!

Q: If we fold a piece of paper (thickness = 0.1 mm)
50 times, doubling the thickness with each fold:
How high is the stack?

A: From Earth to Mars = 100 mio. meter.

Q: If we stack coins,

one stack on each field of a chess board:
1 coin on chess field 1,

2 coin on chess field 2,

4 coin on chess field 3,

8 coin on chess field 4, ...

How high is the stack on chess field 647?
A: Up to a-Centauri = 4 light years.

Source:
http://www.wdr.de/tv/kopfball/sendungsbeitrae
ge/2011/1120/papier-falten.jsp

Source: https://www.youtube.com/watch?v=0mOZZLJZwpw

A human can calculate these numbers but cannot guess them! Human intuition fails with
exponential relationships. That make them potentially dangerous (extinction of species).
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8.2 Difference Equations

Geometric Series

In the previous slides geometric sequences or series play an important role. A geometric

series is a sum of exponentially staged numbers:

Zxk:xo—i—xl—l—xz—l—xg—i—...
k=0

The following trick allows to calculate this infinite sum exactly:

q:x0+x1+x2+x3+...
rq = x1+x2+x3—|—x4—i—...

1
g—rqg=1" — q(l—2)=1 — ¢=

1l—=
Thus, for x| <1 (for [x| > 1 the series diverges to infinity):

1 P
1—z

Zazk:x0+$1+:ﬂ2—l—m3+...
k=0

An extended formula can be derived for finite sums:
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8.3 Z-Transform

Description of Sampled Signals

Abbreviation: u(k) = u,(kT,)

An A/D converter samples a continuous-time signal u.(t) and thereby creates a time-discrete
signal u(k) = u.(kT,). The sampling is performed at time T,. It can be mathematically
modeled as a multiplication of u (t) with Dirac impulses at times T,, i.e., J(t-T,):

Us(t) = ue(t)6(t — T1) = ue(11)6(t — T}) 4 ue(Th)
If this sampling is performed periodically at the time steps kT, uc(t)
then the continuous signal u(t) must be multiplied (modulated) 5(t —T))
with a train of impulses: 1 R
o0 0 Tl t
us(t) = uc(t) > 6(t—klp)
k=—o0
00 Sensor U 0}0 (0 » A/D ul , Computer
= ) ue(kTo)d(t — kTo)
e u )| u®| u(k
= Y uk)s(t — kTo) i
s |
t t K
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8.3 Z-Transform

Interpretation of the Train of Dirac Impulses
The continuous-time description of a sampled signal as modulated impulse train is given by:

o0

us(t) = Z u(k)o(t — kTp) us(t) = i u(k)o(t — kTp), 1fu(k)=0fork<0
k=—o00 k=0

These formulas represent only a idealized model because in reality the impulses are not of
infinite height, of course. These Dirac impulses do not exist in reality. But they associate a
finite energy to each sampled signal point. Thus, also the multiplication with u(k) makes sense.

Mathematical Model of the Sampling:

J(t+2T,) . IL J(t-3T,) 3

LTI > ek

—A4To-3To-2T0-Ty 0 T, 2Tp 3Tp4To ¢ k=—o00
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8.3 Z-Transform

Laplace Transform of the Sampled Signal

If we apply the Laplace transform to a sampled signal the so-called z-transform originates.
The Laplace transform of a continuous-time signal u(t) is defined as:

Laplace-Transformation: |U(s) = / u(t)e™*'dt
0

If we choose for u(t) a sampled signal I.e., u(t) = uy(t) then we obtain:

Us(s) —/ us(t)e™* dt = / )8(t — kTp)e *tdt Remember:
’ L{5()} =
= / 5(t — kTp)e™tdt L{5(t — kTp)} = e~ K70
k—O _

L{5(t—kTh)}
This gives us:

_ i u(k)e—sk:To Z U sTo
k=0
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8.3 Z-Transform

Laplace Transform — z-Transform

With the abbreviation
To

z=e°
the Laplace transform of a sampled system is called the z-transform (the index “,*“ can be
skipped because it is clear by the variable denotation “z” that we deal with discrete time):

z-Transform: U(z) =) u(k)z™"
k=0

Frequency Response

To calculate the frequency response of a continuous-time system the Laplace variable s is
evaluated on the imaginary axis in the s-plane by setting s = iw for @ =0 ... 0. The frequency
response for a discrete-time system can be calculated in the same way. Correspondingly, the
z-variable becomes 2 = ¢*?°, For @ =0 ... o we run along the unit circle in the z-plane. It
would be circled infinite many times. Thus the frequency response is periodic which is caused
by the sampling! But according to the sampling theorem the frequency has to be limited to
wT,=m. So we circle only once! (Symmetry with respect to =a!)
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8.3 Z-Transform

Derivation of Periodicity of the Frequency Response

We want to consider the periodicity of the frequency response in more detail. The frequency
response of a discrete time system z — ¢™70 is:

E : U szo —k

With the facts ¢?™ — 1 forn =0, £1, + 2, ... and w7y = 27 We can show

_ iu<k) iwTH ’Ln27r Zu <ei(wTo—|—n27r)>_
k=0

— N Z(WTo-i-nono i(w+nwo)To
I G I WCIC

that the frequency response repeats all multiples of «, (each time we circle around the unit
circle in the z-plane). This means the frequency response is a periodic function. It is identical
for w, w+ @y, v+ 2w,, ¥+ 3w, ..

—k
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8.3 Z-Transform 4

Wy |
: T 2
Illustration of the Periodicity of the Frequency Response
wWo T
Main Spectrum Shadow Spectra Wo

|
E—>
@]
|
5T
O—>—>
&+
§->
o \
o
=) /
M_>
o |
en)
e
v
S
<
v

2
2 2 2
o
« The shadows spectra around the multiples of «j, ’
are created by the sampling with frequency w. _%__

« The Im-axis between —1«,/2 and i«y/2 in the s-plane
IS mapped into the unit circle in the z-plane.

» The whole information in a time-discrete
system is contained in the frequency o _Wo Yo 3wo o
response along the unit circle between
the frequencies w = 0 and w = w/?;
In the part of the unit circle w = —a,/2 ... 0 it is symmetrical!
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8.3 Z-Transform

Sampling Theorem and Aliasing

« |If the maximal signal frequency
... 1S smaller than the half

Sampling fast enough: no aliasing!

|
E—>
@]
|
T
]

\
ST =~
< QD

X

€_>
o

(V]

£

)

DO
€_>
O

y

maxXx w
sampling frequency «,/2, the 2 2 2
continuous-time signal can be o

Limit case
reconstructed perfectly from the
- - - A a)
sampled one. No information is max
lost because main and shadow
spectra do not overlap. We have | | |
no aliasing. —wo w0 0 W0 wo Bwo 2wy W
: 2 2 9
o If w,, > w2 the main and shadow 2
spectra overlap. We consequently Sampling too slow: Aliasing!
have aliasing which deteriorates N
- . . wmax
the original signal. A perfect
reconstruction is impossible. N
| | | | | | >
—wo  wWo 0 wo wo dwo 2wy W
2 2 P
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8.3 Z-Transform

Z-Transform of Impulse and Step

The impulse u(k) = (k) has the following z-transform:

u0)=1,u(1)=0,u2)=0,.. = U(z2)=12"+0z"1+02"?+... — U(z)=1
An impulse delayed by one time step u(k) = di(k—1) has the following z-transform:
u0)=0,u1)=Lu@2)=0,.. = U(z)=02"+12"14022+... — U(z)=2z""
An impulse delayed by d time steps u(k) = di(k—d) has the following z-transform:

u(0=0,..,u(d-1)=0,u(d)=1,u(d+1)=0,.. — U(z) d

:Z_

The unit step u(k) = a(k) has the following z-transform:

WO =L U =L U@ =1, — U() =120+ 127 41272 = U(2) = _1Z_1
An unit step delayed by d time steps u(k) = o(k—d) has the following z-transform:
UO) =0, .., u(d-1) = 0, u(d) = L, U@+ = 1, .. = U(2) = - :d_l

—d L—d+1 1 1

The following expressions are identical: — — _
J &P l—2z7t  z—-1 (1—z71zd (2—1)z¢-1
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8.3 Z-Transform

Z-Transform of Geometric Sequences

The geometric sequence u(k) = ak with any number a commonly occurs because it describes
an exponential behavior. This sequence has the following z-transform:

u(0) = a% u(1) = al, u(2) = a2, u@@ =as3, ... — U(z) = 220 Lty L a2 2 33
Further conversions lead to the standard form of a geometric series:

0. @)

U(z) = (az—1)0 + (a12_1)1 + (az_1)2 + (az_l)g — Z (az_l)k
k=0

This infinite geometric series can be expressed simply by:

U(z) = L = L.ong Division:

= -
Lz S z:(z-a)= l+azl+a%z?2+..

This allows to formulate infinite series as one 4
: . . a
simple expression. The way back can be carried 95271
out by long division. 21
a%z
aZZ—l_aSZ—Z
a32—2
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8.3 Z-Transform ==

Important Properties of the z-Transform

For limit considerations the casest — 0 (k — 0) or
t — oo (k — o0) are evaluated. In the frequency range (s or z) this means:

t—0: S—>w t— o0 S—0
k—0: z—> k—> o0 z—1
Start Value

The start value of a sequence can be calculated from its z-transform by:

u(k =0) = lim U(z)

z—r 00

End Value
The end value (if it exists!) of a sequence can be calculated from its z-transform by:

u(k — o0) = ;1_>ml(z —1)U(z)
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8.3 Z-Transform

Backward Shift (To the Right)

A dead time T, = dT, is equivalent to a backward shift (shift to the right) by d samples. This
operation corresponds to the Laplace transform e~*Z% In the z-domain this means:

wlk —d) o z7U(2) u(k)]

uk=1)]

Forward Shift (To the Left)

N_—

w-—.

h——

(J'I"—

m_—.

v

— -
N T e
w 4
~ -
o1 =

<
0

m__
~
=

A prediction of time T, = dT, is equivalent to a forward shift (shift to the left) by d samples.
This operation corresponds to the Laplace transform 57> . In the z-domain this means:

u(k +d) o 2%U(2)

u(k)]

uk+1) 1 °

[

[
I
0 1
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8.3 Z-Transform

Difference / Differentiation

The difference of two subsequently sampled values divided by the sampling time (that passed
between their measurement) is called the difference of first order and corresponds approxi—

mately to a differentiation. In the s-domain it is realized by  y(i)t
a multiplication with s. In the z-domain this is given by: u(k) -

— L } u(K) — u(k-1)
uw(k) —u(k —1) o . U(z) u(k—1) <
TO

(k-1)T, KT, t

Summation / Integration
The sum of all sampled values starting from time 0 multiplied by the sampling time is equal

to the lower sum approximation of the area below the samples. That approximately equals the
Integration. In the s-domain this is realized by a division by s. In the z-domain this

corresponds to: u(i)t
.—
u(z) o—® U
D _uli) = —U(2) | f -
1=0 >
0 T, 2T, KT, t
University
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8.4 Transfer Functions

Transfer Function and Impulse Response

The same relationship exists for discrete-time systems between a transfer function in the z-
domain and the impulse response sequence as for continuous-time systems between a
transfer function in the s-domain and the impulse response function:

G(z) *= g(k)

In G(2) as in g(k) all properties of a linear dynamic system are contained. For calculation of
the system output over time only the system input over time and either G(z) or g(k) are
required.

U(z) G(z) Y(z) Y(2) = G(2)U(2) Multiplication
! !
I :
ﬂ, g(k) ﬂ. y(k) = Zg(i)u(k — 1) Convolution
1=0

The multiplication in the z-domain corresponds to the convolution sum in the discrete time
domain as the convolution integral in the continuous time domain.

University

u

of Siegen

&\ utomatic Control

8. Time-Discrete Systems and Signals Page 101  Prof. Dr.-Ing.

Oliver Nelles



8.4 Transfer Functions

Transfer Function and Impulse Response

We choose a Kronecker-delta impulse as input u(k) = di (k) or U(z) = 1, respectively. This
yields the impulse response as output:

k K
y(k) =Y g()u(k —i) =Y g(i)ox(k — i) = g(k)

or - = u(k) ulk) Io y(k)
Y(2)=G(2)U(z) =G(z) -1 =G(2) T (b —1)

For a general impulse response sequence 2 >9(1)

g9(k) = g(0)ox (k) + g(1)0x (k — 1) + g(2)0x (k — 2) + ... ok 2)

the corresponding transfer function is: 2 9@

G(z) =g(0)2" + g()z7  +g(2)z7 2 + ... : : :
If the impulse response sequence g(k) is of finite length the same is true for the number of

terms in G(z). If g(k) is of infinite length, however, the same is also true for G(z) and an
easier-to-handle alternative has to be found to avoid an infinite sum.
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8.4 Transfer Functions

Example: Transformation Via Impulse Response Invariance

A common method for the transformation from the continuous to the discrete world is to
demand identical impulse responses. This is popular for digital filter design. We demand that
the discrete impulse response sequence is identical to the sampled continuous impulse
response function.

continuous time: o(t) o) g(t)
discrete time: Ok (k) g(k) g(k) ’

For a first order system this requires a impulse response of:

K K/T K
1+Ts s+1/T

G(s) -
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8.4 Transfer Functions

For K=5and T = 5 sec this results in: g(¢) = e~/®. If the sampling time is chosen to
T, = 1 sec then the demand for an impulse response invariance yields:

k
g(t = kTp) = e KT0/5 — e=k/5 — (e_1/5) — 0.82% = g(k)
Note that this is a geometric sequence!

This can also be written with the help of delayed delta impulses:

g(k) = 0.82°0x (k) + 0.82'0k (k — 1) + 0.82%6k (k — 2) + 0.82°0k (k — 3) + ...
We can easily obtain the corresponding transfer function in the z-domain:

G(z) = 0.8202040.82' 271 +0.82%:7240.82% ... = ) 0.82F27F = (0.82:71)"
k=0 k=0

Because this infinite series is difficult to handle we compute the explicit sum with the formula

for infinite geometric series with x = 0.82z 1
B 1 B z Gain 1
- 1-0.822z71  2-10.82 an: - G(z=1) = 1—0.82

Therefore this G(z) corresponds to the G(s) in the sense of impulse response invariance.

G(2)

—5.56 £5
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8.4 Transfer Functions

Example: Transformation Via Step Response Invariance

Another popular method for transformation from continuous to discrete time is the step
response invariance. It yields a different result than impulse response invariance. The
denominators (and thus poles) are identical but the numerators (and thus zeros) and the gains
are different:

— : 0.9
0.9271 0.9 Gain: G(z =1)

“1T_o082 "

- 1-0.82z"1  z-0.82
The choice of the criterion distinguishes all type of such transformations. An invariance of
the impulse responses accounts for all frequencies in the same way because all frequencies
are weighted equally (constant spectrum of an impulse). Therefore it is commonly applied
for filter design.

G(2)

An invariance of the step response, however, weights lower frequencies stronger and is the
appropriate choice for control applications where the manipulated variable typically is of
stepwise character. It also ensures a correct transformation of the gain.
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8.4 Transfer Functions

Transfer Function— Difference Equation

Consider a general transfer function of numerator degree m and denominator degree n:

Y(2) bo+biz7'+...4+bpz ™
U(z) 14aiz714+...+a,z"

G(z) =

The coefficient a, can set to 1 through cancelation. This yields the following difference
equation in the time-domain:

(IT+arz7 ' +.. 4+ anz™)Y(2) = (bo + b1z~ + ...+ bz ™) U(2)
!

y(k) +ary(k — 1)+ ...+ apy(k —n) = bou(k) + byu(k — 1) + ... + bpu(k — m)

A dead time of T, = dT, causes a backward shift by d steps:

Glz) = bo+biz 4+ ... +b,z7™ —d _ boz ¢+ bzt "4 4,z
14 az7 '+ ... 4anzm B l+aiz7t+...+az"

— y(k)+ary(k—1)+.. . 4apy(k—n) = bou(k—d)+b1u(k—1—d)+. . +bpu(k—m—d)
In contrast to the s-domain, a dead time in the z-domain still keeps the transfer function of
rational type (numerator / denominator)!
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8.4 Transfer Functions
If the transfer function is written in form of positive powers in z first can be converted in a
form with negative powers, i.e., z%, and afterwards it can be transformed into the time

domain.
bl 2™+ ...+ b2t + b

! ~Mn ! ~1 /
a,z" +...+ayz> +ag

WARNING: These are different n and m values compared to the previous slide.

b/ m—n blm 1.m—n—1 b/ —-n
-z + —=z ... 2
G(Z) — a’n a’n a’n
/
n 1.—1
L+ izl o

a; s—n
b 2™ A b1 2T L bz

l+aiz7t+...+az—"
For n = m this transfer function is identical to the one on the previous slide. For n > m a dead
time can be factored out in the numerator:

Dm—n + Opmarz P+ bnz ™™ o _ bo+ b1z T4 ... + Emz—mz_d

G(z) —
(2) l+a1z7t+...+a,z™" l4+aiz71+...+a,z27"

with d = n—m. The case m > n does not occur (negative dead time — non-causal)!
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8.4 Transfer Functions

Causality and Properness

A transfer function of the form
bo+biz7  + ...+ bz ™
G(z) = o+ 0127 + + O 2
l4+a1z7t+...+a,z7 ™
has numerator degree m and denominator degree n which are positive integers. G(z) is causal.

A transfer function of the form
b.2m 4+ 4+ b2+
G(z) _ T’Z + + /121 + /0
a, 2" + ...+ ayz" + a

requires: denominator degree > numerator degree or n > m. If this requirement is met then
G(z) is causal. However, if m > n, then G(z) is non-causal negative dead times arise, i.e.,
values in the future have to be predicted.

The condition denominator degree > numerator degree is known from the s-domain. There it is
a condition for properness or realizability, i.e., avoiding pure differentiators! For time-
discrete systems such limitations do not exist. Every causal system can be realized.
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8.4 Transfer Functions

Proper / Strictly Proper

For continuous-time systems the difference between a proper and strictly proper system can
be directly seen in the transfer function.

* Proper: numerator degree < denominator degree: m <n

 Strictly proper: numerator degree < denominator degree: m <n

In discrete time a system is proper but not strictly proper (= “sprungfahig”)
 for transfer functions in z-form (only positive powers of z):

numerator degree m = denominator degree n

« for transfer functions in z-*-form (only negative powers of z): by #0

Only if b, exists the input u(k) directly influences the output y(k). If by = 0 then a change in
the input is delayed by one or more steps until u(k—1) or later until it affects the output y(k).
Terminology: A system follows the difference equation: (%) = byu(k — 1) + ayy(k — 1)

This can be interpreted either a dead time of 1 or as a not strictly proper system:

-1 7 N
Y(Z) _ blz _ bo Z_1 bl _ bO
Ulz) 1—az7! 1—az7 1t

G(2) =
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8.4 Transfer Functions

Difference Equation — Transfer Function

In order to transform a difference equation into the z-domain, first the equation is rewritten
such that y(k) is the newest output value. Then the transformation into the z-domain requires
only operators with negative powers like z':

Example: 2y(k — 1) + 4y(k) + 3y(k + 3) —u(k) = —u(k — 1)

1.) New starting time step: y(k + 3)

2.) Time transformation such that this value is mapped to y(k): k := k-3
— 2y(k—4) +4y(k —3) + 3y(k) —u(k — 3) = —u(k — 4)

3.) Transformation into the z-domain, separation of Y(z) and U(z), division to obtain
transfer function:

2074 (2) + 4273V (2) + 3Y (2) — 23U (2) = —2 U (2)
(2:7 +4272+3)Y(2) = (2% — 27 U(2)

Y (2) et SN | Gt e BRSNS L ¢ Sl B

— Z )] = — —
Ul(z) (<) 3+4273 42274 1432342271 1422734 227
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8.4 Transfer Functions

IR (Infinite Impulse Response)

All impulse response functions g(t) in continuous time are of infinite length. Typically they
decay to zero with exponential behavior. By sampling a sequence g(k) of infinite length
results. Such systems are named IIR (infinite impulse response).

[IR systems have a transfer function with non-trivial denominator, i.e., the denominator is
more complex than z". This yields at least two different delayed versions of y(k) in the
corresponding difference equation. A consequence is that this difference equation can only
be calculated recursively!

Examples: 0.4+0.52"14+0.627240.7273 +0.82~4
G(z) =
1—0.921
1 0.4+0.5271 +0.6272+0.7273 +0.827*
G(z) — G(z) =
(2) = T—00.1 (1-0.82"1)2(2— 21 4+0.32-2 +0.529)
71 22 4+0.724+0.4
j— G p—
Gl2) = TomaT ()= 08, 102
z 340.8240.2
G(z) = non-causal! _ 2+ non-causal!
)= 1= 0.7z Glz) = 224 0.72 4+ 0.4 |
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8.4 Transfer Functions

FIR (Finite Impulse Response)

Systems with impulse sequences g(k) of finite length are called FIR systems (finite impulse
response). They only exist in discrete time! They have no (exact) equivalent in continuous
time. However, if the length of an FIR system is allowed to be very long it might be possible
to approximate a stable IR system by a long FIR system. Marginally stable or unstable IIR
systems, in principle, cannot be approximated by an FIR system because their impulse
response does not converge to 0.

FIR systems have a transfer function without denominator or with a denominator of type z™.
A consequence is only one y-term in the difference equation (feedforward).

22— 24025 _, (2—0.5)?

Examples: G(z) = Y Z7 = P 27?2 =(2—05)z"?=2z"1-05z""2
_ 3442243 1
Gz)=1—2z"" G(z)zz T2 :_ i =2 2443 437 270
z
- : 22 +4z2°+32+1
G(z) =) bz G(z) = > =2z+4+3z"" + 272 non-causal!
i=0 <
G(z) =27 G(z) = z° non-causal!
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8.4 Transfer Functions

Pole-Zero-Form of a Transfer Function

Up to here we have considered transfer functions in explicit polynomial form. However, a
factorized form is often useful because the poles and zeros directly appear in the denominator
and numerator. It is simpler to write it in positive powers of z:

" _1 - . —_— . . —
G’(z):bmz +...+ b1z +b0:k(z ny)-(z—mng) ... (2 —nm)

an2® +...+a1z7 Y+ ag (z—p1)-(z—p2) ... (2 —Dn)

The gain of G(z) can be calculated according to the final value limit theorem of the
z-transform by letting z = 1:

[1(1—mny)
Gain: K — bm:"':blibo _ kizl
ey aq ao
1 —p;
Zl;[l( )

The poles p; and zeros n; can be transformed into the s-domain via s = Tiln z and can be
interpreted accordingly. 0

Immediately conditions for stability and phase minimality for poles and zeros result in the z-
domain.
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8.4 Transfer Functions

Relation Between s-Plane and z-Plane

* The stability region “left half s-plane” is mapped to the inner region inside the unit circle
in the z-plane.

« The imaginary axis of the s-plane is mapped to the unit circle in the z-plane.

* The unstable region “right half s-plane* 1s mapped to the outer region around the unit
circle in the z-plane.

max. possible frequency

s-Plane before aliasing occurs! z-Plane
Im1 it
________ n_“..(;o_/é______ | > m 1
s = Tiolnz
Re= —1 1 Re=
z = 810
___________ —wo/2_____ < | 1
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8.4 Transfer Functions

Stability
« A transfer function in the z-domain is stable if all poles are inside the unit circle.

 If one or more poles are on the unit circle (no multiple poles!) and all
other poles are inside the unit circle, the system is marginally stable.

 |f at least one pole exists outside the unit circle or a multiple pole is on the unit
circle, then the system is unstable.

» The stability properties of a transfer function in the s-domain keep valid for
transformation in the z-domain because the poles transform according to z = 70,

Phase Minimality
« A system has minimum phase if it has only stable and marginally stable poles and zeros.

The location of the zeros typically changes during the transformation from the s-domain into
the z-domain. Therefore the property “minimum phase” generally is not preserved during the
transformation.
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4 s-Plane 4 z-Plane

8.4 Transfer Functions
>*—T—o~ {

Example: All-Pass in z-Domain —a p) 1/p

An all-pass is characterized by an amplitude response equal to 1 for all frequencies. Because
poles and zeros have the same absolute values, just opposite signs, they cancel in the
magnitude. Of course the phase is affected. A simple first order all-pass in the s-domain is:

—Ts+1 —s+a . 1 Pole: s — —a (Stable)
pu— pu— h __ —
G(s) Ts+ 1 s+a with q T~ 0 Zero: s =a (unstable)

The corresponding all-pass in the z-domain has a stable pole and the inverse zero mirrored at
the unit circle. It is not the direct transformation form s to z!

pz—1 p—zt . Pole: z=p (stable)

G(z2) = — —— with <1
(=) 1 i Zero: z = 1/p (unstable)

Z—0p 1 —pz—
The amplitude response is given by » — e®7o:

2 .
[pewto 1| \/(p coswlp — 1)” + psin®wTp \/p — 2pcoswly + 1

|eszo _p| 2 . 9 \/1_2 Th + =1
\/(Coszo—p) + sin“wTy pcoswTp + p?

G(iw)| =
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Chapter 8: Relevant MATLAB Commands MATLAB

Change of Sampling Rate:

decimate (x,r) ;? Reduces the sampling rate of signals x

oo oP°

by a factor of r with help of a low-pass
filter.

do

do

upsample (x,n) ;? Increases the sampling rate by a factor of n,

% by inserting zeros in between the sample
% points
¢ E.g.: x = [1 2 3];
% y = upsample (x,3);
$ vy = [1 0020030 0]
downsample (x,n) ;1 % Reduction of sampling rate. Only every n-th
% sample is carried over.
$ E.g.: x=[12345%6 789 10];
% y = downsample (x,3);
$ y = [1 4 7 10]
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Chapter 8: Relevant MATLAB Commands MATLAB

resample (x,p,q) ;? % Changes the sampling rate of signal vector x
$ by the rational factor p/q

Impulse Response and Step Response:

impulse;? % Calculates the impulse response of a linear
% system

step;? % Calculates the step response of a linear
% system

Partial Fraction Expansion:

oo

[r,p,k] = residuez(b,a);!? Performs a partial fraction expansion
with the ratio of numerator b(z)

and denominator a(z).

The inverse operation is also

possible.

de do oo dp

: Signal Processing Toolbox

2 : Control System Toolbox
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9. Transformation into the
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Contents of Chapter 9
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9.1 Discrete Fourier Transform (DFT)

Fourier Series

=1{) Tlme —p
Source: ftp://ftp.ifn-
magdeburg.de/pub/MBLehre/sv06_13
0509-ftp.pdf
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9.1 Discrete Fourier Transform (DFT)

Source: http://eitidaten.fh-
pforzheim.de/daten/mitarbeiter/blankenbach/vorlesungen/mathe_2/Fourier_Trafo_kurz_Folien.pdf

Standard concert pitch A4: f, = 440 Hz on different music instruments

rel. Lautstarke Trom pete rel. Lautstarke Horn
A A
o2f, 3, 4f, 5 fo 2 3, 4f, 5,
Frequenz Frequenz
rel. Lautstarke  (Oboe rel. Lautstarke  Clarinette
A A

> I

>
o 2 3 4, S, £ 2f,  3f,  4f  5f
Frequenz Frequenz
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9.1 Discrete Fourier Transform (DFT)

Fourier Series
Decomposition of a periodic signal in its frequency components.

Signal can be decomposed into an infinite sum of sine and cosine terms.

Amplitude for each frequency 15

indicates how strong this frequency

1 terrﬁ

ms terms

IS contained in the signal.

4 1. harmonic
= 0.5
= i o |
TED_ 2. harmonic =
) = 0
< 3. harmonic ol
=
<
‘ 0.5
4 .. .

Frequency w
 If non-periodic signals shall be dealt

2 terms

with: period length — oo,
basic oscillation — 0.
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9.1 Discrete Fourier Transform (DFT)

Fourier Transform
« Extension of the Fourier series for non-periodic signals
« Period length T — oo, basic oscillation @ — 0.

« The spectrum is not composed of discrete frequencies n-«j (i.e., multiples of the
basic oscillation). Rather it consists of arbitrary many frequencies (i.e., a real number) —
the so-called amplitude density spectrum (similar for the phase).

Fourier Series Fourier Transform
4+ 1. harmonic EA 0
L
1. —wt
3 2. harmonic 2 dt
= 2
S 3. harmonic A
E («B]
< S
=
‘ | . 2
Wy 2ay 3wy, @ <
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9.1 Discrete Fourier Transform (DFT) -

2,

Signals contain many different frequencies.

A transformation from the time domain to
the frequency domain allows to examine
how strong which frequencies are contained
In the signal.

This is a powerful tool for the analysis
further processing of signals.

9. Transformation into the Frequency Domain

Share of high frequencies in the signal
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Remember::

9.1 Discrete Fourier Transform (DFT) w=29orf
Fourier Transform fo = Ti
. ; o0 0
*  Time continuous X (iw) :/ z(t)e 'dt sampling frt{uevncy /
«  Frequency continuous o sampling time
. . . = z(k1p)
Time-Discrete Fourier Transform \
Time discrete: t = kT = ~ =
Ime discrete ° X(w)= Y a(kTp)e T — X(iQ) = e~k
« Frequency continuous e /g_
Q=wlo=27nf1y=0...2
Discrete Fourier Transform 0 i o = "
« Time discrete N samples: t=0,T1p,2T0,...,(N — 1)1} f=0...f

« Frequency discrete in N samples:

0, ~wp, = Al o Firn=0,1,2,...,N 1}
Wn = Nwo’N N wo Firn=0,1,2,...,N —1: o
12 N -1 X(n) = X(iwn) = X (i) = Y _ ax(k)e2mk/N
Q, —O,NQmNQW,..., N 2T =
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i(p+m/2
el — ilpt2m)

9.1 Discrete Fourier Transform (DFT)

Properties RICESD ,
e%(ﬂp+37?/2)

* Periodicity in the freql-Jenc_:y range .(see _sarppllng theorem). TS ———
Because the exp-function is periodic with i27: time and frequency axes:

ol — oilpt2m) _ Jilp+ar) E.g.for f;=50Hz — T,=0.02s
k=4 — t=40.02s=0.08s

— X(n)=X(n+N)=X(n+2N)=... N=4 — f=4/N-50 Hz=28.2 Hz

Signal over time z(k) Amplitudes per frequency X (n)

10.5 T 18— T T T T T T T
. N=9| 161 N=9
9.5 8 14+ '
3 12 f
8.5 A 10 f
2 81 f
7.3f A 61 B
1 4 B
0.5 ] 2r .
e 0 N T N T
0 1 2 _3 4 . 5 6 7 8 -9-8-76-5-4-3-2-1 0_ 1 23 456 7 8 91011121314151617
Discrete time k Discrete frequency n

. . . &\ utomatic Control University
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9.1 Discrete Fourier Transform (DFT)

Properties

Periodicity in the time range.

Because the 2m-periodic exp-function also occurs in the backward transformation, in
contrast to the continuous-time transform, for the DFT the time signal appears to be
periodic. The discretization of the frequency axis causes this effect.

— xk)=x(k+N)=x(k+2N)=...

Amplitudes per frequency X (n) Signal over time z(k)

18— — , | , .
16f N=9 4+ N=9-
141 1

12
10
8

6,
4 1 T
2,
0 0 4 |
0 1 2 3 4 5 6 7 8 -5 0 5 10 15 20 25
Discrete frequency n Discrete time k
University
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9.1 Discrete Fourier Transform (DFT)

Properties

If x(k) is real (normal case) then the amplitude response is an even function and the
phase response is an odd function, i.e., both are determined completely by half of the
points; the other half can be generated by mirroring:

- N is even: N/2+1 points are required.
- Nis odd: (N+1)/2 points are required.

Reason: The time signal x(k) contains only frequencies up to f,/2 (sampling theorem!)
otherwise we would get aliasing. Therefore it only makes sense to display the frequency

plotintherangef_o fo/20rQ=0.. 7TThepartf:f()/g,,,foor

Q=m...27 respectlvely f= _fo/g .0 0orQ) = —7...0 isredundant!
18 200
16 (N+1)/2 5 N=9 5 (N+1)/2 5 IN=9
< I \ = 1001
B 2 < 50 _ _
g1 S o This range contains no new
> 8 [«B} . -
E g = ‘ I | information and can be
o . -
€ 4 Q--100 * generated by mirroring.
< 150 Commonly therefore only the
0 1 2 3 4 5 6 7 8 9 2071 2 3 4 5 6 7 8 09 left range is displayed!

Discrete frequency n Discrete frequency n
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9.1 Discrete Fourier Transform (DFT) DFT{z(k)} = X(n)

Further properties of the DFT are already known from the continuous
Fourier Transform:

« Linearity: DFET{axi(k) + bxa(k)} = aX1(n) + bXs(n)
«  Time shift: DET{z(k +1)} = X(n) - e~ 2m/N

«  Frequency shift: IDFT{X (n+ 1)} = z(k) - ®2™F/N

« Convolution: DET{x1(k) *x z2(k)} = X1(n) - Xa(n)

« Multiplication: DET{x1(k) - z2(k)} = X1(n) * Xa(n)
Inverse DFT

For completeness, here the formula for the transformation back into the time-domain:
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9.1 Discrete Fourier Transform (DFT)

Implementation of the DFT
Abbreviation:

N—-1
DFT{z(k) w(k)e~ TN = Z v (k with Wiy = e=27/N
k=0

This can be written forn =0, 1, 2, ... N-1 as the following equation system:

[ X0 /(1 1 1 1 \( 2(0) )

X(1) L L (1)
X (2) |l w2 wi o WY 2(2)
\ XV -1) ) \ 1 oW owEY L D) \ 2(N -1)

To carry out this matrix-vector multiplication, the following amount of computation is
necessary:

« N2 complex multiplications

« N2 complex additions
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9.2 Extension: Fast Fourier Transform (FFT)

Idea for the Fast Fourier Transform (FFT)

Efficient implementation of the DFT with identical result.

Split of an DFT of size N (number of data points) in 2 DFTs of size N/2 by a trick.
Further split of 2 DFTs of size N/2 in 4 DFTs of size N/4, etc.

These splits are continued up to N/2% = 1; s represent the number of splits necessary.

Works only if N = 25, i.e., a power of 2. If this is not the case, the signal x(k) is filled with
zeros such that the number of points is equal to 25 (zero padding).

Complexity of the FFT

9. Transformation into the Frequency Domain Page 132 Prof. Dr.-Ing,

Only N Id(N) complex multiplications and addition are required.

Example: N =1.024

- computational demand DFT ~ N2 = 1.000.000

- computational demand FFT ~ N Id(N) = 1024-10 = 10.000 — Factor 100 savings!

Info: 1d() is the logarithm to base 2
2° =x — s=Id(x)
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Time signal x(k)

Amplitude of X(n)

9.3 Frequency Analysis Via DFT

Choice for the amount of data N

N =20 N =32 N =40

1+ —| 1 e eetieiey 1

08 | \ - <08 | < o08f
< >

0.6 / T 06 ‘T 06

[

=2 <3
N (7p]

0.4+ . g 0.4} 1 o 04
| = £

0.2 / -E oz | 1 02

0 2 4 6 8 10 12 14 16 18 5§ 10 15 20 2 30 5 10 15 20 25 30 35
Discrete time k Discrete time k Discrete time k

o
o

1071 101 ok ]
9#\ Y ] 9\ |
8 g B-TI i g 8 |
(R =7 J =7 f
6 I o 6 I B gl ]
) | .85-\ g /
4 | / g 4; ] E 4 |
3+ o 3l | o 3l
2r \ / \X E 2r \fﬂ\ M \/ E 2; \/.\

1} 1l il
ol \/\/\ AN NI AYAVAVAS AN f\/ v

0 2 4 6 8 _10 12 14 16 18 0 5 __10 15 20 25 30 0 5 10 15 20 25 30 35

Discrete frequency n Discrete frequency n Discrete frequency n
H - - utomatic Control University
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9.3 Frequency Analysis Via DFT

Observations:

« All time signals are chosen identically, only the number of zeros filled in vary, so that the
total number of points are N = 20, 32, 40.

« The resolution in the frequency domain depends on N. The frequency axes are scaled as
follows:

1 2 19 1

- = = O — - o e ey — —
N=20: w, , 20000, 20600, ] 20w0 Aw 20w0

1 2 31 1
Wn 9 32w07 32w07 3 32(,(}0 W 32(4)()

1 2 39 1

- N=40: w,, =0, —wo, —wg, ..., — - —
w 4Ow0 4Ow0 4Ow0 Aw 4Ow0

» Aclever choice for N by zero padding can achieve frequency intervals A, of desired
size even if the original signal is shorter than N values.
If a certain frequency ,* is interesting and the amplitude for this frequency is important
to know with high accuracy, it should be exactly contained in the frequency discretization
by an appropriate choice of N (see picket fence effect)!
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9.3 Frequency Analysis Via DFT

Observation:

[EEN
o

« Doubling the number of points
N =20 — 40 doubles frequency resolution.
The DFT for N = 20 yields identical values
(for every second point) as the DFT for
N = 40.

Identical values for the DFT
for N =20 and N = 40!

Remark:

« The phase of X(n) sometimes is interesting,
as weII_. We focus on the amplltuc_ies but an 0 5 10 15 20 25 30 35
analysis of the phase can also be important. Discrete frequency n (N = 40)

Amplitude of X(n)
O R N W M 01 O N 0O O

« MATLARB creates the plots shown in these lecture notes.
££t () yields X(n) in the frequency range 0 to f,,.

« Commonly the upper half of the spectrum is omitted because it does not carry any
additional information. Also a symmetric plot around the origin from —f,/2 to +f,/2 is
popular.
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9.3 Frequency Analysis Via DFT

Equivalent Types of Plots for the Spectrum

10/ - 100 10/
9 redundant! o redundant! 9
= 8 8/ 8/
< 7 7 7
S 6 6/ 6l
8 5 5/ 5/
2 4 4/ 4/
E_ 3 3 3
Z2 2f 2t
1 1 1
O ¢ ¢ ¢ ¥ ¥ &8 e g ¥ e e e 48 Wy g e W ey
0 5 10 15 20 25 30 35 40 20 -15 -10 -5 0 5 10 15 20 0 2 4 6 8 10 12 14 16 18 20
n: N/2 N —N/2 N/Q N/2
fo/2 fo —fo/2 fo/2 fo/2
: T 27 —T ™ ™
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9.3 Frequency Analysis Via DFT

Choice of Sampling Time T,/ Sampling Frequency f,

The faster the signal is
sampled, the wider is its
frequency range.

=08} ;

1_
i T,=1ms |

In practice, the amplitudes g 8 | |
- (@)
typically become smaller @ o4 f "|

at higher frequencies.

As the sampling theorem
tells us, the sampling
frequency should be
chosen such that the
highest significant signal
frequency lies below f,/2.
Otherwise we get allasmgl

E

= 0.2

INANG -

Tlme S|gnal X(K)

9. Transformation into the Frequency Domain

t =107y = 10\ms

0 2 4 6 8 10 12 14 16 18
Discrete time k

Amplitude of X(n)
[l I\) w -J> U'I CD ~ 00 ©

12 16 20 24 28 32 36
Discrete time k

0O 4 8

=
o

This range is generated
by the increase of the
sampling frequency.

f, =1 kHz
N =20

9
f = 55fo =450 Hz

S

0

2 4.6 8 _10 12 14 16 18
Discrete frequency n

f, =2 kHz
N =40

—fo — 450 Hz

\ f——f0_95OHZ’

Page 137
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9.3 Frequency Analysis Via DFT

Example:
Cos-type signals with
5 complete periods!

1, 2,

DFT of Sin- or Cos-Type Signals (Complete PegiQOds) N =32 2
sty BTl B
1 o« 1“\_‘ 1 .
08 ™ A 1 08\ /'A\ f o_-\ M /\ A f'\
— o8l 71 osl | / \ 0.6/ / 5 { T |
= \ /o] / / \ |
< 04 Y 4 04f \ 0.4 f / .
= 02 \ f 0.2} H"x / /' 0.2} r '| f
S 0 \ f or f \ 0 / \ / '\ \
“ 02 . ¢ 02} \ \ 0.2} f || ll' \ /
(D] 3 / \ T
£ 04 \ # o4 4 / \ 0.4 j u |
- 06 . ,-" 0.6F N‘x\ / \; ; 0.6¢ | / & f II |I LH
08 -_q ‘_l 08 f \\ ‘/ 028! \‘ L \'-.,;l |I|i \fl ]
1 | | | u,T_'_._.' | | R A ' | ‘t-\..',JI | | l._‘, - 1 | | il | & I & \. |
0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30
Discrete Time k Discrete time k Discrete time k
16} 16f ‘ 16f ‘ ‘ ‘
1 2 5
—u f1—3—2f0 14 f2—3—2f0 14 f3—3—2f0
;{ 12r 12¢ 12r
S 10 10 10
D
o 8 8r 8r
=
= 6 6l 6/
o
E 4 4 4
2r 2r 2r
O ‘ , , , ° O , , ‘ ‘ O ‘ : : ‘ ,
0 ° Dis%:orete ﬁ)e u%%c r215 %0 ° > Dis%:orete %?e u%%c %5 %0 0 > Dis%:orete %?e u%%c r215 %0
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9.3 Frequency Analysis Via DFT

Observations:

« The amplitude obtained from the DFT for the signal frequency is N/2 if the original
signal had amplitude 1. It is clear that this number is proportional to the number of data
points N because so many points have to be summed up.

« Thus, the amplitude axes of the frequency response are commonly scaled with a
factor 2/N to make the axes in the plot independent of N.

18-

l N=32 I N=64 ol N=128
12} ]
10} 20: 20/
|X(n) 8 15+ 30t
:_ & 1 10 ' 20}
2 J \ | s 10}
Oltsee J'. *errersssessepreseey vy 0 " ' 0
0 5 10 15 20 25 30 0 10 20 30 40 50 &0 0 20 40 60 80 100 120
n n n
1l 1 1 T "] 1l ' ' 1! ' 1 |
N=32 N=64 N=128
0.8 1 o8} 0.8
9 0.6} 1 08} 0.6}
~1X(n) g4 ] oa 0.4
0.2} \ | L4 02 l 0.2/ ‘
n_l ll . I I i k I ] ul | I I I -t I ul : I I I I I
0 5 10 15n 20 25 0 10 20 mn 0 50 60 0 20 40 mn 80 100 120
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9.3 Frequency Analysis Via DFT

Observations:

« If the length N of the time signal is an exact multiple of the period length of an oscillation
then the DFT reveals the amplitude of this oscillation exactly in the spectrum:

- The complete energy is concentrated on one peak (if we have just one oscillation).
- This peaks lies exactly at the correct frequency.

* Due to the linearity property of the DFT these facts are valid for an additive mixture of

oscillations, as well.
Example: Superposition of two oscillations at f, = 2/32 f, and f; = 5/32 f,:

2/ ' ‘ ' ' 3 16
- 15 \ - . - 14
< 1 aAwa | X2
ST
c vl " / [«F)
9 0 \ /’\' ¥ / o 8
o L A \ | =R
[b) f \ —_ [
§05 J \ f . ] \ . g_
= -1 # I\ » 4r
\ / | | <
15/ | 2t
Vs " i
A 5 ™ = % 0 5 10 15 20 25 30
Discrete time k Discrete frequency n
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9.3 Frequency Analysis Via DFT

Reason for the Exact Frequency Representation
1. Ifatime signal x(k) withk=0, 1, ... N-1  N=64

contains exactly M periods of a sin- or cos- 0:\ /\\ /\\ /
signal of duration T, this holds: AR SO ST A N SC S § BN
MT; = NT, 05 \/ \/ \//
1g | | | | |

Thus the frequency f; automatically is exactly  °, 10 20 30 40 50 60

[
»

equal to one of the discrete frequencies of the DFT: NTy = 641) )
N M MT, =31y
TIZMTO — flzﬁfo

2. Due to periodicity of the complex exp-function the DFT “thinks” the signal repeats itself
Infinitely often, i.e., the original signal for k=0, 1, ... N-1 is repeated for
k=N, N+1, ... 2N-1 and 1 ‘ \
k =2N, 2N+1, ... 3N-1, etc. Because the 05}
oscillation are full periods, they fit together o}
exactly at the points N, 2N, etc. (continuity). -5}

-1 C I 1 ! 1 ! !
0 20 40 60 80 100 120 140 160 180
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9.3 Frequency Analysis Via DFT

DFT of incomplete sinus-type signals

« Typically it is not possible to choose N such that all included oscillations exhibit an

integer multiple of periods. Reasons:

- The period length of the interesting oscillation is not known.

- Many oscillations of various period lengths are interesting and it is impossible to find a
reasonable value for N fulfills all conditions concurrently.

What happens if an oscillation is not present for an integer number of periods?

e
N

-
(=]

Amplitude of X(n)
1]

-
.-\-H.""-\.
<
—
.—fﬂ_
]

10 15 20 25

Discrete time k

9. Transformation into the Frequency Domain

Lies between

L

-

[=]
.

Discrete frequency n

Prof. Dr.-Ing.
Oliver Nelles

Page 142

— — n=2andn=3,
3 .
X‘\\_ rlght
' 32f0 neighbor /
/ 1f = ﬁfo
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9.3 Frequency Analysis Via DFT

Observations:

« The frequency f; of a periodic signal does not exactly exist in the frequency
discretization! Therefore the amplitude belonging to 2.5/32 f, splits between 2/32 f, and

3/32f,.

— Picket Fence Effect

« Additionally the spectrum “smears” (leaks) across the whole frequency range. This is a
direct consequence of the discontinuity of the time signals that induces disturbing “steps”

In the (thought) periodic signal.

|

— Leakage Effect 1

o
()]
T
. 1scontinu1'tyr

o
a1
\

periodicly continued
time signal x(k)
=

1
[REN
T

| | |

|
0 10 20 30 40 50 60
Discrete time k

u
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9.4 Leakage Effect and Windowing

Identical Example for Different Resolutions, i.e., of Different Lengths N

L | | | | T N=32

1;\
N = 64
_ 05 ~
< O < 0 |
0.5/ ~
—17 1 1 L L L L 1 | —17) 1 1 1 1 1 L 1
0O 5 10 15k 20 25 30 0O 10 20 30k 40 50 60
20, - \ ‘ ‘ ‘ ‘ \ 20/ \ \ \ \ \ ‘
N = 32 N=64
= = AN
Z 10 Z 10
O i ] | - e B 7\ | O ;\//A 0 //\\,/\,/’\ AN \NANANANANANANAA AANANN N/ | A\\
O 5 10 15n 20 25 30 0O 10 20 30n 40 50 60
1 ~ ' 1] - :
0 N = 128 0l N=256 |
=<0 = o
> >
-0.5 -0.5¢ i
-1 I 1 1 L 1 1 1 | —1 C | Il Il | [
o0 20 40 60 k 80 100 120 e 50 100 k150 200 250
N=128 N =256 .
Z 10 A S0 || A
10 [ <19 [
0O 20 40 60 p 80 100 120 0 50 100 nl50 200 250
. . . utomatic Control University
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9.4 Leakage Effect and Windowing

Observations:
* For N — o the DFT result converges to the amplitude and phase response.

« We have to distinguish two negative effects that can occur: (i) The maximum amplitude
Is split into its neighbors due to discretization (picket fence effect) and (ii) the spectrum is
smeared across (leakage effect).

- Arectangular window has a T e
sinc-function as Fourier Transform.  _ > w(t)]= { 1 fir - <t<% |
The original signal can be thought ¥, 0 sonst |
of as a multiplication with the 0.2 =o(t+T/2)—o(t—T/2) .
rectangle or convolution with sinc(). 0 , ‘ ‘ ‘ , ‘ , , ,
-1 -0.8 -0.6 -04 -0.2 0 0.2 0.4 0.6 0.8 1
1 _ ’_'[‘/2 ‘ ’_'[‘/2 -T/2 t T/2
Ww) = Flwt) = — | /% — e~ ] S ‘ ‘ ‘ ' ‘ ' ' — ]
(@) {w(®)} iw '[Sinc-function= =1

Fourier Transform

_ i2sin(wT’/2) _ sin(w71'/2) E“Rectangular Windows ]
W w/2 =
0
sin(w /2 sin(w -
- nw?) ) gne(w) s 40 B @0 G0 o 10 2 % 4 50
forT=1 w/2 W W
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9.4 Leakage Effect and Windowing

Explanation of the Leakage Effect L=32,N=64>32
« A band-limited time signal x(k) of length L can be ) N R
created from a signal of length infinity or large N 1f
by multiplication with a rectangular window w(k) <
of length L: 2
z(k) = w(k) - xp(k) 10 20 36k 40 50 60
«  This multiplication in the time-domain corresponds i
to a convolution in the frequency-domain: =
= 0.5}
X (n) = W(n) * Xp(n) N P
Here W(n) is the Fourier transform and DFT of the °o 1 20 30 40 50 60
rectangular window w(k):
sin(LQ/2) _..7_ 1f
Q) — i(L—1)9/2
W) =@/ o |
<0
W(?’L) _ SlIl(’]TLTL/N) e—isrr(L—l)n/N 1

sin(mn/N) 0 10 20 30, 40 50 60
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9.4 Leakage Effect and Windowing

The DFT of a rectangular window of length L looks like the sinc-function. In practice,
usually L = N. Zero-padding is equivalent with L < N since anyway w(k) = x(k) = 0 for k > L.:

sin(mn)  _. (nv_ sin(7mn)
W _ ir(N—1)n/N W _
() = Sntrn /Ny © = Wl =\ Sn/m)
o N =32 |
c
S 05 |
v-v-\/\/\/\/\/\/\/\
07 | | | | | | | ]
o[ 5 10 15 20 25 30‘\
n
n=1— f=1,/N n=N-1

The zeros of the DFT of the rectangular window of length N lie at multiples of f,/N. If the
time signal is an oscillation of frequency Mf,/N, then the zeros are at integer values of n.
This means that in this case a convolution with such a signal is trivial and no leakage effect
results.
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9.4 Leakage Effect and Windowing

Summary: Rectangular Window

« Every finite real signal of length N thus can be thought of being constructed by a
multiplication of an infinite length signal with period length N by a rectangular signal of
length N.

« The rectangular window leads to discontinuities, i.e., abrupt changes. This means high
frequencies are induced.

« The errors caused by windowing with a rectangle or not windowing at all (which is the
same thing!) thus are extremely large (picket fence and leakage effects)

Room for Improvement
» A smoother shape of the window would help to induce not so high frequencies.
» Many alternative windows are commonly used, see next slide.

« All these windows are similar. They reduce the leakage effect. However, they necessarily
distort the signal by their smooth transition at the beginning and end.
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9.4 Leakage Effect and Windowing

Spectral "leakage” from a sinusoid

Window function (rectangular)
T

o=

Uniform /
Rectangular

samples

‘Window function (Hann)
T

samples

‘Window function (Hamming)

samples

decibels

decibels

decibels

‘Window function (Blackman)

Source: en.wikipedia.org

20 1)
UFT bins

HIHH | HIH H

Frequency responge (Hann)

amplitude

samples

Window function (Bartlett)
T

decibels

bins

Frequency response (Hamming)
T

amplitude

amplitude

Bartlett

samples
‘Window function (Gauss, o=0.4)

decibels

samples

T

decibels

Frequency response (Blackman

bins

Frequency response (Banlett)
T

DFT bins

Fregquency response (Gauss,
T

o=04)
T
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9.4 Leakage Effect and Windowing

Example: Windowing with Uniform/Rectangular and Hann Window
« Using the uniform/rectangular window is like using no window at all.

« The Hann window (and similar alternatives) reduce the leakage effect significantly. By
the smoother transitions at the window edges less disturbing high frequencies are
induced.

2k
« Hann window of length L (usually L =N):  wgann(k) = 0.5 (1 _ cos—=Z )

L—1
Uniform/Rectangular N = 256 Hann N = 256
1 ‘ | | \' 1f ‘ | ‘ | B
05" 0.5
< o < o
> x
0.5 -0.5
-1 C L | L 1 L -1 C | L | L L
0 50 100 | 150 200 250 0 50 100 | 150 200 250
1007 . | 1007
_ &0/ | _ sof
= 601 1 = eof,
< 40/ X 400
20 T 201
(0] - I I I I S 3 0 I ! i I i I 4
0 50 100 150 200 250 0 50 100 , 150 200 250
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9.4 Leakage Effect and Windowing

Zoom:
Uniform/Rectangular Hann

100 \ \ w 100 ‘

80 80+
— 60~ 1 = 60}
i significant leakage i less leakage _

40} into high frequencies 401 into high frequencies

\ \
201 20r

] e Tt 0 - ‘ ‘ , >
0 5 10 15 20 0 5 10 15 20
n n
Signal frequency f; = 10.5 Hz Signal frequency f; = 10.5 Hz

Observations:
« Hann window reduces leakage effect significantly.

» Since the Hann window has a smaller area than the rectangular window signal energy is
lost and the amplitudes in the spectrum are smaller. It makes sense to normalize with
respect to the window area in order to compensate for this influence.
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9.4 Leakage Effect and Windowing

Correction of Signal Damping with Windowing

Windowing distorts the original signal in 2 ways:

- Amplitude: The signal amplitude is reduced

- Energy: The signal energy (effective value RMS, “area under the signal®) is reduced

One of these effects can be corrected by multiplying the DFT with a correction factor (> 1):

Window Type Correction Amplitude Correction Energy
Uniform/Rectangular 1 1

Hann 2 1,63
Hamming 1,85 1,59
Blackman 2,8 1,97

Source: https://community.plm.automation.siemens.com/t5/Testing-Knowledge-Base/Window-Correction-Factors/ta-p/431775

University

u

of Siegen

&\ utomatic Control

3. Transformation von Signalen in den Frequenzbereich Page 152 Prof. br.Ing.

Oliver Nelles



9.5 Non-Stationary Signals and Short-Term-DFT

Stationary Signals:
« Signals that do not change their characteristics / properties over time.

« Up to this point we implicitly assumed that all signals are stationary.

Non-stationary Signals:
« Signals that do change their characteristics / properties over time.

« In practice most signals are non-stationary. However, for a short time interval they can be
considered, at least approximately, stationary. Examples:

o Signals with trends, i.e., with slowly changing mean. This is typical for larger time
scales. If we look at stock indices over years (not days!). A varying mean changes the
d.c. value of the spectrum forn=0or f =0 Hz

o By wear the properties of construction elements change over time. Certain signals of
machines (rotation speed, sound, ...) might change their characteristics like the
frequency of their peak value.

o Instead of wear also a failure can be the cause for such changes. However, this happens
much faster!
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9.5 Non-Stationary Signals and Short-Term-DFT

Problem by Applying a Fourier Transform or DFT to Non-Stationary Signals:

« |tis averaged by integration or summation over the complete signal. If the spectrum
changes over time its frequency components are weight with their relevance.

« The transform reveals no information about when which frequency occurs how strongly
in the signal!

Solving this Problem

1. Transform only short intervals of the signal into the frequency-domain. Within the short
intervals the signal can be assumed to be approximately stationary:
— Short-time Fourier transform or short-time DFT.

2. Modification of the Fourier Transform such that it does not look for oscillations of
Infinite length (like the original transform) but rather for wave packages that are active
only in certain time intervals:

— Wavelet transform.
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9.5 Non-Stationary Signals and Short-Term-DFT

Illustration of the Difficulties by Applying a DFT to Non-Stationary Signals

« Order in which frequencies occur is irrelevant.

« The result (spectrum) is affected by the frequencies according to their time dominance.
» DFT is not meaningful!

Chirp-Signal 0 ... 20 Hz Chirp-Signal 60 ... 0 Hz
1 ‘ \ \ \ ‘ ‘ ‘ ] 1- ‘ ‘ ‘ | \ | ‘ ‘
0.5 0.5 -
~ <
< O X0 l
0.5} 1 -05 -
'17 I I I 1 1 1 I I I L] '17 I I I 1 1 1 I I I L]
0 50 100 150 200 250 300 350 400 450 500 0 50 100 150 200 250 300 350 400 450 500
80 —_——————— 80 —————
“A‘w" 'l Frequencies of
I Il i
="M =% / 0 Hz to 60 Hz
< i R : iy
< 40 \ _ XY [ el
-~ | _ I \ | 1
20l grlc_elqueng(l)esH of B 20 | -
Z to YA / |
0 L Ol L | | | | | | | L |
0 50 100 150 200 250 300 350 400 450 500 0 50 100 150 200 250n300 350 400 450 500
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9.5 Non-Stationary Signals and Short-Term-DFT

Short-Time Discrete Fourier Transform (STDFT)

 Windowed DFT

« Width of the window determines the time resolution and also the frequency resolution.
The width is a parameter defined by the user. It should be guided by the expected rate of
change in the spectrum:
- Signal changes its frequency properties quickly — narrow window.
- Signal changes its frequency properties slowly— wide window.

« The DFT does not only depend on the frequency f or n but also on a second variable: the
time shift of the window t,. It indicates the time t, around which the DFT is valid

Windowed Fourier Transform with Window w(t):

6.
Xa(fto) = [ alt) w(t—to) -~/ "dy
Windowed DFT with Window w(k):
N-1
X (n, ko) = Z 2(k) - w(k — ko) - e~ 127 k/N
k=0
9. Transformation into the Frequency Domain Page 156 Prof Dr-Ing e M

of Siegen



9.5 Non-Stationary Signals and Short-Term-DFT

Gaussian as Window
« Strongly decreasing form center towards outer regions.
e Symmetrical.

« Fourier transform of a Gaussian is again a Gaussian, i.e., it is symmetrical in its time-
frequency properties.

Gauss-Window for

Fourier Transform Gauss-Window for DFT
2
1 (t—to)2 _1(  k—ko )
?,U(t,to) =e 2 o TU(k‘, kO) — e o(N—1)/2
Gauss-Window for DFT Gauss-Window for DFT
L 1k =150
0.8/ 0.8/ 5 =1/6
<0.6/ < 0.6/
= 0.4f 204t
0.2 0.2¢

0
k K

1 | | | | | | | | O | | | | | L L - L L
0O 50 100 150 200 250 300 350 400 450 500 0O 50 100 150 200 250 300 350 400 450 500
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9.5 Non-Stationary Signals and Short-Term-DFT

Short-time DFTs of the 1. chirp-signal with a Gauss-window

c =1/3 c =1/6 c =1/12
o k=100l T T k=100l O k=100
60/ f/\ 0 = | I . 0 = | 7_/’_‘\ 0 = |
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9.5 Non-Stationary Signals and Short-Term-DFT

Short-time DFTs of the 2. chirp-signal with a Gauss-window

c =1/3 c =1/6 c =1/12
50 T T T T T T T m T T T T T T 4‘0 T T T T T T
40 ko= 1001 30} ~ ky=100] ko= 100
20 " | 20t /N 1 20¢ 7N |
20¢ e N\ | / /
10 | ’/’/ \\‘ i 10 | ,/'/ ™~ i /// A
0 I e [ 1 L 0 L | I I sl | T 1 0 L L L el 1 T L
10 20 30 40 50 60 70 80 O 10 20 30 40 50 60 70 480 10 20 30 40 50 60 70 80
50 T T T 40 T T T 40 T T T T T T
a0/ k, = 200] 0| ~ %, = 200] 30| iy = 200]
30 [ ///_Eﬁx\'\ 1 / \\ PN
- . 20 / \ 1 20} / N b
20— p \\\ B / \\ // \\
10 r /‘// ] ‘\\\"'\_ 7 10 I l// \\\ 1 10 | J,"f \\\ ]
0 L P I I I I e 0 L T I | e 1 L 0 L L - I - L L L
10 20 30 40 50 &0 70 80 O 10 20 30 40 50 60 70 80 10 20 30 40 50 60 70 80
50 T T T T m T T T
40; koy=3001 30 ko =300/ 30} ky=300.
30; TN 1 /N 20 7N
20! ~ \\ | 20r y, \ - 7N\ i
10 o | 10} / N\ { 10} /N
0 =" 1 1 1 [ S L L 0 1 e 1 1 e L I L 0 L 1 L L L 1
10 20 30 40 50 60 70 80 O 10 20 30 40 50 60 70 80 10 20 30 40 50 60 70 80
w T T T T T T w T T T T T T w T T T T T T T
w0 k,=400] 3] . ki, = 400! 30| k, = 400
30¢ ,/\’f b - 1 20l / ‘\\ 1 20} RN ]
200/ ~ ' /N w0 /0
10; . 1 101 1 10 . T
1 1 1 — })-/ 1 B L L L 1 0 1 1 L L 1 L 1
0 10 20 30 40 50 60 70 80 00 10 20 30 40 50 60 70 80 10 20 30 40 50 60 70 80
a0l k, = 5001 30| k, = 500] k, = 500
L/ 0 i | 0 0
30 _; \ 20 | ‘\’ i 20 | Y h
20- \uﬂ\ 7 \ I\\.
10 a, 1 10 Yoo ) N
0 L |W‘Vﬁ_q”?__ﬁ—ﬁ*— 0 L \w L I T i T —| 1 1 - I
10 20 30 40 50 60 70 80 O 10 20 30 40 50 60 70 80 10 20 30 40 50 60 70 80
n n n
9. Transformation into the Frequency Domain Page 159  Prof. Dr.-Ing.

Oliver Nelles




9.5 Non-Stationary Signals and Short-Term-DFT

Observations:
« By shifting the window via k, the time range that shall be analyzed can be selected.
« Because the window is not infinitesimally narrow all signal properties inside mix.

« Atoo wide window with respect to the signal spectrum change rate (o = 1/3) yield an
unnecessarily large averaging effect over time.

« Atk, =500 the leakage effect is easy to see. The reason for this is as follows: The Gauss-
window is close to the end of the data at 511 and it has significant values where the data
stops. This induces similar high frequencies like a uniform/rectangular window.

« For the 2. chirp-signal even the width ¢ = 1/6 is a bit too wide. That can be seen in the
low quality of the bottom plot. That is because the 2. chirp-signal changes its frequency
3 times as fast as the 1.

« The window should not be chosen too narrow to ensure a certain robustness, see next
slides.
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9.5 Non-Stationary Signals and Short-Term-DFT

Effect of window width in a short-time DFTs of noisy signals

Original signal

_7- L I L L L I I L I L
0 50 100 150 200 250 300 350 400 450 500

-7. L L I L I L I I L L _73 L I I L L L 1 L L L _7. L L I L I L 1 1 L 1
0 50 100 150 200 250 300 350 400 450 500 0 50 100 150 200 250 300 350 400 450 500 30 50 100 150 200 250 300 350 400 450 500

&\ utomatic Control University
9. Transformation into the Frequency Domain Page 161  Prof. Dr-ng. -
q y Oliver Nelles m

of Siegen



9.5 Non-Stationary Signals and Short-Term-DFT

120
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o =1/3

Ko = 255
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noise
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n

ko = 255
strong
noise

0
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n

Short-time DFTs of noisy 1. Chirp-signal with a Gauss-window (normalized w.r.t. window area!)
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9.5 Non-Stationary Signals and Short-Term-DFT

Observations:

« The window width determines theoretically the maximal possible resolution. The wider a
window is the more accurate the frequencies can be determined.

« The window width determines the robustness with respect to the noise in the original
signal. The wider a window is the less significant the noise deteriorates the result.
Wider windows mean more data is utilized!

« The optimal window width is a compromise between both goals:

Signal characteristics Signal characteristics
changes slowly changes quickly

Optimal Window Widith: /\ |
Compromise: I >< I

Optimal Window Width: } \ /\

Weak Strong
noise noise
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Heisenberg ‘s Uncertainty Principle:

9.6 Outlook: Time-Frequency-Analysis | oo/ Time:  AEAt > const.

Goals of Time-Frequency Analysis Impulsw / Position: ApAz > const.

« Good overview on which frequencies are present at what times.

« [llustration: Strength of frequency component by grey tones:
white = frequency does not exist / black = frequency is strongly present

« Best possible resolution in time At and frequency (or energy) Af are coupled by
Heisenberg’s uncertainty principle and thus relate anti-proportionally:

1

At ~ Af or At - Af = const. Area = const.

«  With the width of the window in the short-time DFT not only the time resolution At

but implicitly also the frequency resolution Af is fixed. I

f f f  —

il 4

[ » »
» » »

t t t
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9.6 Outlook: Time-Frequency-Analysis
f=10Hz f=25Hz f =50Hz f =100Hz

Example 1: Analysis of a periodic signal
with varying frequency over time

Goal of a short-time DFT:

Frequency analysis of the signal in
dependency of time. We want to know
when which frequency occurs.

Choice for window width:
 Determines the time resolution At.

« Implicitly also determines the
frequency resolution Af because both

1
% 0.5

s o
g-05

_1 +

0

0.05 0.1 015 0.2 025 03 035 04
time t [s]
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9.6 Outlook: Time-Frequency-Analysis

Spectrogram with T =25 ms Spectrogram with T= 125 ms
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9.6 Outlook: Time-Frequency-Analysis

Example 2: Detection and sensitivity with respect to a short peak disturbance

f(t)=sin(800 t)+sin(900x 1) mit |
-

Lom o

[ IE=T ]

mpulsen bei x=0.45 und x=0.5 und WFT mit Hann-Fenster der Breite 0.02
T T T T T

0 01 0.2 03 0.4

At=0.02

bhbbbbbbbbbbbbbbbbbbb

R R Rt

05 0.6 07 0.8 0.8 1
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Zeit t

Frequenz w

fit)=sin(800x t)+sin(900m t) mit Peaks bei x=0.45 und x=0.5 und WFT mit Hann-Fenster der Breite 0.1

0.::_. EEEEEEEREEEEEEEH
0 01 0.2 03 0.4
Zeil t

EEEEEEEEEREEEEREREES
0.5 0.6 0.7 0.8 0.9

Quelle: Skript ,,time-frequency-Analyse und Wavelettransformationen* of M. Clausen und M. Miiller, Universitit Bonn
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9.6 Outlook: Time-Frequency-Analysis

Fourier Transform

Looks for periodic signals of infinite length but of all frequencies.

Ad-hoc fix: focus on a certain time range by windowing.

Wavelet Transform

Looks for wave packages of different lengths and frequency.

Long wave packages are of low frequency — high frequency res. but low time res.

Short wave packages are of high frequency — low frequency res. but high time res.

Idea: High frequencies commonly occur briefly and thus should be resolved more
accurately than low frequencies that typically are present for long time intervals.

A - A [ |
‘\

Window possesses a certain width — Determination of time and frequency resolution.

K ll\_x'f | --II\"l \u/

".l,'

/ \

N/ s
N/ N

-05 -05 -5
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9.6 Outlook: Time-Frequency-Analysis

Construction of Wavelets
« Basis wavelet (mother wavelet) as master copy.

« All wavelets are derived from the mother wavelet by
time shifts and time scalings (typically with factors 2™),

« Time shift t, for localization of a certain part of the signal.

« Time scaling by a factor » for a certain frequency component.

Properties of Wavelets

« Through the time shift the signal can be analyzed around t = t,.

» Through the time scaling » various frequency components
can be analyzed.

» In contrast to the Fourier transform where sin-signals
of infinite length are analyzed, the length of a wavelet
IS coupled to its frequency (scaling)!
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can be compared
to a frequency f

9.6 Outlook: Time-Frequency-Analysis

Fourier Transform Wavelet Transform /
oo o0
x()= [ at)- e X(to) = [ alt) Wt~ t0) d
—00 — 00
! /',_/3"’"““4\; ' ol /',_,/'f"’*‘&_&_'.\_
12- flﬂ-'.': 1 II.5 ll I.S 1 ‘,5 2 .?; —115 1 —II:S ? I.JS 1 15 2
n-/ N\ Vd ‘-\ N 0s:
4l \\,_,// \,_,./{ _._g-_—_h"‘*-._ ___// \n ]
\\ "/\ A '\ \ '-; /-\
/ l\/ \\/ / f :\,’/, \ —lg ‘“\f’ \\'T/'
Windowed Fourier Transform Windowing is not necessary since
> o ft wavelets are local themselves!
(f,to0) z(t) - w(t —to) - e =" dt
—00
f A VA
t t
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9.7 Outlook: Parametric Frequency Analysis

Parametric Methods

« A large number of data samples N is modeled by estimating a small number of
n parameters (N« N).

« These parameters typically results from structural considerations and not only as a means
for model accuracy.

» These parameters are physically or with other first principles interpretable or easy to
convert in interpretable quantities.

« Examples: IIR or transfer function models, AR or ARMA models, ...

Non-parametric Methods

» A large number of data samples N is described with a large number of n parameters.
Often n = N, i.e., no averaging or noise suppression in the statistical sense takes place.

» The parameters themself and their number has no direct physical motivation. It just
reflects such issues as accuracy, resolution, variance, etc.

» The parameter have no direct physical meaning or interpretation.

« Examples: FIR models (= impulse response models), DFT, ...
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9.7 Outlook: Parametric Frequency Analysis

Idea of a Parametric Frequency Analysis
« Signal model: Impulse response of a parametric transfer function.
« Estimation of the parameters of this transfer function.

Example: Autoregressive model of 2. order (AR(2)):

Gain=1
G(Z)_X(z)_(1+a1—|—ag)z2_ 1+ a1+ ag
- U(z) 224 az4+ay  1+az7l+apz2

— x(k) = (1+ a1 + ag)u(k) —arz(k — 1) — apz(k — 2)
Modeling of one >0

damped oscillation.
- Pole locations determine ==

i S o -

frequency and damping. ¥
e 2 parameters are required m = fo/2

for each oscillation and can |

be estimated by least squares.’;y? IS o 10 10!
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9.7 Outlook: Parametric Frequency Analysis

DFT

f, = 5.5 Hz to a broader bump.
Parametric AR(2) Estimation
* From 256 samples of the time 100
signal 2 parameters of the AR _ 80)
model are estimated. — Very =6
insensitive with respect to noise! = ‘218 I
* An exact frequency (a real number, 0

From 256 samples of the time
signal 256 frequency values are
computed. — High sensitivity
with respect to noise!

eakage and picket fence effect
distort the spectrum from a peak at 0

not discretized!) is computed.

time signal:
x(k) = cos (2w f1k/256)
f1 = 5.5 Hz

N =256

10 15 20 25 30 35 40 45 50
n

0‘

a, =—7.9818, a, = 7.0000 |

Pole: |
Py, =0.9909 £i0.1346
| P11 =1 — not damped |

9. Transformation into the Frequency Domain

10 15 20 25 30 35 40 45 50
n
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DFT vs. Z-Transform MATLAB ‘)

Differences between DFT and Z-Transform

DTF Z-Transform
Operates with Numbers Variables (symbolic)
Time Discrete: 0 ... T Discrete: 0 ... o
Frequency Discrete Continuous
Use Signals Signals & Systems
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Chapter 9: Relevant MATLAB Commands MATLAB

Y = ££ft(X) ; % Discrete Fourier Transform (1-D).
The algorithm uses an FFT.

do

y = 1ifft(X); Inverse Discrete Fourier Transform

do

A = dftmtx(n) ;! % Matrix of the discrete Fourier Transform
%2 (DFT). The matrix product with a vector
% calculated the DFT of this vector.
spectrum;? % Different methods for estimating the
% spectrum (see MATLAB help)
window;!? % Function to perform windowing of signals
% (e.g. gausswin, hamming, etc.)
S = spectrogram(x) ;?! % Calculates the short-time Fourier tansform
% (STFT) of a signal.

&\ utomatic Control University
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Chapter 9: Relevant MATLAB Commands MATLAB

Pxx = pcov(x,p) ;! % Calculates the spectral density function
of the vector x by means of the

do

covariance method
%2 p is the order of the predictor (AR).

do

1 . Signal Processing Toolbox
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10. Filters
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Contents of Chapter 10

4. Filter
10.1 Requirements
10.2 FIR and IIR Filters
10.3 Design of FIR Filters
- Window Method
- Optimization Method (Parks-McClellan)
10.4 Design of IIR Filters
- Method of Bilineare Transformation
- Overview of Analog Filter Typs
10.5 Implementation of Filters
10.6 Nonlinear Filters
10.7 Non-Causal Filters
10.8 Adaptive Filters
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10.1 Requirements

What is a Filter?

A filter is a system that modifies certain properties (characteristics) of a signals, e.g. it
suppresses or enhances. Typical filters are dynamic systems and frequency selective, i.e., they
block certain frequencies or frequency ranges or let them pass.

Digital Filter

We focus to digital filters, i.e., filters that are discrete in time and can be described by
difference equations. They can be implemented directly in digital electronic circuits
(hardware) but usually are implemented by programs on a computer (software).

Time < Frequency

Usually we consider signals as functions of continuous or low high-
discrete time t or k: x(t) or x(k). In a lot of applications, however, frequency  frequency
the signals rather depend on other variables like location. This is
the case for the vast field of image processing. “Frequency” then
means the inverse of space (like normally frequency is the inverse
of time).
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10.1 Requirements

Different Filters

Soot filter:
-_ . Lets only small

Optical filter: particles pass!

Lets only certain

colors pass!

=[k]

Analog
electronic filter:
Lets certain
frequencies pass!
Realized as
R-L-C-circuit.

10. Filters

Air filter:
Lets only small
particles pass!

Coffee filter:
Lets only liquids pass!

= ylk]

S Digital filter:

Lets certain

v 4 frequencies pass!
. Realized in software
= | 0onacomputer.
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10.1 Requirements

Three Steps for Deriving a Filter
1. Specification: What should the filter do and under what restrictions?
2. Design: Which filter fulfills these specifications?

3. Implementation (realization): How is the filter build (in hardware) or programmed
(in software)?

Four Steps for Designing a Filter
a) Choice of a system class: E.g. linear, stable, causal, time-invariant, dynamic systems.

b) Choice of a filter structure:
e.g. FIR (finite impulse response)
or IIR (infinite impulse response).

c) Determination of the filter order.
d) Determination of the filter parameters.

University

u

of Siegen

&\ utomatic Control

10 Fl Ite IS Page 181 Prof. Dr.-Ing.

Oliver Nelles



10.1 Requirements

Signal-to-Noise Ratio
abbreviated SNR is the ratio between the averaged power of a signal (meaningful
information) and the averaged power of noise (disturbance)

Pina
SNR = 80

PNoise

Often it is given in logarithmic scale, in decibel:

Pina
SNRlelg( Slg 1)dB

Noise
Since it relates powers (~ squares of amplitudes) the 3 dB corner frequency marks the 1/2
drop-off, not the 1 /\/5 drop-off as it is known from the magnitude bode diagram used in
control theory which shows amplitudes!

Task of a filter is to improve (i.e., increase) the SNR. This is typically possible because
signal and noise are dominant in different frequency ranges. The corner frequency of the
filter represents the boundary between signal frequency range and the noise frequency range.
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10.1 Requirements

low noise level high noise level

t t
: : strong filtering :
i good noise attenuation i good noise attenuation
large time delay large time delay
T 1 =1
_ stronger filtering
1 1 1 1 1 1 1 1 1 1 1 1 reqUired for
, ; high noise levels
weaker filtering weak filtering : : weak filtering
is OK for bad noise attenuation i bad noise attenuation
low noise levels small time delay small time delay ™ ‘
=1 1 =]
might be sufficient I insufficient for
for low noise levels ' ' ' ' ' high noise levels
t t
. University
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10.1 Requirements

Limit (Cut-off) Frequency Pass Suppress

e —

[
»

A frequency selective filter can only be useful if the desired
signal and the disturbance are in different frequency ranges.
Then it is possible to place the limit (cut-off) frequency «,
In such a way that a significant part of the desired signal can
pass while a significant part of the disturbance cannot.

disturbance

Amplitude

desired signal

v

S I V= gl

Filter Types

If, as in the above example, the desired signal lies mostly in the low-frequency range while
the disturbance lies mostly in the high frequency range, a low-pass filter can improve the
signal quality a lot. A low-pass filter lets all low frequency components pass but suppresses
all high frequency components. That is the most common used filter type. In many
applications, however, the desired signal and disturbance are in other frequency ranges.

L ow-pass High-pass Band-pass Band-stop
(<5} (5] [«B] [¢B]
T A A T A T A
= = — = = _
= = = =
= = = =
< > W < > W < %% < > W
University
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10.1 Requirements

Application Examples for Different Filter Characteristics

Low-pass: Suppression of high frequency noise to improve the quality of the signal.

High-pass: Suppression of a slowly changing signal change like offsets (frequency 0) or
trends or drifts.

Band-pass: Extraction of a frequency band. Typical for radio or TV receivers. The signal is
modulated on a high frequency carrier that it needs to be extracted from before further
processing.

Band-stop: Suppression of certain (typically narrow) frequency ranges. Commonly applied
to actuation signals in the aerospace industry to avoid damages due to an excitation of
resonances (weakly damped modes). Also called a notch filter.

Ideal Filter

10 Fl Ite IS Page 185 Prof. Dr.-Ing.

Perfect output of the signal in the passband, i.e., |G(iw)| =1 = 0dB.
Perfect suppression of the signal in the stopband, i.e., |G(iw)| = 0.
Infinitely steep transition from passband to stopband, i.e., steepness = co.

No phase shift (no delay) of the signal, i.e., /G(iw) = 0.
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10.1 Requirements

Real Filters

In the real world, these properties cannot be exactly realized. The demands for an ideal filter
can never be achieved. Thus we easier the requirements and accept tolerances.

Specification of Real Lowpass Filters

« Pass-band: Gain close to 1, between 1-4; und 1+ J;

« Stop-band: Gain smaller than J,

 Pass-band: w < w,, transition-band: w), < w < «j, stop-band: @ > wi.

* No requirements on the phase. Sometimes linear phase is demanded, see later.

G(iw)|] -
G (iw) Transition. Remarks: p=pass s =stop

1+ 01 / band * The closer a)ﬁ/and Cdg/lg together and

1— 51_ the smaller 4, and J, are chosen, the more

Pass-band Stop-band extreme are the requirements.
Syt * More extreme requirements necessarily
| L NN
d)p u‘,g We W lead to more complex filters.

A . University
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10.1 Requirements

Restriction to Filters With the Following Properties (see Chapter 8)
« Stable

« Linear (for nonlinear filters see Section 10.6)

« Causal (for non-causal filters, see Section 10.7)

« Time-invariant (for time-variant filters, see Section 10.8)

Furthermore it is sometimes desirable, particularly in communications:
* linear in its phase

This means that every oscillation is identically shifted by the filter in phase. This is
Independent of the oscillation frequency. This property is important in acoustic environments
(audio components) because the ears are very sensitive the frequency-dependent phase
differences. If the linear phase property is not at least approximately fulfilled this means low
and high frequency sounds arrive at the ear at different times! This would disturb any
acoustic sensation. In control systems with linear phase have a different name: they are called

« systems with a pure dead time with no other phase delay.
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10.1 Requirements

Property: Linear Phase

Mathematically “linear phase” more precisely means the phase is a linear function of the
frequency:

) ] u
G(iw) = |G(iw)|e~ ™t with a real T, — G(iw) -,

A filter with such a transfer function has an output y(t) to an input oscillation u(t) with an
amplitude A,, frequency «, and phase g, after transients are decayed of:

u(t) = Agsin (w1t + 1) —  y(t) = A1|G(iwq)sin (w1t + 1 — w1T})

Because the phase shift is linear in the \ Amplitude gain \ Phase shift
frequency this can be written as:

y(t) = A1|G(iw1)[sin (w1 (t — Tt) + ¥1)

The phase g, of the input signal u(t) is not changed by the filter. Time shift
And this is the case independent of the frequency of the signal @, (dead time)
dep

The dead time T, is commonly also called group propagation delay: r, = ———
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10.1 Requirements

Property: Linear Phase
« Can exactly only be achieved by FIR filters.
« For IR filters the phase can only be approximately linear in a certain frequency band.

« Especially in the audio and communications fields linear phase is a commonly requested
property of big importance.

Linearly scaled Logarithmically scaled
frequency axis frequency axis
90“ w‘ (’0 A logw‘
linear
linear phase
phase
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10.1 Requirements

Property: Zero Phase

A particularly simple special case of a filter with linear phase is a filter with zero phase, i.e.,
with a phase response = 0 for all frequencies. This is the case for transfer functions that are
purely real and non-negative. Such a transfer function F(z) can be constructed from an
arbitrary transfer function G(z) with arbitrary phase as follows:

F(z) = G(2)G(z7")

This leads to a purely real frequency response:

F(eino) _ G(eino )G(e—ino ) _ |G(ez’wTo ) ‘2

This means: F(z) has for every zero z, a mirrored zero at z,* = 1/z, and for every pole z; a
mirrored pole at z,* = 1/z,,. If z, and z, are inside the unit circle (stable!) then 1/z, and 1/z,
automatically are outside the unit circle (unstable!). Consequently, zero phase filters have the
following properties:

 FIR: non-causal.
 |IR: unstable and non-causal.
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10.1 Requirements

Implementation of Zero Phase Filters

Because they are necessarily non-causal, zero phase filters can only be implemented offline.
A simple possibility is to filter the data with a causal G(z) and subsequently filter the

outcome in backward direction again with G(z). The phase delay induced by the first filter

exactly will be reversed by the second backward filtering process.

1f ‘ | | 1f T | ‘ ]
05 1 05 X(50-k) 1
0 u(k) 1 0
05 1 05 )
1 ] 1 L ] 1

ﬂ Time reverse

0 5 16 l’5 26 25 36 3’5 46 4’5 50 0 5 10 15 20 25 30 35 40 45 50 05 (k) U(k)
Kk Kk 0 y
ﬂ Filter with G(2) ﬂ Filter with G(2) |
0 é 16 1’5 2’0 25 36 3’5 4b 45 50
1 1 T | ‘ ] k
05 J/, x(K) 1 o5 x(50-K) )
Og u(k) * Og’ y(50-K) ‘ K
A S R At L L L L>|G(z)|2y—>
0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
k k
| rime evers 009 [y 12X, X(N-4) [ yON-) i) 0
| reverse a “| reverse
utomatic Control UnlverS|ty
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10.2 FIR and IIR Filters

Equivalent descriptions of a linear dynamic systems in discrete time:

Difference equation of order n Impulse response
y(k) = Z biu(k —1) — Z a;y(k — 1) y(k) = Zgzu(k — 1)
1=0 = 1=0
— Can be implemented directly (m < n). — Cannot be implemented directly!
Usually m = n. If m <n we can assume Approximation with m+1 terms:
m =nwith b; =0 fori>m. m
y(k) =) biu(k — 1)
Properties =0

Order m is large: m = 10, 20, 30, ...
Feedforward: b;u(k—i)

* Ordernissmall:e.g.n=2,3,4, ..
» Feedforward: b;u(k—i)

» Feedback: a;y(k—i) * No feedback!
 Infinite impulse response (IIR)  Finite impulse response (FIR)
10. Fi Ite rS page 192 Prof. Dr_-Ing, &\ utomatic Control m

Oliver Nelles -
of Siegen



10.2 FIR and IIR Filters

Difference in the Order

Impulse response

10. Filters

lIR filters usually have significantly fewer parameters (a; & b;) than FIR filters (b;).

lIR filters need fewer memory for storage of previous data.

IR impulse response usually asymptotically exponentially decays towards zero.
FIR impulse response is exactly equal to zero after time steps k > m.

[IR filters can be unstable. FIR filters are inherently stable (no feedback).

[IR filters have an analog correspondence. FIR filters exist only in the digital world.
IR, n=2

0.12

0.1
0.08¢
0.061
0.04¢

o
0.02¢

-0.02

constrained

* «—— flexibility!

(5 deg. of freedom)f

Impulse response

-0.02

FIR,m=15

0.12

0.087

0.06

0.04r

[ ]
0.027

0.1 .

arbitrary form
* «— possible!

(16 deg. of

freedom)

k=16
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10.2 FIR and IIR Filters

Transfer Functions
IIR Filter FIR Filter

—1 —m
G(Z) _ b0+blz _|_+me G(Z) :b0—|—b12_1—|—...—|-bm2_m

l4+a1z7 +...+a,z7 "

B boz™ + b1z L+ ...+ b2 B boe @ bz

G
(2) 2"+ a1z 14+ +ay G(z) 2m
* m zeros at arbitrary locations e m zeros at arbitrary locations
* n Pole at arbitrary locations e mpolesatO
e b, =0 for strictly proper systems e b, =0 for strictly proper systems
o Complex relationship between e Db, =g; are the first m+1 steps of the
parameters and impulse response Impulse response, all subsequent ones =0
» Not well suited for adaptation » Well suited for adaptation
— feedback structure — feedforward structure
— stability problems — Inherent stability
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10.2 FIR and IIR Filters

Example:

A system with impulse response ¢(k) = o" can be exactly realized by an
IR filter of 1. order:

1
1

0.8

=

Gur(z)=1+az ' +a*2 % +a’27° + ... 0.9

00 0.8 »
_ Z (az_l)ki 0.7
k=0

This infinite geometric series can exactly be written as:

Impulse
eSS

0.3
1 z 0.2

Gur(z) = T 0.1
0

L r L r r r r ?° 90 0
0 2 4 6 8 10 12 14 16 18 20

The gain of this IR filter is:

1

Kinr =Gnr(z =1) = T

The marginally stable case (integral behavior) is achieved for a = 1.
Then the gain cannot be calculated anymore.
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10.2 FIR and IIR Filters

An FIR filter can approximately represent every stable impulse response. For the first m+1
terms an FIR of m. order can exactly describe every sequence:

Grir(z) =bo+ b1z  + b2z >+ A b 12 bz =Y bz
: : k=0

A natural choice for the filter parameters would be:

b, =g(k)=a® for k=0,1,...,m

However, this would yield a wrong (too small) gain because all summands for k > m are
simply missing.

Alternatively the last parameter (summand) can be L a=08
adjusted in order to make the gain correct,
e, foro—0/z—1: |
1 25 b,, is ch

b, — —ba — b1 — .. — Db S 5 m IS CNOSeEN

T —q 0! md 22 such that the

.. . = ain keeps
This is a reasonable approach for low-pass filters. ol . »/ gorrect! P
For high-pass filter an alternative could be to require | T*m=g9
identical gains for @ — /7 — . % : 1;2- e
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10.2 FIR and IIR Filters

Properties of FIR filters:

stable,
can realize linear phase,

very flexible because many degrees of freedom (parameters) — frequency response can
be shaped as desired,

only forward path — simple to implement,

easy to adapt.

Properties of 1IR filters:

10 Fl Ite IS Page 197 Prof. Dr.-Ing.

can become unstable,

no linear phase possible,

with the help of a few parameters significant effects can be realized,
high steepness even for low orders,

feedback path — more complex to implement,

complex to adapt (stability problems, not linear in its parameters).
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10.3 Design of FIR Filters

General Remarks About FIR Filter Design

The design of digital filters commonly is based on the mature field of design of analog filters.
Because FIR filters only exist in the digital world, no analog correspondence is available.
New design method must be developed. The three standard approaches are:

« Window method: A simple approach that can be pursued by hand. The desired amplitude
response is established. Then it is transformed by the inverse Fourier transform to the
Impulse response in the time domain. Since the impulse response is usually of infinite
length the filter order m must be reduced/cropped to a realizable number. This causes an
approximation error and thus the method is not very accurate.

* Frequency sampling method: This is a very universal approach and also possible for
recursive filters. The desired frequency response is sampled and transformed with the
inverse DFT to the impulse response.

» Optimal filter method: With support of a software tool this is the most powerful and
flexible approach. A minmax optimization problem is solved via a Chebyshev
approximation that minimizes the maximal deviation between the frequency response of the
filter and the desired frequency response. This is carried out with the algorithm proposed by
Parks-McClellan and implemented in the MATLAB signal processing toolbox.
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10.3 Design of FIR Filters

Example: A simple FIR filter of 1. order

For FIR filters the output is calculated as a weighted average of the current and previous
inputs (moving average, MA). A simple low-pass filter can look like:

u(k) +u(k —1)

y(k) = 5 = 0.5u(k) + 0.5u(k — 1)
‘ 7.2 \ \ \ ‘ \ \ \ \ ‘
5100 E
= ]
— | a u(k)(VM\WW\;
< 10 ¢ E [<b}
3 2 o8 y(k) !
& S
- -, 3 06
10 o
— 2 04
—_ P
—~ O
) ' 0.2°f
.sq) c
U O;W
~
100 _02 | | | | | | | | |
0 5 10 15 20 25 30 35 40 45 50

k
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10.3 Design of FIR Filters

Remarks on FIR Filters With Linear Phase
FIR filters have to fulfill certain condition in order to have a linear (or affine) phase:
* Linear phase, i.e., p(w) = aw : Symmetrical impulse response.

« Affine phase, i.e., p(w) = aw + §: centrosymmetrical impulse response.

Remember: |
z1 =a+1b=ce'”

c=+vVa?+ b2

(p = arctan—
a

Addition of two conjugate complex numbers:
21+ 29 = a+ib+ (a —ib) = 2a — purely real!
Same numbers written in absolute value and phase form:

21420 =ce¥ +ce ¥ =¢ (ew + e_i"o) — purely real! b__lm 2
= ¢ (cosp + isinp + cosp — ising) = 2¢ cosy
NN,
— Sum of two conjugate complex numbers is purely real! a Re
bt ey
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10.3 Design of FIR Filters

Example: Symmetrical FIR Filter of Length L =9 (Order m =8)

Transfer function of the filter:

G(2) = g(0)+9(1)2 +9(2)2 *+9(3)2 +9(4)z  +9(5)2 > +9(6)2 ™ +9(7)z " +¢(8)2 "
Because of symmetry we have:

9(0) = g(8), g(1) = g(7), 9(2) = g(6), 9(3) = g(5)

G(2) = 9(0) [L+ 27" 4g(1) [o7" + 27 ]4g(2) [¢77 + 27°]4+9(3) [+7° + 27" +g(4) 2"
Factoring z# out yields:
G(z) =z {g(0) [2* + 27 +9(1) [2° + 273 +9(2) [2* + 272 +9(3) [z' + 27| + g(4)}

The frequency response is obtained for , — iwZo, Expression of the following form
Zn i z—n‘zzewTO _ eiano + e—iano

are purely real and therefore have phase = 0. Thus the phase of this filter finally is:

27 e =T o p(w) = —4Thw = aw (+ wif the sign of “{...}” is negative!)
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10.3 Design of FIR Filters

The 4 Types of FIR Filters With Linear Phase

Type 1: Symmetry

odd length
L=9

»
»

Impulse response

S —

’
illll
456789 Kk

0123

Type 3: Centrosymmetry

Type 2:  Symmetry

even length
o 4 L=8
L |
8_ ) E )
] :
3¢ ° % .
é .i.
E :

—o—

0123456789 Kk

Type 4: Centrosymmetry

Symmetry:
+ gk)=9g(L—-1—k)
 Phase is linear, i.e.

o(w) =aw

Centrosymmetry:

odd length even length
L_gg L_gg + g(k)=—g(L—1—k)
& 1 e 3 I . . «  Phase is affine, i.e.
1 @ o) 1
= * & oo ow)=aw+p
(<] ! beby :
> - ° IR N e s . g
2 0123456789 k 5 01231456789 Kk B =m/2
> 1 ® o > ® 10
o o o 1 ®
= ! o £ @
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10.3 Design of FIR Filters

Window Method

The idea behind this approach is to design a filter that has a desired frequency response
Gp(iw) (D = desired). Subsequently the impulse response g(k) can be calculated via the
iInverse Fourier transform as follows:

1 wo/Q '
g(k) / G p (iw)e ok dy

o 27T —W0/2

This impulse response typically is non-causal and of infinite length. We have to shift it and
crop it at a certain finite order m to make the FIR filter realizable.

Example: Low-pass with cut-off frequency @, (sampling rate T, = 15)

wo /2 We . .
g(k) — i GD(w)ewTok:dw _ i 1.ewTok g, — We SINWek _ sin wek
27 J o2 2 ). Twek k
[1Gp(iw)| B —
1 01 |
g(k)
0 b 1 _
We = =S
l } > Y 20 10 0 10 20 30 ‘ 2
—wo —We 0 we wo W k
University
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10.3 Design of FIR Filters

Approximation Error Through Cropping the Impulse Response

.. . . nwan
oo coefficients 61 coefficients U a_ ted
72 72 / behavior!
! ! W Gibbs
0.8 0.8 Phenomenon
|G p(iw)] os |G (iw)] s
0.4¢ 0.4
0.2+ 0.2
(-)1 -0.5 0 0.5 (-}1 -0.5 0 0.5 1
W We W We
31 coefficients 11 coefficients
7.2 " : 7.2 .
1r 1r
0.8r 0.8r
|G(Z'CU)‘ 0.6 ‘G(Zu))‘ 0.6
0.4 0.4
0.2 0.2
c—)1 -0.5 0 0.5 (_)1
W We
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10.3 Design of FIR Filters

Consequences From Unwanted Behavior of FIR-Filters

The ripple in the amplitude response of the FIR filter can easily be explained. The cropping
of the impulse response g(k) is identical to a windowing with a uniform/rectangular window
w(k). In the frequency domain this corresponds to a convolution with the Fourier transform
of the rectangular window W(iw), the sinc-function:

g(k) - w(k) o G(iw) * W (iw)

This explains the ripples. Unfortunately they do not become smaller if more coefficients are
spent to describe the impulse response more accurately. This is the so-called Gibbs
phenomenon (see math, “Fourier series™).

In order to reduce this undesirable effect, the impulse response is multiplied with a smoother
window like in the DFT context. Such a window can reduce high frequencies by letting the
Impulse response slowly decay towards zero. For FIR filter design the so-called Kaiser
window is commonly applied.
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10.3 Design of FIR Filters

Optimal Filter Design Method

With most optimization methods the quadratic error |E(iw)|? between the desired filter
characteristics Hy(i«) and the real filter characteristics H(iw) is minimized:

w0/2
E(iw) = Hp(iw) — H(iw) / } E(iw)?dw — min

However, the algorithm according to Parks and McClellan minimizes the maximal (not
squared) error because it has yield more reliable results:

max{|F(iw)|} — min
The minimization of the maximal absolute value ensures that the ripples are equally

distributed over all frequencies which led to the name Equiripple filter. The criterion is also
Important in many other approaches to robust optimization and control.

Because the absolute value of the error is magnitudes larger in the pass-band than in the stop-
band, it is important to multiply the errors with a normalization weight that guarantees no
frequency ranges are preferred:

max{|W (iw)E(iw)|} — min
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10.3 Design of FIR Filters

To achieve a filter with equally large (small) ripples in the pass- and stop-band the following
frequency weight must be chosen for a low-pass filter:

N ! fiir 0 <w < w, oy | 02/d1 fir 0 <w <w,p
W(zw)—{ 01/02  fiir ws <w <wp/2 or WWU)_{ 1 flir ws < w < wp/2

MATLAB offers the Parks/McClellan minimax algorithm

and least-squares optimization tools: MATLAB

The default mode of operation of firls and firpm is to design type | or type Il linear phase filters, depending on whether
the order you desire is even or odd, respectively. A lowpass example with approximate amplitude 1 from 0 to 0.4 Hz,
and approximate amplitude 0 from

0.5t01.0Hzis

n = 20; % Filter order
£f=1000.40.51]; % Frequency band edges

a=1[1 1 0 0]; % Desired amplitudes

b = firpm(n,£f,a); % Parks-McClellan FIR Design

From 0.4 to 0.5 Hz, firpm performs no error minimization; this is a transition band or "don't care" region. A transition
band minimizes the error more in the bands that you do care about, at the expense of a slower transition rate. In this
way, these types of filters have an inherent trade-off similar to FIR design by windowing.To compare least squares to
equiripple filter design, use firls to create a similar filter.
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10.3 Design of FIR Filters MATLAB

Typebb = firls(n,f,a);

and compare their frequency responses using FVTool: £fvtool (b,1,bb, 1)
Note that the y-axis shown in the figure below is in Magnitude Squared. You can set this by right-clicking on the axis
label and selecting Magnitude Squared from the menu.

} Figure 1: Filter Yisualization Tool - Magnitude Response (squa 10 x|
File Edit Analvsis Insert  Wiew Window  Help u

DE&R| K OTNNNHE 20X HE
AR 20 B:5e

lagnitucke Fespoense (squarned)
T T T T T T T T T

=
[

Magnitucke squarad
o
o

o
=

oz

o] oA 0z 0.5 04 05 05 or 08 [ux=]
Mermalzed Fraquency (0 racksamplke)

The filter designed with £irpm exhibits equiripple behavior. Also note that the £ir1s filter has a better response over
most of the passband and stopband, but at the band edges (f = 0.4 and f = 0.5), the response is further away from the
ideal than the £irpm filter. This shows that the £irpm filter's maximum error over the passband and stopband is
smaller and, in fact, it is the smallest possible for this band edge configuration and filter length.
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10.3 Design of FIR Filters

Removing Periodic Signals of Known Frequency (High-pass Approach)

With an FIR filter a arbitrary periodic signal of known frequency can be removed perfectly.
Typical applications:

Carrier frequency of a radio signal

Hum (50 Hz and multiples as upper harmonics)

The following FIR filter removes all periodic signals with period length T, = m-T, or

frequency w, = @, /m, respectively:

1

Gz)=1—2z"T

m=7

H' 5 T . T 1

0.8 -ﬂ (I /\ [ \ fﬁ\ / '\ 0.8

> \ / \ / \ X l (R After transient:

o4 ' \ \ / \ f o4r 1 Perfect suppression!

0.2 \ . 0.2+ |I / ]
u(k) o I / \ ot Hu(k) T O et

02 | | | / \/ \/ — G(2) — 02} /l _

04 | | 04

J
RN |
o é 10“5&02'}3‘0\(55}04'5\‘50 T 5 10 1'52b2:3b3'54b4550
k
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10.3 Design of FIR Filters

The special properties of such a filter are:

* Independence of the shape of the signal (depends only on the period length).

 Removes all multiples of «, perfectly.

« Perfect damping with —o dB (infinite steepness!).

« High-pass! Removes all low frequencies (and d.c. values) as well.

12 T T T T T T T T
u(k)
MWV A
(¢B]
 0.8) :
o
(@R
| | | L | | | | | $ 0.6 |
0O 0.050.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 bt
“p 2wp Swp o y(k)
100 w w w \ ‘ : ‘ ‘ : + 04 ,
° >,
~ 9 \ 5 02 1
3 i (=
e ° ol \[\M
O -50¢ ,
~
_100 | | | L | | | | | _02 L | L | L L | L |
0O 0.050.1 0.150.2 0.25 0.3 0.35 0.4 0.45 0.5 5 10 15 20 25 30 35 40 45 50
W wo/2 k
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10.3 Design of FIR Filters

Removing Periodic Signals of Known Frequency (Low-pass Approach)

If the same task as before is requested with a low-pass filter instead of a high-pass the
following two possibilities with gain = 1 suggest itself:

1
)= % (1 +Z_m/2) Go(z) = = (L2 427+ +277)

A

u(k)

« Positive and negative half waves have to be  « Positive and negative half waves must

symmetrical in order to cancel each other. accumulated to zero.
* m has to be even. « Strong averaging (low-pass effect).
« Little distortion for other frequencies. * Removes only multiples of «,.

* Removes only multiples of 2,
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10.3 Design of FIR Filters

10°} L 10 ]
< 10t L 10t
S S
107 R L 1070 - -
10 10 10 10 10 10 10
—. 100 — 100
o, o,
3 B ‘
O T2
- a -100+ .
~ ~
-100 3 N ‘ ] — -200 - -
10 10 w 10 wo/210 10 10
1.2 1.2
1 1
2 u(k) % u(k)
S 08 S 08
Q o
B 06 y(k) $ 0.6
o o
L 04 D 04
n n
& 0.2 o 0.2
c ot c 0
o 02—
0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
Kk
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10.4 Design of I1IR Filters

Example: A Simple IR Filter of 1. Order

For IIR filters the output is a weighted average of the current and previous inputs (moving
average, MA) and previous outputs (autoregressive, AR) — ARMA. The most simple first
order IR filter is a PT,-system, i.e.:

y(k) = 0.5u(k) + 0.5y(k — 1) In comparison to FIR filters, here
implicitly infinitely old inputs u(k-i)

= 05”(,6(]{) —+ 025U(l€ — 1) + 0125U(k — 2) + ... influence the OUtpUt!
1.2
V(9
3 08 (k)
o
o
, & 06
10 a
2 04/
P
wn
© 0.2¢
c
O‘W
2 | -1 | T o 0 -0.2 : : : : : : ’ ’ ‘
10 13 wo/2 10 %20 "5 10 15 20 21? 30 35 40 45 50
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10.4 Design of I1IR Filters

Transformation from Analog in Digital

Typically IIR filters are designed with traditional methods in the analog world. In a second
step they are transformed from the analog in the digital world. For this transformation various
approaches are common, dependent on the application area:

« Impulse invariance method: Demand identical impulse response in the analog and digital.

 Bilinear transformation (also called: Tustin formula): The s-variable in the analog
frequency domain is approximated by a rational fractional function in z such that a
numerator / denominator expression in the s-domain becomes a numerator / denominator
expression in the z-domain (and vice versa).

Furthermore there exist other method that are more popular in digital control than in filter
design:

 ldentical time signals with zero or first order hold.
 Identical poles and zeros.

In the following, we focus on the bilinear transformation approach.
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10.4 Design of I1IR Filters

Bilinear Transformation (Tustin Formula)

The exact transformation between s and z is nonlinear and o — 5T s iln s
would destroy the fractional rational function form. Linear - 1o

system theory would not apply anymore.

Via the bilinear transformation this form is preserved. The stability properties stay identical,

as well.

max. possible frequency
before aliasing starts!

s-Plane
Im
w0/2 | >
21—z
N To14 271
Re

1+ %3

Z = 1 T
5 S
___________ —wo/2__ ___ < |
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10.4 Design of I1IR Filters

Comparison: Frequency Response in the Analog and Digital World

A transfer function G,(s) in the s-domain can approximately be transformed by the bilinear
transformation into the z-domain:

21—2z"1
Ga(s) = Ga (TO 14+ z_1>

The frequency response in the analog can be obtained by s — ., and correspondingly by
going through the unit circle in the z—domain , — ¢iwaTo . Since the bilinear transformation is
just an approximation, the analog frequency w, differs from the digital frequency wy:

2 1 — e wald 2 walo 4
Wy To 1+ o iwals ZTO tan 5 al 0
2
Wy = 3tem walo Wy = Earctan walo |
T 2 P 2 5 o
The upper bound for the digital frequency is given i
by the half sampling frequency according to Shannon:
s w ,
Wd,max = T =7fo = 70 B0 20 10 &a 10 20 30
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10.4 Design of I1IR Filters

Bilinear Transformation (Tustin Formula) = Trapezoidal Rule for Integration

In discrete time a continuous integration can be approximated in different ways. More
accurate than calculating the lower or upper sum (see next slide) is the trapezoidal rule:

" - medium .
(7 + u(Kk — '
(k) = y(k — 1) + 7, UE 2 D) heigh ) = [ u(ryir
0
width u(t)|
In the z-domain this results in:
To 1+ 21
This formula shall correspond to an integration in the s-domain: (k—1')To o ()T, e

Y(s) = %U@)

This exactly yields the bilinear transformation:
1 Tol+z7! l—a "

s 21—21 T T 111
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10.4 Design of I1IR Filters

t
Integration with Lower and Upper Sum y(t) = / u(r)dr Y (s) = 1U(s)
0

S
ut) u)|
y(k) =y(k — 1) + Tou(k — 1) y(k) = y(k —1) + Tou(k)
—1 T
Y(z) = 1TEZZ_1 Ue) Y(2) = 7—=U(2)
(k—1')T0 KTy (k+1)T, t= 11—zt z-1 (k-1)T, KT, (k+1)T, t= 11—zt z-1
° = T()Z_l B TO 5= T() a Toz
Differentiation with Forward and Backward Differences y(¢) = %u(t) Y(s) =sU(s)
(9] k+1 k (0] k k—1
y(k) _ u( + 120_ U( ) y(k:) _ u( )_17;[(‘} — )
Y(z) = L) v = =2y
=T (2) = T (2)
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10.4 Design of IR Filters Stability area is mapped too

large small
Comparison / \
Bilinear Transformation Forward Differences Backward Differences
(Trapezoidal Integration) (Lower Sum Integration) (Upper Sum Integration)
21— 271 1+ Lo =z T 1=z 1
— Z’ f— S — — _— Z f—
ST Toltz ! 1D Toz— 1 [ 02 To 1—Tos
s-Plane s-Plane s-Plane
z-Plane | z-Plane AT\I z-Plane |
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10.4 Design of I1IR Filters

Procedure for Filter Design Via Bilinear Transformation

1.

The Following IR Filters are Common:

Specification is either directly made in the analog world or it is transformed from the

digital in the analog world.
. . . Friedrich Bessel, 1784-1846
Filter design in the analog world. (www . wikepedia.org)

Transformation of the final analog filter in the digital world.

Bessel filter: Approximately linear phase in the pass-band
Butterworth filter: Monotone amplitude response
Chebyshev filter type 1: Ripple in the pass-band

Chebyshev filter type 2: Ripple in the stop-band

Cauer filter (elliptic filter): Ripple in the pass- and stop-band

For the steepness of filters of identical orders (i.e., comparable complexity):

10 Fl Ite IS Page 220 Prof. Dr.-Ing.
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10.4 Design of I1IR Filters

Overview on Analog Filters

1 1
0.8 0.8
30 30
Butterworth = ©° 2 06 Crllt_abysr:ev
O 04 S 04 ype
0.2 0.2
0 ‘ ‘ 0 ‘ ‘
c 02 04,06 038 c 02 04,06 08 1
w0/2 UJO/Q
0.8 0.8
Chebyshev 3 06 306 Cauer
Type Il G 0.4 G 0.4 (elliptic)
0.2 0.2
0 ‘ ‘ ‘ 0 ‘ ‘ ‘
0 0.2 04 w0'6 0.8 0 0.2 04 w 0.6 0.8 1
UJO/Q w0/2
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Stephen Butterworth, 1885-1958

10.4 Design of IR Filters (winw . wi kepedia - 0rg)

Butterworth Filter

« Design with focus on maximal flatness of the amplitude response close to the limit

frequency wy.
« Monotone amplitude response, i.e., no ripples.
» Fast drop-off in the amplitude response at the limit frequency.
« Strong overshoot of the impulse response.
* Relative low steepness with 20-n dB / decade (n = filter order).

Amplitude Response: s-nPlzage
1 V' N
G (iw) |2 = Im

s-Plane
n=4

P

) S; Ré
i) =11+
i=1 "

(2) Py
/

where s; are the n stable poles of the 2n-root of —wy.
x Pole of |G(iw)|?
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10.4 Design of I1IR Filters

R
o
I

Magnitude [dB]
A
o

N

o)

(@)
I

2
10

logw [rad/s]

A . University
. utomatic Control
10. Filters Page 223  Prof. Dr-ng u
Oliver Nelles Chatro’s  Si
of Siegen



10.4 Design of I1IR Filters

Butterworth Filter w, = 1rad/s
12 T T T I

n=4 ~N=6
"= %@@
! ~7
0.8 B
(7]
(«B]
)
[
S
§ 0.6 -
o
QL
)
04r ]
0.2 |
o | | | |
0 10 20 30 40 50

Time [s]
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Pafnuti Chebyshev, 1894

10.4 Design of IR Filters (ww. wikepedia.org)

Chebyshev Filter
« Steeper than Butterworth filter.

« Ripples in pass-band (type 1) or stop-band (type Il) in the amplitude response.
Acceptance of ripple drawback for benefits in steepness.

« Step response oscillates more than for Butterworth filter.
« Transposes into Butterworth filter if the allowed ripple factor £ — 0!
- Design parameters: limit frequency w, , order n, allowed ripple factor &.

N2 1 Chebyshev Polynomial of Order n:
Gliw)[? = -
1+ 2772 (w—g) T (z) = cos(n arccos ) fir |z] <1
_ P 7 cosh(n arccoshz) fir |z] > 1
€. ripple factor
. To(x) =1
Because the Chebyshev polynomial changes Ti(z) = o
In the pass-band between 0 and 1 a lower limit ' 5
... . TQ(:L‘) =2x° —1
on the gain is given by:
5 1 Ts(x) = 42° — 3z
1—0 =
P Vel Tpi1 () = 22T(x) — Tp1()
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10.4 Design of I1IR Filters

10

0

I
—
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G(w) / dB
s N
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|
[N
<

|
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<

The frequency response of a fourth-order type | Chebyshev
low-pass filter with e = 1

]

[a—y
o
=
et
et
et
<

o

Gain (dB)
D =
S o

W
S
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S

The frequency response of a fifth-order type Il Chebyshev
low-pass filter with € = 0.01

o
S

Passband

Stopband

o
S

10 Source: https://en.wikipedia.org/wiki/Chebyshev_filter
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10.4 Design of I1IR Filters

Chebyshev Filter Type |  w, = 1rad/s

T

-20

Magnitude [dB]
A
o

'60 | I I

N

o)

(@)
I

-2 -1 0 1 - 2
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10.4 Design of I1IR Filters

Chebyshev Filter Type |  w, = 1rad/s

I

1.2 \

Step responses

40 50
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10.4 Design of I1IR Filters

Chebyshev Filter Type | (n=4) wg = 1rad/s

oke small

£ medium

¢ large

Magnitude (dB)

Phase (deg)

I | |
W N - I
(o)} ~ (00} O
o o o =)

10° 10
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10.4 Design of I1IR Filters

Cauer Filter (Elliptic Filter)

Wilhelm Cauer, 1900-1945

(www.wikepedia.orqg)

« Steeper than Chebyshev filter, even the steepest possible (for linear filters).

« Ripples in the pass-band and stop-band in the amplitude response.

« Step response oscillates stronger than for the Chebyshev filter.

« Transposes into Chebyshev filter type | if the steepness factor ¢ — oo!

 Design parameters: limit frequency w,, order n, ripple sand steepness ¢.

N2 1 Elliptic functions of order n:
Giw) = ———
1+e¢ Rn (w—g,€> .
- Ripple f band [[(z=2n0
<. Ripple for pass- an iz for even n
¢ Steepness (selectivity factor) [[@-2p)
1 =0
: calculated according to Ry (z,§) = < n—1
X”i: £eros > a complex formula in —[ (z=Zni)
Xpi- poles dependence on ¢ rox j_:ol for odd n
Maximal steepness at x = 1. ;IO (=p:)
University
10 Fl|terS Page 230 Prof. Dr.-Ing. m

Oliver Nelles -
of Siegen



10.4 Design of I1IR Filters

L A N L L A A A N A R R A L e
Lo /F\/\ ]
0.8 \G= ;
[ Vi+g2 ]
06
3 | ]
© 04
= 1 i
i f Vi+ei2 | The frequency response of a fourth-order elliptic low-pass o
021 - 1 filter with €=0.5 and £=1.05. Also shown are the minimum gain
i L/ \\/_,,-—‘--"*""_____ 1 in the. !:)assba.nd and the maximum gain in the stopband, and the
S T T | T N R S transition region between normalized frequency 1 and §
0.0 5 1.0°¢ 5 0
w/wy
1.0 BEAAREEE A A A A A R R A B
. —
__ _’1/ _
0.8 \G= ;
[ Vi+e? ]
06
S \ ]
© 4
B G= —L i
! / Vi1+£2L2 . g .
0.2 ! A closeup of the transition region of the above plot.
__ \// :
0.0 g
X IR XA 7T/ B I V- O T/ R I - A W7 Source: https://en.wikipedia.org/wiki/Elliptic_filter
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10.4 Design of I1IR Filters

Cauer Filter wg = 1rad/s

I
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2 -1
10 10
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10.4 Design of I1IR Filters

Cauer Filter wg = 1rad/s
12 T I

I =
N |

n==6

LN\ 7 o e~
N/

T T ——— —

0.8 7

Step responses
o
(o))
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0.2 7
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4.4 Entwurf von 1IR-Filtern

% For data sampled at 1000 Hz, design a 9th-order highpass
% Butterworth filter with cutoff frequency of 300Hz.

Wn = 300/500; % Normalized cutoff frequency
[z,p,k] = butter(9,Wn, 'high'); % Butterworth filter
[sos] = zp2sos(z,p,k); % Convert to SOS form
h = fvtool (sos) ; % Plot magnitude response
I I I L) L) I I L) L)
0 -
A
m -50F -
=
o
< -100
= 2
B S
-150 F 4 S
§ o
<3}
| -
(-
-200 1 <
-
] ] ] C
% O
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 D
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4.4 Entwurf von 1IR-Filtern

% Design a 4th-order butterworth band-pass filter which passes

% frequencies between 0.15 and 0.3.

[b,a]l]=butter(2,[.15,.3]); % Bandpass digital filter design
h = fvtool(b,a); % Visualize filter
|| I | || || I | || ||
0 -

[
-2
=

Magnitude (dB)
I
-

[
]
=

0 01 02 03 04 05 06 07 08 09
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4.4 Entwurf von 1IR-Filtern

% For data sampled at 1000 Hz, design a 9th-order lowpass Chebyshev
% Type I filter with 5 dB of ripple in the passband, and a passband
% edge frequency of 300Hz.

Wn = 300/500; % Normalized passband edge frequency
[z,p,k] = chebyl(9,5,Wn);
[sos] = zp2sos(z,p,k); % Convert to SOS form
h = fvtool (sos) % Plot magnitude response
Ll L] I Ll L] I Ll L] I
0 -
ﬁ
m -50F -
o
o
B -100
5 - = —
=
%150 - -
-200 f -
L [l 1 L [l 1 L [l 1
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! o\ utomatic Control University
4. Filter Page 236 Prgf. Dr.-Ing. - m
Oliver Nelles 'ohatm(\ .
of Siegen



4.4 Entwurf von 1IR-Filtern

% Design a 2nd-order Chebyshev Type I band-pass filter which passes
% frequencies between 0.2 and 0.5 with 3 dB of ripple in the

% passband.

[b,a]l]=chebyl(2,3,[.2,.5]); % Bandpass digital filter design

h

fvtool (b,a); % Visualize filter

0

[
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=
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=
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4.4 Entwurf von 1IR-Filtern

% For data sampled at 1000 Hz, design a ninth-order lowpass
% Chebyshev Type II filter with stopband attenuation 40 dB down from
% the passband and a stopband edge frequency of 300Hz.

Wn = 300/500; % Normalized stopband edge frequency
[z,p,k] = cheby2(9,40,Wn) ;

[sos] = zp2sos(z,p,k); % Convert to SOS form

h = fvtool (sos) % Plot magnitude response

0 I I L I 1

—

220}

R

L

"]

=

=

&-40 -

S
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4.4 Entwurf von 1IR-Filtern

% Design a 6th-order Chebyshev Type II band-pass filter which passes
% frequencies between 0.2 and 0.5 and with stopband attenuation 80 dB

% down from the passband.

[b,a]=cheby2(6,80,[.2,.5]); % Bandpass digital filter design
h = fvtool(b,a); % Visualize filter
T T T T T T T T T
0F i

Magnitude (dB)

-100 ! ! ! ! ! ! -
0 01 02 03 04 05 06 07 08 09
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4.4 Entwurf von 1IR-Filtern

% For data sampled at 1000 Hz, design a sixth-order lowpass

% elliptic filter with a passband edge frequency of 300Hz, 3 dB of

% ripple in the passband, and 50 dB of attenuation in the stopband.

Wn = 300/500;

[z,p,k] = ellip(6,3,50,Wn) ;
[sos] = zp2sos(z,p,k);

h = fvtool (sos)

% Normalized passband edge frequency

% Convert to SOS form

% Plot magnitude response

0 B I

1

-

=
T

Magnitude (dB)
IS
=

1

N

=
L

0 0.1
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4.4 Entwurf von 1IR-Filtern

% Design a 6th-order Elliptic band-pass filter which passes
% frequencies between 0.2 and 0.5, and with 5 dB of ripple in the
% passband, and 80 dB of attenuation in the stopband

[b,a]=ellip(6,5,80,[.2,.5]); % Bandpass digital filter design
h = fvtool(b,a); % Visualize filter
oF T T T T T T T T T
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10.4 Design of I1IR Filters

Normalization and Transformation

Up to here we have focused on low-pass filters. But with the help of simple transformations
this knowledge can be carried over to all kind of filters.

Starting point is the design of a low-pass filter with normalized limit frequency «, =1 rad/s.
All other filters can be easily derived from this:

Low-pass with limit frequency «,: PN
We

. o o
High-pass with limit frequency @y S — -

82 + Wg1Wg2

s(wg2 — weg1)

Band-pass with limit frequencies wy; and wy,: s —

s(wg2 — wgl)

Band-stop with limit frequencies w,, and «.,:
P d ol 62 5 52 + Wg1Wg2

University

u

of Siegen

&\ utomatic Control

10 Fl Ite IS Page 242 Prof. Dr.-Ing.

Oliver Nelles



10.5 Implementation of

Filters

Block Diagram of Digital Filters

Delay of one sampling time step:

symbolic representation!

u(k)

[

—1

y(k) =u(k —1)

[
»

Z

WARNING: Formally such a block diagram is wrong because it mixes time and frequency
domain. However, such a sloppy representation is commonly found and easy to read. More
strictly the following time delay is meant:

Y(2)=2"U(2) — ylk)=ulk—1)

Multiplication with a factor: _u(k) o yk) = c-ulk)
UQ(I{/')
Addition: k), ytk) =i (k) + ualk) |
’(LQ(k)l\
Subtraction: @il Ng! y(k) = ui(k) —ua(k) |
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10.5 Implementation of Filters

FIR Filter

* m memory elements

« m+1 multiplications and m additions

 No feedback

« For symmetrical filter with 5 = b,,,, b1 = b1, . . .
half of the multiplications can be save by first adding u(k) with u(k—m) and

u(k—1) with u(k-m-1), etc.

u(k)

tapped delay Iine/ y "
—1

10. Filters

|

\ 4

b1

Z

ba

y(k)

or

bo =

Page 244

Prof. Dr.-Ing.
Oliver Nelles
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10.5 Implementation of Filters

Efficient Realization of a Tapped Delay Line in Software
Example for m = 3:

The pointer «—— moves up one memory block in each time step. When it moves out at the
top it jJumps back to the bottom. This can be implemented with the modulo operator:

adr := (adr + 1) mod m. In each time step only one memory block has to be overwritten
instead of moving all of them one step further!

4.1 u(k) |J—— 4 1 u(k—1) 4. u(k —2) 4. u(k —3)
3.|ulk—1) 3. ulk —2) 3. | ulk —3) 3. wk) |je——
2 | u(k —2) 2. | u(k —3) 2 u(k) |je—— 2 lu(k—1)
1. | u(k—3) 1.1 wk) @=— 1. | ulk—1) 1. | u(k —2)
ki=k+1_ ki=k+1 ki=k+1
k=20 S k=21 S k=22 k=23
4.1 u(20) je——0 4.1 u(20) 4.1 u(20) 4.1 u(20)
3. u(19) 3. w(19) 3. u(19) 3. w(23)
2.| u(18) 2. u(18) 2. w(22) e 2. u(22)
1. u(17) 1| u(2l) f—— 1. u(21) 1. u(21)
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10.5 Implementation of Filters

IR Filter
An IIR filter of order n can be written as

B(z) bo+biz7 4. 4+ bz
A(z)  1+4az7l+...+az ™

Grr(z) =

If the order of the numerator is smaller than the order of the denominator (m < n) then simply
the lacking b; = 0 for i > m. This transfer function can be split into two part in two ways:

' - _u X | 1 y
Direct Form I: B(z) e
Gur(z) = B(z) - - (bo+ b1z +...+byz ") !

A(Z) 0 n 1—|—CL1Z_1‘|—---+anZ_n

I - u 1 X y
Direct Form II: : — B(2)
Gur(z) = —— - B(z) = ! (bo+ b1z + ...+ bz

IIR(%Z _A(Z) Z) = l+az—t+... +a,z—" 0 1% nZ
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10.5 Implementation of Filters

IR Filter in Direct Form |
* 2n memory blocks

1
« 2n+1 multiplications B(z) A(2)
and 2n additions
u(k) P z(k) A y(k)
- n feedback paths T gl _ I
z1 > by a z71
zvl > b2 az (¢ zrl
v '
e B, B R N e SO

x(k) = bou(k) + byu(k — 1) 4+ bou(k — 2) + ... + byu(k —n)

ylk)= x(k) —ary(k—1) —asy(k — 2) — ... — apy(k — n)
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10.5 Implementation of Filters

IR Filter in Direct Form Il (redundante Variante)

identical!
* 2n memory blocks "
«  2n+1 multiplications AZ) B(z)
and 2n additions ) ” : S
« n feedback paths g I / \ ]——' 0
a1 e »—1 P » by
a2 [« 21 2"1 > bo
v v
t l l
Gy, > b,
x(k) =
y(k) = boz(k) + by .+ bn
10 Fl|terS Page 248 Prof. Dr.-Ing. ; — ”'Vers'y
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10.5 Implementation of Filters

IR Filter in Direct Form Il (Non-Redundant Variant)
* nmemory blocks

* nmemory bocks correspond Agz) B(z)
(oo satospacs moonro) 0 Tm o it
« 2n+1 multiplications
and 2n additions a; [« B o b
» n feedback paths
@ [« z‘l » b

T Qy, [ {1 > by, T

z(k) = u(k)—arx(k—1) —asx(k—2)—... —apx(k —n)

y(k) = box(k) + byx(k — 1)+ box(k —2) + ... + bpz(k —n)
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10.5 Implementation of Filters

Cascade Form

Consists of a series circuit of IR filters of 2. order in direct form II:

Loy =l 2

B Pl 1+ a;27t + apz?
In this product each factor represents a second order system with two conjugate complex or
two real poles. For an even order n of the complete filter | = n/2.
For an odd n we have | = (n+1)/2 and b;, = a,, = 0.

Parallel Form

Consists of a parallel circuit of filters derived from a partial fraction expansion:
ll ZQ l3

_ d; gi(L+ez™")
G(z) = 2"
(=) ZC : +Z; l+a;z71 +Z 1+ fiz=H (1 + frz—1)
This means that filters with poles at 0, W|th real poles at —a; and with conjugate complex pole
pairs at —f, and —f.” are run in parallel..

LLadder Form and Lattice Form

Representations in form of continued fractions or lattice structures are sophisticated filter
forms that possess advantages with respect to robustness against round-off errors.
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10.6 Non-Causal Filters u(k) 10 y(K)

Causal Filters

For a causal filter its output y(k) depends only on the current and previous input u(k—i)
with i > 0. This automatically means that the impulse response is equal to zero for negative

times: ~ ~ 9(K)
y(k) = Y gli)ulk —i) =) g(i)u(k — 1) .
1=—00 1=0 K
\ since g(i) =0 fori <0,

otherwise the future inputs would influence the now: u(k—i)
Non-Causal Filters

For a non-causal filter its output y(k) also depend on the future input u(k—i) with i <0.
This automatically means that the impulse response is not equal to zero for negative times:

00 00 commonly

k) = k — k— symmetrical,
y(k) = Y g(@Du(k —i) # Y g(i)u(k — i) e

i=—00 1=0
K not necessary
since g(i) # 0 for i <0, because future inputs are relevant: u(k—i)
University
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10.6 Non-Causal Filters

How the Future is Known to Calculate a Non-Causal Filter?

« Offline data processing: The data set is available from start to end in the computer. Then

the “now” can be arbitrarily chosen be the user.

« Buffers in online data processing: Data is stored in a buffer for a couple of sampling time
steps, say D steps, before being processed further. The whole processing is therefore
delayed by D steps. Relative to this delayed “now” there exist the possibility to look D
steps into the future up to g(-D). It is important to note that in order to look D steps into
the future with a non-causal filter, we have to buffer D steps of the signal, thus introducing

a dead time of D steps.

Oliver Nelles

(i)
1 . . ‘ ‘ Signal processing is based on
3 o5l Now” can be defined buffered signals that are D Buffer
c > arbitrarily! steps back with respect to L D u(i
% 0 » real time k =k — D and thus u(k - ),,_ u(k)
2 I as many steps can be .
S -0.5 _ ~ Filter
Past Future | predicted: k+1=4k D +1
_1 | L L L | | L : ~
0 10 20 30 40 50 60 70 80 ~ . ly(k)
K k+D=k
&\ utomatic Control University
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10.6 Non-Causal Filters

Advantages of Non-Causal Filters

« An impulse or step response that is symmetric to k = 0 has a real frequency response, i.e.,
no phase delay (see green dashed filter response)!

Symmetry implies:  G(z) = ...+ boz® +b1z' +bg+ b1z  + bz 2. ..
—
Rearrange: T———— — /
G(z) =by +bi(z' + 271 +ba(2z® +27%)+... <« realfor z = ™0
N S
conj. compl. conj. compl.
pair — real pair — real

« By forward and backward filtering of the data (which is possible only offline) every phase
delay introduced by the forward filtering is exactly compensated again by the backward
filtering. This fact is independent on the nature of the filter and ™ Butterworth Filter 4. Order

thus is true for every type (FIR, IR, nonlinear). 0sl
However, it is filtered twice. This means we effectively have 06/
the amplitude response of |G(iw)%. 04 /
« Because a non-causal filter can “react” to a step input before it O'z non-CjusaJ’
actually happens, such a filter is much faster! oo -
% a0 40 50 60 70 &0
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10.6 Non-Causal Filters

Drawbacks of Non-Causal Filters

« Can hardly be applied for applications with strict real-time requirements such as feedback
control because any delays deteriorate the performance significantly.

In communication systems, however, delays introduced by buffers usually are
— irrelevant/unimportant since communication is unidirectional (radio, TV),

— negligible when communication is bidirectional (telephone) because signal run times
introduce the major part of the delay anyway.

In feedback control a buffer would introduce an additional dead time. This has severe
conseqguences for the control quality (reduced phase margin, danger of instability). These
drawbacks are typically more important than the achievable improvements in signal quality.

causal buffer | non-causal Buffer _
filter D=3 1 Filter >+ non-causal filter =
causal overall system
gk(k)| gp(K)
[
[
[
k k
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10.6 Non-Causal Filters

Non-Causal Filters in Feedback Control
Feedback control gives nice examples for non-causal filters:

1. Reference input filter: Commonly the future course of the reference value is known a
priori. The non-causal filters can easily be exploited to utilize this knowledge.

2. Feedback filter: The comparison between desired and control value requires the control
value as fast as possible. A non-causal filter with buffer would introduce a dead time
which deteriorates the control performance because it causes phase lag. There non-causal
filter would be counterproductive. A “truly”” non-causal filter cannot be employed
because the future control variable is unknown.

Plant

v

— | Filter1 Controller

Filter 2

A . University
. utomatic Control
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10.7 Nonlinear Filters

Nonlinear filter are seldom applied due to the additional complexity in their handling and
design. In the field of image processing they are however, more common. Most frequently
simple nonlinear operators like max-, min- or other order/sorting-operators can be found.

Median Filter

Probably the most important and frequently used nonlinear filter is the median filter. It is
helpful in eliminating outliers. In contrast to the arithmetic average, the median gives the
numbers which is right in the middle of a sorted sequence, i.e., half of the number are larger,
half of the numbers are smaller.

Example:
Sequence: 4, 7, 20, 21, 30 — median = 20, arithmetic average = 16.4
Sequence: 4, 7, 20, 21,1000 — median = 20, arithmetic average =210.4

The median is commonly used to eliminate outliers e.g. in statistics where the arithmetic
average does not represent the “typical” case like study program duration, house prices, etc.
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10.7 Nonlinear Filters

Median Filter for Elimination of Outliers

A median filter of n. order has an output y(k) that is calculated as the median of the last
n data samples u(k), u(k-1), ..., u(k—n—1). With a median filter of n. order from n subsequent
data samples (n—1)/2 outliers in series can be filtered out and removed without distorting the

signal very much.

Example: Median filter of 3. order versus linear average FIR filter

Median filter: y(k) = median {u(k),u(k — 1), u(k — 2)}
i ) 1 1 1
Linear FIR filter:  y(k) = zu(k) + zu(k — 1) + zu(k — 2)
3 3 3
2 | 2 | Median Va 2 Linear A
73| 73| Filter "3 . 73| FIR Fil/teyw Voo
1 1 9-ooo oo oo —os ) Y 1 /p—d/ \ — /
il | =7 s 1 Outlier =0/ \
[ / 1 .
0 O oes _ o ¢ 1 Outlier 1 Outlier
o5 1Outlier
o0 | o0 2 Outlier
4l al 2 Outlier 4l
0 é 16 . 1’5 Zb 2’5 36 0 é l’0 i 1’5 Zb 2’5 3b 0 é l’0 . l’5 Zb 2’5 Sb
Time k Time k Time k
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10.8 Outlook: Adaptive Filters

What is an Adaptive Filter?

An adaptive filter has no fixed parameters but they change over time in order to meet
changing requirements. The time-varying parameters are typically changed according to some
adaptation law in order to improve the performance of the filter. Typical applications are:

» Online system identification: A time-variant process shall be identified (modeled by
measurement data). Because the process behavior changes over time the filter has to track
these changes.

« Channel equalization: A signal is distorted from sender to receiver by the dynamic
channel in between (obstacles, reflections, ...). This distortion must be compensated
(canceled) at the receiver the improve the quality. E.g. built in cell phones!

« Echo compensation: To avoid (or weaken) acoustic feedback distortions, adaptive filters
are applied to eliminate the part from the sound signal back from the speaker to the
microphone.

 Active noise suppression: An adaptive filter can model a measured disturbance in order to
actively compensate it by adding it to the signal with 180° phase shift (destructive
inference).
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¥ Avg. Spectrum (before) == ¥ Target # All (before)
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10.8 Outlook: Adaptive Filters

Automatic Room Acoustic Correction

10
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Room amplitude response for left and right cannel:
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10.8 Outlook: Adaptive Filters

Principles of an Adaptive Filter

Comparison between desired filter output y (k) and actual filter output y(k).
Calculation of the error e(k).

In the adaptation law the change of the filter parameters is computed from the error. This
usually is done by an update of the filter parameters according to:

0(k+1) =0(k) + Ab(k)

Different adaptation laws distinguish each other by different calculations of this
parameter update 44(k). The following goal are pursued and for each application a suited
compromise must be sought:

— convergence speed fi(k)
— tracking speed
— computational demand in each update step _u‘('L fi?apgvi y(k)_:u 62.@»
— numerical robustness (round-off errors!) Lafdly
« Typical adaptation laws are: WAQ(@
— least mean squares (LMS): gradient method ,| adaption |
— recursive least squares (RLS): Newton’s method law
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10.8 Outlook: Adaptive Filters

GSM: Mobile Communication

« Data send in packages of 148 bits each.

« Hereof 26 bits represent a reference signal for training of the adaptive filter in cell phone.
« This leads to an overhead of approx. 17%.

« One data package is send and received every 0.577 ms.

Frame

1 hypet frame=2048 super-frames=2715648TDMA frames (3 hours, 28 minutes, 53 seconds and 760 milliseconds)

Ton ‘ 0 | 1 J 2 l 3 | ‘2044 |2o45 |2046 |204? ‘
Eigg:” BCCH
LT 1 super-frame=1326TDMA frames (6.12 seconds) BT S SDCCH
0 | 1 2 | 3 J 4 | 4 | 49 | 50
ﬁ 0 }1 | __________________________________ 2 %5

1 multiframe=2! TDMP.fLameE 120rn5‘r R «"""_-{(mult\frar 8=51TDMA frames 3060f13m§
0 1; ‘24‘25“D|1 49 50

"""" S TDMA frame=8 timeslots (120/26= 4615m5}
‘ 0 | 1 | 2 | 3 4 5 ‘ 6 7 ‘

¥ imeslol=156.25 it duration (15/26=057Tms) e
(1 bit duration: 48/13=3 68us) .

Notmal burst (NB IT | 58 information bits 2¢training sequehces 58 information bits f
(NE) 3 3 &?‘5" TB: Tail bit
Frequency correction burst (FB) FS ‘ Constant bit 142 ITEIE?QZ |

v GP: Guard period
Synchronous burst (SB) ’Tal Information bit 3% ‘ Extended training sequenjze B4Information bit 39 FBI :

Access burst (AB) ’T-,’ |SY”C|'"0“0U5 sequence 41 ‘ Information bit @ GP 68.25
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10.8 Outlook: Adaptive Filters

Online Adaptation

The gradient method tries to minimize the quadratic error (k) by changing the parameter
vector in direction opposite to the steepest ascent (gradient) by a step proportional to the step

size or length #:

de?(k
Af(k) = —n dQ((k;
Commonly adaptive filters are of FIR type, i.e.: ﬁgl
y(k) = Oyu(k — 1) + Oou(k — 2) + ... Opu(k — m) with Ag — ’
Thus the parameter update becomes (Remember: e(k) = y4(k) — y(k)): A;m
u(k — 1)
28(k) = ~2ne(k) Zg = 20ek) g3 = el e | ?
u(k —m)

This means the update is proportional to the (new) step size 7', to the error e(k) and to the
“excitation” (regressor) of the corresponding parameter & by u(k—i).
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Chapter 10: Relevant MATLAB Commands MATLAB

Discrete-time transfer function:

sys = filt(num,den) ;? % Assigning a discrete-time transfer function
FIR filter:

firl;? % FIR filter using the window method

firls;!? % FIR-Filter using least squares optimization
firpm;? % FIR-Filter using Parks-McClellan optimization
IR filter:

besself ;!

oo

Bessel filter

butter;!? $ Butterworth filter

chebyl;? % Chebychev filter type 1
cheby2;? % Chebychev filter type 2
ellip;1? % Cauer filter (elliptic filter)

A . University
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Chapter 10: Relevant MATLAB Commands MATLAB

y = filter(b,a, X);

filtfilt(b,a,X) ;!

<
il

[b,a] = yulewalk(n,f,m);?

H = dfilt.structure(inl,...) ;!

[b,a] = prony(h,n,m);?!

10. Filters

o0 oo op o° oe

o°

o° o0 oe op oo op

op

Digital IIR filter (direct form II)

Corresponding non-causal filter
with forward and backward path
WARNING: The amplitude response has
the squared (twice) effect

Digital, recursive IIR filter.
Uses least squares to model the
frequency response

Yields discrete-time filter according
to the method 'structure',6K see
MATLAB help

Filter design in the time-domain
according to the "“Prony” method
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Chapter 10: Relevant MATLAB Commands MATLAB

Filter-Parameter-ldentifikation:

[b,a] = invfreqz (h,w,n,m);? % Identifies a discrete-time amplitude
$ and phase response (continuous-time:
$ “invfreqgs”)

1 . Signal Processing Toolbox

2 : Control System Toolbox

A . University
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11. Selected Methods In
Signal Processing
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Contents Chapter 11

6. Selected Methods in Signal Processing
6.1 Principal Component Analysis (PCA)
6.2 Clustering
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11.1 Principal Component Analysis

Data Preprocessing

Complex tasks in signal processing often are partitioned into two or more steps that each can
be handled simpler individually. Typically, a early (first) steps is called signal preprocessing.
Dependent on the specific task, signal preprocessing can be:

»  Filtering, smoothing, interpolation
« Transformation of data into a new coordinate system

«  Dimension reduction, data compression Outputs Tll TIZ f f r
« Transformation into the frequency domain
: further data
« Feature extraction :
processing
* Nonlinearity transform transformed 111
. X1|X5| X X
Some of the most common an important data Inputs 1728 174
. : : : data pre-
preprocessing approaches will be discussed in OGRS
the following.
original I I I I
Inputs Uy Up Uz U,
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11.1 Principal Component Analysis

Supervised versus Unsupervised Learning
Two approaches to learning can be distinguished:

« Supervised learning: The desired output y is known and is compared with the result of the
used method 5. A loss function to measure the quality of the method that depends on 'y
and 4 is calculated and often optimized. Frequently the mean squared error (MSE) is used
for that purpose.

« Unsupervised Learning: The desired output y is unknown or at least not used. Rather in
interim goal is defined which can be calculated solely on the input data {u;(k)}, i =1, 2,
.,pand k=1, 2, ..., N. Frequently the distribution of data in the input space plays an
important role.

Unsupervised learning is much simpler to realize than supervised learning. The interim goal
IS easier to achieve than the final one. However, the risk exists that the interim goal is not as
helpful as assumed. Therefore the success of unsupervised learning is not always guaranteed.
The methods presented here are unsupervised and require little computational effort.
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11.1 Principal Component Analysis

Projection of Vectors

«= (V)] LD

1

»

T( 0 _
ul = V12422 = V5 [Uanst| = V32 +12 = V10

In order to keep the absolute value of u constant,

the vectors describing the coordinate axes have 2z = ( yg ) 29 = < _11/\}? )
to be normalized to one, 1.e.: / /
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11.1 Principal Component Analysis

Transformation of the Coordinate System

With a principal component analysis (PCA) data is transformed from one coordinate system
Into a new one. The 1. new axis shall point in the direction of the highest variance of the
data. The 2. new axis shall be orthogonal to the first and again in the direction of the highest
data variance remaining, and so on. The idea behind this procedure is that data can often be
described best in directions of high variance and often can be neglected in directions of low
variance. The low variance directions typically represent just noise.

The example on the left illustrates this idea. The data distribution shows a strong correlation
between u, and u,. It can be assumed that u, and u, may depend on each other

e.g. U, = au; + nwith a= 0.7 and noise n. A PCA orients the __
1. axis in direction of the highest variance, 1.e., X; = 0.6/

u, +au, and the 2. axis orthogonally, i.e., X, = u, —au,. 82

If the assumed relationship between u, and u, is indeed u, o

true then x, = n and x, describes only noise and thus gj R

contains no information and can be removed (dimensionality .os : +
reduction). 0.8

_1 Iy 1 1 1 Il 1 Il 1 Il 1
1 -08-06-04-02 0 02 04 06 08 1
Ug
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WARNING: The data needs
to have zero mean!

11.1 Principal Component Analysis

Derivation of Principal Component Analysis (PCA)

Start with a p-dimensional space. The task of a PCA is to find new axes x; = [Xj; Xjp ... X;p]"
fori=1, 2, ..., p, while the 1. axis point in the direction of the highest data variance, the

2. axis in the direction of the second highest, and so on. All axes shall be orthogonal to each
other.

In the Nxp data matrix U all data is stored with respect to the original coordinate system:

u' (1) ui(l) up(l) o up(l)
ul'(2) u1(2) w2 (2) -+ wp(2) | +— 2. datapoint
U= : - ; : - '
W (V) wi(N) us(N) o ()
T T \N data points

2. old axis p dimensions

The scalar products u™(k) x are the projections of the k = 1, 2, ..., N data points onto an
arbitrary axis X = {X;, X, ..., X,}. If the data has zero mean (if not then the mean has to be
subtracted first) then the following expression corresponds to the squared distance to the
mean (which is equal to 0): (u(k) x).
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11.1 Principal Component Analysis

If we calculate this variance for each data point and sum them, we get the variance of the
whole data along the new axis x:

U Uz) =Wz 7@z - «T(N)z)"

2 2

= (" (z) + (" 2)z) +...+ (" (N)z)
We want to maximize this expression. However, we must prevent that the variance becomes
large just by shrinking the axis (and thereby generate large numbers). Thus the axes’ scaling

are restricted to a norm of 1:

ol =1

This constraint is included in the optimization. With A as Lagrange multiplier we achieve the
following optimization problem:
(Q@)T(Qi) + A (1 — QTE) —— max

4
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11.1 Principal Component Analysis

The solution of this maximization yields the eigenvalue problem:
U'U)z=xz

The eigenvector corresponding to the highest eigenvalue 4, is the 1. axis x,, the eigenvector
corresponding to the second highest eigenvalue 4, is the 2. axis x,, and so on up to the
smallest eigenvalue 4, with the p. axis x,. The eigenvalues of UTU are the squared singular
values of U and thus can be computed with a singular value decomposition (SVD). This can
be done to a extremely high accuracy without explicitly squaring the matrix U. These
eigenvalues all are positive and the associated eigenvectors are orthogonal to each other.

Gene H. Golub, 1932-2007  Gene Golub ‘s licence plate.
(www.wikepedia.org) Photo of Professor Kroonenberg of the University Leiden.

For fun...
Gene Golub is computer
scientist at Stanford University.

He has contributed more than . 8! | |

anyone else to make SVD the AT 1

most powerful and common tool W A ’.
St ;

“RLIFORNIA o) |

of modern linear Algebra (matrix
computation).
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11.1 Principal Component Analysis

Singular Value Decomposition (SVD)
SVD computes the following matrix decomposition of an mxn matrix U:
U=wsv'

If U has more rows than columns the following matrix dimensions arise:

- ) ) The marked red quadratic matrix in S
m contains the singular values of U on
nxn\ nxn its diagonal. They are identical to the
: ' U
diagls.. s, ... S square root of the eigenvalues of U "U.
051 5, ol They are sorted from large to small.

n mXxn

Therefore the matrix U can be decomposed in a sum of n outer products (each has rank 1),

whose influence becomes smaller through the decreasing singular values:
515, Sy

T T T
U = s1wyvy + S2wov5 + ... + Spw,, vy, T
m— VT
mit _ = 2
maximal rank = n |, T
W=(w; wy -+ w,) "
If the rank of U
Isr<
V= (Q1 vy - Qn) IS r < nthen wy w,,
Sr+1 = - :Sn:O' Wo

&\ utomatic Control University
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11.1 Principal Component Analysis

If U is quadratic (n = m) then its eigenvalues 4, and eigenvectors x; are given by:
QZ@‘ = Az’@@
If U is rectangular (n x m with m >n or m <n):

y. =Ug;
then x; is n-dim. but y; is m-dim., i.e., the mapping U changes the dimension. No eigenvalues
and eigenvectors can exist! But if one multiplies a second time with UT then one arrives in

n-dim. space again and it is possible to calculate the “squares” of the eigenvalues:
U'Ua,; = six,

These singular values s; correspond to the eigenvalues for rectangular matrices. They are the
“gains” of matrix U in its eigendirections. However, they are always positive.

U quadratic U rectangular
x; Ai; Z; Y, S 24
— U —— — U —=| U! —
University
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11.1 Principal Component Analysis

Example
1 2 37 = [-01013
4 5 6 -0.2486
7 8 9 -0.3958
10 11 12 -0.5430
13 14 15 -0.6902
= 35.1826 |

0.7679
0.4881
0.2082

-0.0717
-0.3515

-0.1013
-0.2486
-0.3958
-0.5430
-0.6902

-0.0183] - [[35.1826 0 0 .
0.5367 0 14769 O
-0.8133 0 0___0.0000

0.0896
0.2053

-[ -0.5193 -0.5755 -0.6318] + 1.4769 [

Dimension Reduction by PCA

-0.5193 -0.9755 -0.6318
-0.7508 -Q/O459 0.6589
-0.4082 0.8165 -0.4082

U has only rank 2 since
s; = 0 and thus the third
singular value does not
contribute to the rank.

\
0.7679 |-[ -0.7508 -0.0459 0.6589] + 0
0.4881
0.2082
-0.0717

| -0.3515

The PCA transforms data from one p-dimensional space into another p-dimensional space.
This for itself can be an advantage because the new data distribution can be numerically
better or easier to interpret. One step further is dimensionality reduction by PCA. Here all
axes with low variance (below some threshold) are removed. The underlying (implicit)
assumption is that these axes represent just noise. This is especially appropriate for extremely
high-dimensional space where supervised technique would be too complicated.
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11.1 Principal Component Analysis

Transformation

The columns of the matrix V contain the eigenvectors of UTU . They are also called the right
singular vectors of U. Correspondingly the left singular vectors of U are in the columns of the
matrix W and are identical to the eigenvectors of U U'. The data contained in the matrix U
can be transformed linearly into the new space by:

X=UV

For the transformation back we have to calculate from X to U :

U=XV'=XxV"

The last equality hold because V is unitary, i.e.,, VV=1andVVT=1 andthusV T ™=V 1,

In the case of dimensionality reduction only the most important axes are selected. They
belong to the largest eigenvalues of UTU or to the largest singular values of U, respectively.
Because a SVD sorts the eigenvalues according to their absolute values, this corresponds to
the first singular values.

Xred — QKred

University

u

of Siegen

&\ utomatic Control

11. Selected Methods in Signal Processing Page 278  Prof. Dr.-Ing,

Oliver Nelles



Original Dimensionality reduction to ? axes: Dimensions
1 2 5 10 20
T T T 7 = e H.; —_—
20 120 120 120 1 20 L' | 20 W et
= £ EF
40 | a0 1 o] - | 40 ___ 40 ’ | 0 'p /
60*:' .1 60 1 60 1 60 1 60} o = 1 607" ] |
80|, 1 80k 80 80 80| 1 80
100 - 1 100 ¢ 1 100t | 1 100t 1 100 1 100
120 1 120§ A 120} 1 120f | 1 120/ | - 120 .
10 20 30 40 10 20 30 40 10 20 30 40 10 20 30 40 10 20 30 40 10 20 30 40
2\ utomatic Control University
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11.1 Principal Component Analysis

Example: Compression of a picture

 Picture with 128x45 pixels is represented as a 128x45-dimensional
matrix where “0” stands for “black” up to “255” for “white” and
many grey shades in between.

« The most important 5-10 axes from a PCA already represent the
picture quite well. The singular values quickly decline to 0.

« Computational effort is high. This method is not used in praxis.

Size of singular values

16000
14000
12000
10000
8000
6000

4000
2000

-

_ 97% of |
the variance

0
0

5 10

15 20 25 30 35 40 45

4

10

10°

10°

| 97% of
the variance |

0 5 10 15 20 25 30 35 40 45




11.1 Principal Component Analysis

Example: Character Recognition

Characters A-Z with 5x5 pixels with
“0” = “black™ and “1” = “white”.

Each pixel corresponds to one

axis Uy, Uy, ..., Uys.

On each axis the pixel values (“0” or “17)
are entered, i.e., in each dimension only
values at 0 and 1 appear.

The 25-dimensional input space corresponds
unit hyper-cube. Data only appears at the
corners.

PCA with dimensionality reduction to 2 axes
X, and x, explains 44% of the data variance!
“A” /’R” and “W”/”N”/”M” lie closely
together. They are hard to distinguish from
the 2 features alone. For “X”/”0O” and “T”/”H”
and “A”/”’Y” the distinction is much easier!

11. Selected Methods in Signal Processing

Source: http://www.cs.mcgill.ca/~sqrt/dimr/dimreduction.html
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11.1 Principal Component Analysis

Difficulties with Dimensionality Reduction

The assumption that low variance axes are redundant and
can be removed can be wrong! A small variance point
towards a possible linear dependency but this is not
necessarily the case. An analysis based on input space
distributions only can never ensure this with certainty.
The output has to be considered in order to be sure.

For example for dynamic processes a strong correlation
of two subsequent outputs y(k-1) and y(k—2) occurs.
However, they are not redundant if the process is of
AR(2)-type as an example, that is it follows the equation:

y(k) = —a;y(k-1) — ayy(k-2) + v(k)
Although y(k-1) and y(k—2) are highly correlated (the

higher, the smaller the sampling time is) both carry
important information and are not redundant.

11. Selected Methods in Signal Processing
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4;Strongly correlated, but ,
Important information!. .
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11.1 Principal Component Analysis

Feature Selection versus Feature Extraction

A dimensionality reduction with PCA yield a feature extraction. This means that from a
many original inputs, say p, a smaller number of features, say q, are generated. However,
they may depend on all original inputs. Therefore the next processing step requires are
smaller number of inputs/features and is simpler to perform. But none of the original p
measurements can be discarded.

A more radical approach is feature selection. Here the task is not only to reduce the

dimensionality but also to remove inputs so that they don’t have to be measured anymore.

This simplifies not only the further processing but also the overall effort by requiring fewer

Sensors.

U —
U

A 4

up——>°

Feature
extraction

—> X1

>X2

. Xq

Each output x; can depend on all inputs u;!
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q

Each output is identical to one input!
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11.1 Principal Component Analysis

Application: Classification

A frequent application of PCA is data pre-processing, especially for dimsnionality reduction

In classification. The task is to correctly map measurements to r different classes. This can be
done with the original measurements u,, Uy, ..., U,or with features x;, X,, ..., X, extracted from
these measurements. Usually g << p which means that the classification problem becomes of

much lower dimensionality.

In the A-Z-character recognition example we have r = 26 classes, p= 5x5 = 25 original inputs

and only q =2 features (although for a higher classification accuracy than 44% we would

require realistically 3-5 features).

For a coin-operated machine we would have to distinguish between r = 9 classes (1c, 2c, 5c,
10c, 20c, 50c, 1€, 2€, “no €-coin’). Possible inputs are

« Weight, color, diameter, thickness, reflectance, ...

U —»

»
>

[

Uy — Feature

: extraction
Uu———

p
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11.2 Clustering Uy

Basics of Clustering

Like PCA Clustering operates on the input data. The task is to
find groups (clusters) of data points. These groups can be of
different shapes and sizes. Depending on the method, a special

prototype is defined that defines how a cluster should look

A
like. In two dimensions examples are: hollow or filled circles Uy

or ellipsoids, linies, ...

A similarity measure is defined as a loss function. The similarity
of each cluster is evaluated with this similarity measure. The
famous K-means clustering for example utilizes the following

~ v

v

type of loss function:

K
J=3 > llu(@)—¢l* — min

j=14€S; -

where K is the number of clusters and ¢ € S; runs over the data points belonging to the

cluster j whose center of gravity is closest (in the Euclidian sense).
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11.2 Clustering

K-means clustering tries to find K filled circles (or spheres) by minimizing the quadratic
distances of all data points to the center of their associated cluster.

Instead of looking for circles (spheres) is can be easily extended to ellipses (ellipsoids) of a
certain shape, i.e., a given covariance matrix 2. This can be done by replacing the Euclidian
distance metric with the so-called Mahalanobis distance.

Z~ unit matrix Z'= diagonal matrix 2= sym. pos. def. matrix
i i A u A u A
Lines with Uz 2 2
identical
Mahalanobis
distance
U, U Uy

An extension to higher dimensions is easily possible.

It is possible as well to look for ellipse (ellipsoids) of variable covariance matrix (shape).
However, this require more complex algorithms as design by Gustafson and Kessel or
Gath and Geva.
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11.2 Clustering

K-means Clustering

The K-means algorithm works as follows:

1.
2.
3.

4.
S.
6.

Choose the number of clusters K.
Initialize the cluster center with randomly selected data points.

Assign each data sample to the cluster with the closest center (according to the chosen
distance metric).

Calculate the center of gravity for each cluster (averaging the associated data points).
Place the new cluster centers at those centers of gravity
If (at least) one cluster center has moved then go to step 3 otherwise STOP.

It can be shown that this algorithm minimizes the loss function (on the previous slide).
However, is can converge to a local optimum. Because the initialization is random, different
Initialization can be tried out and the best result can be selected.

A difficult “tuning factor” is the choice for the number of clusters K.

&\ utomatic Control University
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11.2 Clustering

Examples for K-means Clustering

Interpretation of the figures:

Data point are marked by dots.

The old cluster centers are marked by circles.

The new cluster centers are marked by crosses.

The color of the data points represents the association to the cluster of the same color.

Observations:

11. Selected Methods in Signal Processing Page 291  Prof. Dr.-Ing,

Convergence is very fast; only a few iteration are needed.

The global minimum of the loss function is reached in most cases.

The sensitivity with respect to the initialization is low.

For reasonable results the number of clusters has to be chosen in the right manner.

Normalization of data is important because some dimensions can be dominant
(and others almost irrelevant) if axes are scaled differently.
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11.2 Clustering

K=3

5 Iterations until convergence

10 10 T T 10 T T
1. Iteration 2. Iteration
o . al . 8r- L .
6r s. :....:.. H ’ . 6 @ .::Q.x. ' 6r g’ o. .'.o.x. .
. . "t . . * -‘ o *
a- ;-'b'-: ': a- ar :- '.: .:
[ O [
2 ° 2 X 2k (o)
Tetee slet 3
or I ,‘:-'. e or PN A or : "5’
2 2 0 2 4 2 2 0 2 s 4 2 0 2 4 6 8
10 T T 10 T T 10 T .
3. Iteration 4. Iteration 5. Iteration
8- ° 8k d sl .
Ok " B e
6 * v 6 *e 6 ®e 3 . .
R R
4 . " 4r 4r - e
2t 2r 2r R
ol . ol Q. ol R
S ° .s- S ° .g- o . .g.
2, > o 2 4 2 2 0 2 8 4 2 0 2 4 6 8
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11.2 Clustering

K=3 3 Iterations until convergence

Fast convergence due to lucky initialization

10 T T 10 T T 10 T T
1. Iteration 2. Iteration 3. Iteration
8r ° 8r 8- L4
. :..'.,.(?. . : ..)9 . . -
ar o .. ar - e ar -
2r 2r oL
oF . @' or Q' 0 Q'
° }- ° "- (4 ° "-
2% 2 0 2 4 6 2% 2 0 4 6 s X 2 0 2 4 6 8
K=3 3 lterations until convergence Bad result due to unlucky initialization
10 T T 10 T T 10 T :
1. Iteration 2. Iteration 3. Iteration
8r ¢ 8+ 8- °
PQ e ] e
i XE s o L | @ s
i ."-. A "-. . A ."-.
2k )9 2k . 2F ° .
:- °, . Q:- ° . Q:- "'o .
or P "?. or P ";é. 0 e ."iﬁ'
2 2 0 2 4 2 2 0 4 6 s 4 2 0 2 4 6 8
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11.2 Clustering

K=3

6 Iterations until convergence

Scaling of the y-axis is factor 100 larger

1000 T T 1000 T T 1000 T T
1. Iteration 3. Iteration 6. Iteration
8001 L 8001 L . 8001 ‘
A T R SR
600L- - X Q" 600 N SR A 600 °, P
o, K. : @
400 o 400 w ° 00e® 400 w ° e
200 x 200 200 o
0 I .' .:’.. 0 | .'x.g 0 I .'Q’.. :
S %o 4 4 .s. 4 M .s.
200, 2 0 2 4 6 s 209 2 0 2 4 6 s 2% 2 0 2 4 6 8
K=3 10 Iterations until convergence Scaling of the x-axis is factor 100 larger
10 T T 10 T T 10 T T
1. Iteration 3. Iteration 10. Iteration
ol o ] ol o ol o ]
o'box : -8 8
4r x L °0e’ 4r Q o 0’ 4r * °0’
2; L] 2; L] 2; .®
o'..'.. o'..". '.'.'-o
ot ':.' ot ':.' ot ':.'
-4 -4 -4
400 200 0 200 400 600 800 400 200 0 200 400 600 800 300 200 0 200 400 600 800
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11.2 Clustering

K=2

3 Iterations until convergence

Solution is stable, almost independent of initialization

10 T T 10 T T 10 T T
1. Iteration 2. Iteration 3. Iteration
8r ° gk . sl .
N "':...0. . .’: K :':-°:.' . .;. K :':- :.° —
6; O‘" .x ‘ 6; .l @ ‘ 6; ) .l 9" ‘
A ."'. A o-" A :-"
L X ol O 2t
| .': .:c'. | .:')S'..: | .:Q.'.:
:.- :.- :.-
2 2 0 2 4 2 2 0 2 4 6 8 2 2 0 2 4 6 8
K=4 Many different solutions dependent on the initialization
10 T T T T 10 T T T T 10 T T T .
1. Solution, last iteration 2. Solution, last iteration 3. Solution, last iteration
8r ¢ 8t . 8l °
A A e XIS A -2
6f DR ' & 6f - )Q i B
ar :-Q.':..: ar 4r :"‘iej:":
2r 2 2 ° .,
i i Q. ;s . @
4 :.. o
2 2 0 2 4 2 2 0 2 4 6 8 2 0 2 4 6 8
. . . &\ utomatic Control University
11. Selected Methods in Signal Processing Page 205  Prof. Dr-Ing M
°hatr°°\
of Siegen

Oliver Nelles



11.2 Clustering

Fuzzy Clustering
The loss function known from K-means clustering can be re-written (extended):

K K N
— N el]]2 — | N ]2 :
T=32 D Nl = ell* = 303 pugluti) — 51> — min
Jj=11€S§; j=1 i=1
The second sum runs over all data points (not only those belonging to a single cluster j).
K-means is a special case of fuzzy K-means with

| 1 ifdatapoint belongs to cluster |
Hii =Y 0 ifdata point does not belong to cluster |

The variable z; denotes the degree of membership to a cluster. A value of “1” means this
point fully belongs to that cluster. A value of “0” means it doesn’t. The degree of
membership 4; can be extended from a binary values to a real value between 0 and 1. Each
point belongs to each cluster to a certain degree. They have to sum up to 1. A degree of
membership of 0.51 to cluster A is similar to 0.49 to cluster B and would yield similar
results. In the classical K-means it is binary and the point would fully be associated with
cluster A und not at all with cluster B. Therefore, fuzzy clustering is less prone to bad
Initialization.
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11.2 Clustering

Clustering for Classification

Like PCA clustering is suitable for data pre-processing. It is
often utilized for solving classification problems. Instead of
directly feeding the input features to the (supervised) classifier,

cluster
they are clustered first. With the help of these cluster, the = classes e,
classifier has an easier task to perform the classification. 1 class 1 o
The underlying idea is that a certain distribution of the data - class 2
reflects the associated classes. Often this is the case. However, :
this is not guaranteed. Therefore an unsupervised method can | w
go astray. , . ,
| cluster
, #classes ety
° class1 : class 1 |
?l ) class 2
I T e S
2\ utomatic Control University
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Chapter 6: Relevant MATLAB Commands MATLAB ‘)

PCA:

[COEFF,SCORE] = princomp (X) ;!

Singular Value Decomposition:

[U,S,V] = svd(X);

Fuzzy K-means Clustering:

[center,U,ob]j fcn] = fcm(data,cluster__n);2

1 . Statistics Toolbox

2 : Fuzzy Logic Toolbox
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5. Measurement Errors
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5.1 Measurement Errors

Error Definitions

The absolute error e of some measurements is the difference between the displayed or
outputed value y and the (typically unknown) true value Wert y,:

€C=Y— Yuw
The relative error e, is absolute error divided by the true value y,, and commonly is given in
percentage:
_ Y —Yw
Yw

The true value y,, is unknown in practice (otherwise no measurement would be necessary).
With additional effort it can be determined with high accuracy:

er

» Measurement with a precision instrument.
»  Comparison with a measuring standard.
Often the quadratic error e? (absolute or relative) is utilized for optimization as an criterion.

Many reasons for this exist. An important one is that the resulting optimization is particularly
easy to solve and manage (least squares).
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5.1 Measurement Errors

Systematic and Random Errors

Two error classes have to be distinguished:

Systematic errors: Reason and kind of the error action are known. With a higher effort in
the measurement system an improvement and/or compensation would be possible, at least
In principle.

Examples: Temperature influence with strain gauges. Nonlinear characteristics.

Random or stochastic errors: Repeated measurements under identical conditions yield
different results. Typically the errors are different in size and sign (not necessarily, see
quantization errors). The measurement values scatter! In contrast to systematical errors,
random errors can not be predicted or compensated. With averaging (calculating the mean
value), however, their influence can be reduced. The result will improve in quality
typically with 1 /\/N where N is the number of trails that are averaged.

Examples: Brownian Motion. Fluctuations in material composition.

If we look very closely, most/all errors are of systematic nature. We have limited resources
and cannot afford an arbitrary effort; we do not have infinite insights. Therefore we treat all
errors that seem to be random as random! Typically many independent small systematic
Influences seem to be of random nature.

&\ utomatic Control University
5. Measurement Errors and Statistics Page 302  Prof. Dr.-Ing. -
Oliver Nelles m

of Siegen



5.1 Measurement Errors

Error Causes

« Disturbances: It has to be distinguished between internal and external disturbances:
— Internal disturbances affect the sensor itself, e.g. wear.
— External disturbances come from the outside world, e.g. temperature influences.
By accepting a high effort in the choice of a precision instrument and by changing the
environment (e.g. climate chamber), disturbances can be kept to a minimum but they can
never be annihilated.

» Observation errors: Error induced by the observer himself, e.g. by making a mistake
during the measurement, wrongly reading the display, ... With care such errors can be
avoided.

« Feedback error: Influence of the sensor on the object to be measured, e.g. the temperature
of the thermometer changes the temperature of the body that shall be measured. The
amount of such feedback depends on the measurement method. Radiation-based
temperature measurement avoids such an unwanted feedback. Physics tells us some effect
can never be completely eliminated (Heisenberg’s uncertainty principle) but on a
macroscopic level it can be negligible with the appropriate method.

» Non-ideal characteristics: The measurement system can possess static and dynamic
errors and with a digital output it possesses quantization errors as well.
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5.1 Measurement Errors

Non-ideal Sensor Characteristics

« Static errors: In the ideal case, the characteristics of the sensor is linear/affine.

In practice nonlinearities distort the result.
Example: quantity = temperature, output = voltage:

A

T[’C]| 100 | -50 | O | 50 | 100 10

upvi] 1 | w7 | 3 | 6 | 10
1
« Dynamic errors: If the measured quantity changes over ~100

time, the sensor follows with a time constant and delay.  T°c]|

If we do not wait long enough until the measurement

U [V] nonlinear

linear/
affine

100 T[ C]

values reach steady state (settling time) a dynamic error

OCCuUrs.

« Quantization errors: During the A/D conversion the U [V]
discretization causes errors in time (through sampling) and
in amplitude (through quantization). The latter corresponds
to a stepwise characteristics. The maximum error is eq/2.

5. Measurement Errors and Statistics Page 304
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5.2 Accuracy Rating

The quality of measurement devices in practice is often characterized with their accuracy
rating or guaranteed minimum accuracy. With this declaration a manufacturer guarantees
that possible measurement errors within the specified conditions are limited to certain interval.

The accuracy rating declares the maximally to expect Typical accuracy ratings:
error in percentage of the instrument range. 0,1,0,2;05;1;1,5; 2,5

Example: Voltage measurement, accuracy rating = 0,5
a) Range: 0V —100V. Display: 7V. oV 100V
max. error = 0,5% - 100V =0,5V.  guaranteed interval = 7V £ 0,5V. \/

b) Range: 0V — 10V. Display: 7V. oV 10V
max. error = 0,5% - 10V =0,05V.  guaranteed interval = 7V £+ 0,05V.

Recommendation: Always measure in the upper third of the instrument range!
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5.3 Error Propagation

Problem

Commonly the quantity to be measured cannot be measured directly but has to be calculated
from other measurements:

Examples:

a) Determination of electrical power from voltage and current:

P=UI
b) Determination of speed or velocity from distance and time interval:
S
V= -
t

c) Determination of force via resistance change dependent on length, area, and specific
conductivity:

l :
R = il with A = 7r?

How do errors in the measurement of U, I, s, t, I, A (or r), p affect the final results?
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5.3 Error Propagation

Gaussian Error Propagation for Systematic Errors

The requested quantity y can be deducted from the measurement values x;, i1 =1, .., n, as
follows:

y= f(z1,22,...,2Ty)

The errors of the single measurements x; are denoted by Ax;. This yields the following
systematic error accumulation for the final output y:

of of af
= e Axq + ax2Aa:2—|—...—|— aanajn

Ay

This equation directly is obtained from the Taylor series expansion of the function f, in which
all higher than first order terms (linear) are neglected. Thus it is approximately correct if the
errors are small, i.e., 4x; is close to zero.

In the above equation, measurement errors can cancel or attenuate each other because they
might be of opposite sign. Of course this requires knowledge about the right sign of 4x; and
the slope of f() and therefore the systematic over- or underestimation.
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5.3 Error Propagation

A different situation exists if just the maximal magnitude of errors can be assessed. The
following worst case assessment is obtained.

Gaussian Error Propagation for Maximal Errors:

af of of
y= 3£L'1 " 356'2 8xn '
Examples:
a) Power measurement: p — (7]
a(UI) o(UI) e
AP = S AU + SE AT = TAU 4 UAT P U "I

If for example the voltage is measured too small (4U < 0) and the current too large

(41 >0) (and U > 0, | > 0), then these error can (partly) compensate each other. If
nothing is known about the sign of the errors and only their magnitude can be assessed,
then a maximal error assessment has to be made in which the individual errors

accumulate.

University

u

of Siegen

&\ utomatic Control

5. Measurement Errors and Statistics Page 308  Prof. Dr.-Ing.

Oliver Nelles



5.3 Error Propagation

Examples:
b) Speed measurement: v = ;
os/t) \ . Os/t) o, 1 5 Ao Ae Ap
Av = = —-As — S At _ Qe
YT T s As+ ot P - ; ;

In this example a (partly) compensation happens if both, the distance and time interval,
are over- or underestimated because of the “— sign. Notice that the second term can
become extremely large if the time interval t is chosen very small, i.e., then the speed
measurement is very sensitive with respect to measurement errors in time.

c) Force measurement with strain gauges: R — % p  with A = mr?

lp
R=-
r?

lp ! AR Al Ar  Ap

AR = —Al -2—Ar+ —A = — 2
7'('7“2 3 T+7T7“2 P R [ T i p
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5.3 Error Propagation

Gaussian Error Propagation for Random Errors

The quantity y to be measured depends on the input quantities x;, i =1, .., n, as follows

y = f(x1,22,...,2p)
The standard deviation of the individual input factors x; shall be given by s,;. Then the
standard deviation of the output quantity y becomes:

B of 2 af 2 af 2
Sy = \/(axl ) + (8:132 ) + ...+ (8_%an\)
Example: Averaging of N measurements with equal standard deviations s,
1 af 1 of 1

y:N(x1+x2+—|—xN) — axl N axN _

\/(Sx)2+ (Sx)2+ \/NSO% o
_) f— _— —_— . p—
%y N N YT N

This is a universal statistical law! 100 times more measurement values improve the quality
by a factor of 10 by reducing the standard deviation of the output y correspondingly.

yA
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5.3 Error Propagation

Approximation for Random Errors in Practice

Because it is difficult to estimate the standard deviations s,; for all quantities x;, the following
formula allows to assess the mean error of the output roughly (strictly speaking this formula
IS not exact): YA

5 2 S 2 5 2
Ay = —fol + —fAZBQ_ + ...+ f Axy,
oxy 09 dxn

The standard deviations s,; are approximated by |4x;| roughly!

Difference of the effect of systematic and random errors

Systematic errors Ax; = Ax, i=1, ..., N, add up:
y=x1+22+...+zny — Ay=NAz

Random errors 4Ax; = 4x, 1 =1, ..., N, partly compensate each other:
y=x1+To+...+xNn — Ay:\/NAa:
Therefore averaging yields benefits for random errors (smaller scattering)!
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5.4 Histograms and Probability Density

Histograms

If we measure the same quantity N times under identical conditions, each outcome will be
different due to random errors. In order to get an overview on the quality of the
measurements and the size of the random errors, it makes sense to plot a histogram. This
divides the measurements in intervals of size Ax. The number of measurement values that fall
In the interval i are called frequency of the observation (German: “absolute Haufigkeit”)
H.. Each measurement falls in exactly one interval (with n, intervals):

nr
Z H, =N Recommendation for the number of intervals: ;7 ~ vV IV
=1

The relative value of H; (Ger: ”relative Haufigkeit”) p(z)t
h; describes the fraction of H; that falls into interval i: 3 _

H;
hi = ~ 0,2 -

The relative frequencies of observations sumupto 1: (4 |

ihizlzloo%

1=1
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5.4 Histograms and Probability Density

Probability Density Function (PDF)

With a histogram it is easy to see how the measurements are distributed, e.g. how strongly
they scatter around their mean value z. If we increase the number of measurements N and at
the same time increase the resolution by making more intervals n, smaller and smaller by
decreasing 4x, then the histogram converges to the probability density function (pdf):

p(z) = lim (Nlignoo h(w)) Itis: /OO p(z)de =1

— 00
The density p(x) is a continuous and no stepwise function. We can calculate the probability
of a measurement to fall into a certain interval (X; X,] by:

T2
P(x) <z <m9) = / p(x)dx p(z)]
. o _ 03—+
The true density p(x) according to which the
measurements are distributed is usually unknown. 0,2 +
Typically, realistic assumptions are made from 01 1

Insights in the first principles and a histogram. In
most cases a Gaussian distribution is assumed if nothing o1 o % -
contrary is known. Here is why... (see next slide)

v
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5.4 Histograms and Probability Density

Normal Distribution (Gaussian)

A normal distribution with mean , and variance o, is defined as follows:

| 1 (x—,ux)2 pp($)
2 o max
p(:c) - V2o ©

It is of highest theoretical and practical
importance. On the one hand, many other
distributions can be approximated by the
Gaussian (binomial-, t-/student distribution).
On the other hand, the central limit theorem of statistics
builds the key fundament for the essential normal distribution. It says that the sum of several
Independent random variables follows approximately a normal distribution. This is truly
remarkable because it makes (almost, there are some minor exceptions) no restrictions on the
distribution of each random variable!

In practice, most random errors are caused by many tiny effects that sum up. Therefore,
almost all random errors are nearly Gaussian distributed. This explains why the Gaussian
appears so often and is so well known.

A

0.68 Priax—+-

»
|

Mg — Ox Mz Mg + Og v

University

u

of Siegen

&\ utomatic Control

5. Measurement Errors and Statistics Page 314  Prof. Dr.-Ing.

Oliver Nelles



5.5 Estimation of Mean and Variance

Fundamentals of Estimation

An estimation in the statistical sense is the determination of one or many, in general n,
quantities (parameters) by utilizing N measurement data. Typically the number of estimated

parameters n is significantly smaller
than the number of available data N:

n<<N

N data

—
—
—
—>

Estimator

n parameters

Therefore an estimation can often be interpreted as a type of data reduction or compression.
Common examples are the estimation of the:

« mean value of the measurement data (n = 1).

« standard deviation (scattering) of the measurement data (n = 1).

» auto- or cross-correlation function of a time signal (n = large).

« coefficients of a regression line (n = 2) or polynomial (n=3, ...).

The estimation results depend on the actual measurement data. If the same quantity is
measured twice (even under identical conditions) we obtain different results and thus
different estimates, because the random disturbances (noise) have different values.
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5.5 Estimation of Mean and Variance

Properties of an Estimator: Variance

The estimation result depends on the random fluctuations  »(6) N =900

of the disturbances which are modeled as random variables.
Thus the estimation will yield different results for each
data set. The estimation result is distributed according to

an (unknown) probability density, e.g. an Gaussian normal
distribution

The quality of an estimation obviously is high if the estimated
values are close to each other. This is the case, if
the pdf is narrow, i.e. has a small variance. The smaller, the better.

A further demand on the properties of a good estimator is that the pdf becomes smaller the
larger the amount of data N becomes. For many estimators indeed the variance follows the
law:

2 1 1
O . ot: ~ — O acts ~N —
estimator estimator
N v N

A data set 4 times the size reduces the scatting by a factor of 2!
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5.5 Estimation of Mean and Variance § : estimated parameter
902 true parameter

Properties of an Estimator: Bias

A

N =900

In the previous slide is was assumed that the mean value  P(9)
of the pdf is identical to the true (but unknown) value 4

of the estimated parameters. If this is the case, the estimation

IS without bias (unbiased):

E{8} = 6,

This is a desirable but not necessary property. Furthermore it
Is often traded for other advantages like a low variance!
If the estimation is not unbiased it possesses a bias (systematic estimation error) :

Bias = E{0} — 6

If the bias (and the variance) tend to 0 for N — oo, then we call this a consistent estimation:

lim é = 90
N —oo
. . 2\ utomatic Control University
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5.5 Estimation of Mean and Variance

Estimation of the Mean

Random errors can be reduced by averaging, i.e., calculating the mean value of several
individual measurements. This is the simplest and most straightforward way to effectively
lower scattering and noise influence. The estimation of the mean value thus plays an
important role. We clearly distinguish between the true (but unknown) mean , and the
estimated mean value 7z (also called sample mean or empirical mean) .

N
1
sample mean: 7 = — Z;x(z')
1=

It can be shown that the sample mean approaches the true value (unbiased) if N becomes large
1 — 1 o 1 1
E{z} =E {N ;x(w} =~ ;E{x(w} =~ ;Nw =~ Vha = pa

It can also be shown that for statistically independent data the variance of the sample mean
estimation decreases for increasing data sets N, such as [4]:

02 = E{(Z — puz)*} = 02/N bzw. o0z =0,/VN
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5.5 Estimation of Mean and Variance

Estimation of the Variance

The variance &, of the data is also an important quantity. It determines how widely the data
IS spread or scattered. The estimation of the data variance (sample variance or empirical

variance) can be performed by: . is unknown!
4 !

1 N e T 1S Its estimation!
sample variance: Si - 7 Z[x(z-) _ .
=1

The true mean «, is usually unknown und is replaced by its best estimate Z. Because of this
the sum is divided by N-1 and not by N. One degree of freedom (dof) was already exploited
or exhausted (figuratively speaking) for the estimation of this mean value and is not available
anymore for the variance estimation. Only N-1 dof are remaining. It can also be shown
theoretically that due to the denominator N-1 we have an unbiased estimation [4]:

N N 2
E{s2} = N1 (02 —02) = N1 (03 — %) = 0> — unbiased!

The variance of an estimate can be used for assessing the reliability of an estimate itself. It is
required for example for determination of the confidence intervals that indicate the
reliability of the estimate.
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5.6 Confidence Intervals

Trust in a Measurement

A measurement or an estimated mean from many measurements is practically almost useless
If its reliability is unknown. If its reliability is low then we cannot trust any information.
Different information sources can be obtained with different reliabilities. A prerequisite for
sensor fusion, for example, is some knowledge about their reliability. How can we quantify
this?

Confidence Interval

The trust or confidence in an estimate can be quantified based on its probability density
function (pdf). The pdf allows to calculate the probability that the true value lies within some
interval. Typically a symmetric interval around the mean is considered. Most pdfs also have
their maximal value at their mean. The probability that the deviation from the mean is

smaller than ¢ is:
490

P(,u—5<as<,u+5):/ p(x)de = 7%
u—9o

For any interval size (width) J'we can calculate the associated probability. It is called a
confidence interval.
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5.6 Confidence Intervals

Confidence Interval for Normal Distributions

The “width” of a pdf is determined by its standard deviation. Therefore it makes sense to
measure the width of confidence intervals +J'in terms multiples of the standard deviation.
For normal distributions the following confidence intervals are common:

Interval Probability (1-2) 0.4l
po —log <2 < py + 1oy 68,27% 035
e — 20, < < iy + 20, 95,45% o
Uy — 30 < T < g + 304 99,73% b Oolz
po — 40y < T < iy + 4oy 99,99% 0.1

0.05;

The associated probability values 1-«are called . —
confidence levels. The probability of error is denoted by y Z o ;3 ! ) oy
« and typically chosen as a small value like 5%, 1%, or

even 0.1%. The less risk can be accepted the more multiples of the standard deviation must
be accounted for. Such considerations are also part of any quality control system where error
rates like 1 in 10.000 directly correspond to a multiple of o.
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5.6 Confidence Intervals

Decreasing the Standard Deviation
The quality of the estimator depends on the standard deviation that can be decreased by:

« Improvement of the quality of the measurement: Because we need to reduce random
errors this is usually a complex and expensive task. Typical approaches are based on the
Isolation of environmental disturbances coming from temperature, air pressure, vibrations,
radiation, etc.

« Averaging over many measurements: This is the typical approach to reduce random
errors. The measurement is carried out several times and its average result is utilized.
We know already that calculating the mean of N measurement values reduces the original
standard deviation of the individual measurements o as follows:

Ogx

VN

This means it is possible, in principle, to decrease the standard deviation of the mean to an
arbitrary accuracy. We just have to measure often enough! To double the accuracy we
have to measure 4 times as many values. At the end, this is just a matter of cost and time.

O —

&\ utomatic Control University
5. Measurement Errors and Statistics Page 322  Prof. Dr.-Ing. -
Oliver Nelles m

of Siegen



5.6 Confidence Intervals

Confidence Intervals for Sample Mean With Known Standard Deviations
For random variables following a normal distribution, the confidence interval is
T —cop, <x<ITH+ co,

where the factor ¢ corresponds to the requested confidence level 1-« or error probability «;
e.g. ¢ = 3 for a confidence level of 99,73%.

Instead of measuring the value x a single time, the mean z can be calculated from N measure-
ments. Then we replace x with z and its standard deviation decreases accordingto 1/v N :

c=1: 68,27% confidence interval
c =2: 95,45% confidence interval

c =3: 99,73% confidence interval

But this formula typically cannot be applied directly because the standard deviation o, is
unknown. The next best thing to do, is to approximate it with the square root of the estimated
sample variance s,2. However, by using this approximation we make an (usually tiny) error.
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5.6 Confidence Intervals

Confidence Intervals for Sample Mean With Unknown Standard Deviations

Because the estimated sample mean s, is only an approximated value of the (unknown) true

standard deviation g the original confidence interval discussed above is not exactly accurate.
In order to take this uncertainty into account the formula for the confidence interval has to be
corrected. This can be done by replacing the normal distribution by the slightly wider
Student’s t-distribution. The t-distribution accounts for the additional uncertainty caused by
the possible estimation error of the estimated instead of the true standard deviation. It thus

depends on the number of measurements N, the so-called

degrees of freedom (dof). If the data set is huge 04
(N — o), the estimation error for s tends to zero, 0.3
then Student’s t-distribution converges to the 03
normal distribution. However, for only a few () 0(')22
measurements it becomes fatter at the outside '

making room for more uncertainty (fat tail!). This 0::

yields wider confidence intervals.

t-distribution
N=10

N=3

t-distribution

normal
distribution
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5.6 Confidence Intervals

Confidence Intervals for Sample Mean With Unknown Standard Deviations

For random variables that follow a t-distribution the formula for the confidence interval is

basically unchanged:
/

Sy S

<r<zT+c
VN

estimate for o,

but the factor c is larger than for a normal distribution

(see table). For large N the factor c is hardly

changed. But for small data sets (small N) N | 1-=6827% | 1-a=9545% | 1-a=99,73%
it becomes significantly bigger.
g y gg 5 1,11 2,65 5,51
The standard deviation is not known like for 10 1.05 228 3,96
the normal distribution but estimated as follows: 20 1,03 213 3.42
50 1,01 2,05 3,16
N
1 [ <> _]2 100 1,00 2,03 3,08
Sy = —— T\1) — X
o N -1
1=1 200 1,00 2,01 3,04
= Gaussian distribution| « 1,00 2,00 3,00
5. Measurement Errors and Statistics Page 325
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5.6 Confidence Intervals

Example: Confidence Intervals

A voltage meter yields measurement values that are corrupted by random errors. These errors
come from an accumulation of many small disturbances which are not known in detail and
whose sources are not studied. Therefore we can assume the overall error follows a normal
distribution. From a long history of this voltage meter its behavior and accuracy are well
known. The variance of the disturbance is determined to be 6,2 =0.01 or 5, = v/0.01 = 0.1.

a) The voltage meter displays: U =7 V.
In which range will the true voltage be if we accept an error probability of maximal 0.3%?

— Requested confidence level = 99.7%. For a normal distribution this corresponds to ¢c=3.

po —COp < T < gy +cop — (7—3-01)V<ax<(7T+3-0.1)V

— 6.7 V< <73V

The formula for known standard deviation is used, i.e., the confidence interval is
calculated from the normal distribution because the standard deviation is well-known
from a previous history of the instrument. (Or we assume N — oo for the estimate).
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5.6 Confidence Intervals

Example: Confidence Intervals

b) The results in example a) does not fulfill our accuracy requirements. Therefore we decide
to carry out 10 separate measurements and calculate its mean (average). This should get
us closer to the true value than the above interval.

U[V]: 71 70 72 67 69 70 66 72 71 7.1

Sample mean: z = Zx 69 9V =6.99V

. 0.1
Standard deviation of the sample mean: oz = O _ = 0.0316

J10  3.16
—  (6.99 —3-0.0316) V < = < (6.99 + 3- 0.0316) V

— [6.895V <2 < 7.085V

This result is more accurate by a factor of 3.16 for the same error probability of 0.3%.
Even more measurement would improve the accuracy further.
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5.6 Confidence Intervals

Example: Confidence Intervals

c) We repeat the experimental setup from b) with a new instrument because the old one is
broken. Thus a long history of the instrument’s accuracy is not available. We do not know
(as before) that the variance 1s 0.01. Therefore we have to estimate the instrument’s
accuracy by calculating the standard deviation of the 10 measurement values

10

1
Sample standard deviation of the measurements: s, = 5 E [z(i) — 6.99]2 = 0.2
=1
. S 0.2
Sample standard deviation of the mean: s; = —— = = 0.0632
P T /0 3.16

Factor ¢ for the t-distribution with the confidence level of 1-a = 99.7%: ¢ = 3.96

—  (6.99 —3.96-0.0632) V< x < (6.9943.96-0.0632) V. — [6.734V <2 <7.240V

The larger interval range has two reasons:

(i) factor 2 bigger standard deviations of the measurements (instrument is worse),
(i) factor 1.32 (3,96/3) bigger c-factor, because we need the t- not the normal
distribution due to only estimated instrument quality.

University

u

of Siegen

&\ utomatic Control

5. Measurement Errors and Statistics Page 328  Prof. Dr.-Ing.

Oliver Nelles



5.6 Confidence Intervals

»Six Sigma (60)*“ Quality Management System

This quality control management system was introduced in the mid 1980s by Motorola and
since then has been adopted by many companies. It became particularly famous due to the
introduction within General Electric (GE) by its CEO Jack Welch who made it a great
success and the name “Six Sigma” became quite well-known.

The idea of Six Sigma is to reduce tolerances in a way, that the short term standard deviation
becomes so small that the failure rate corresponds only to 6 = quality of 1 ppb (parts per
billion). According to expert knowledge, long term influences (mean changes slowly over
time due to wear etc.) already cause approximately +1,54. Thus the final quality will be in
the range of 4,50 = quality of 3,4 ppm (parts per million).

The implementation of “Six Sigma” is not only done in manufacturing. Rather all areas of a
company are required to deliver a high quality level. An important feature of ”’Six Sigma” is
an inherent feedback control. Quality is permanently measured and deviations from the
required numbers cause control actions. The five main steps in “Six Sigma” are:

Define. Measure. Analyze. Improve. Control. (DMAIC).

The statistic evaluation plays an important role in “Six Sigma”.
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Contents of Chapter 6

6. Static and Dynamic Behavior of Sensors
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6.1 Overview

Measurement errors have their reasons commonly in one or more of the following
issues:

1. Nonlinear static characteristics of the instrument.

2. Dynamic transfer behavior of the instrument.

3. Noise superposes the desired signal.

Against these error sources counter measures can be taken that eliminate or at least
reduce the error:

1. Compensation of the nonlinear distortion.
2. Compensation of the dynamic lag or waiting for the signal to settle (dynamics has faded).

3. Filtering to suppress noise.

Even if these counter measures are not completely successful or sufficient it is important to
understand their effects. Only this allows one to assess the errors appropriately.

&\ utomatic Control University
6. Static and Dynamic Behavior of Sensors Page 332  Prof. Dr.-Ing. =
y Oliver Nelles m

of Siegen



6.2 Static Behavior of Sensors

Linear Characteristics

The static characteristics between the input x and the output y can be described by a function:

y = f(z)

In sensorics we are primarily interested in the relationship between a measured quantity X,
e.g. temperature, pressure, or displacement, and the yielded or displayed output y of the
instrument, e.g. a voltage between OV and 10V.

In the ideal case, this characteristics is linear, i.e., it exists a proportional relationship
between input and output:

y=kzx
For converting between input and output (or back) only the N
proportionality constant k is necessary. It is independent of

the operating point (OP). This is also true for the almost as
simple affine relationship that includes an additional offset: k/ k

v

y=kx+ ko -
By a simple transformation of the axis § = y — kg /
it can be transformed in the linear form 7 =k »
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6.2 Static Behavior of Sensors

Advantages of a Linear (Affine) Characteristics
« Easy to understand and to handle.
« Described by one (two) parameters: k (and k).

« ldentical sensitivities (slopes) in all operating points.

Life and Dead Zero
In measurement techniques the representation of the origin is practically important:

» Dead Zero: If the output y =f(x) = 0 for x = 0, i.e., the characteristics goes exactly
through the origin of the coordinate system, as it is the case for linear systems.

« Life zero: If the output y = f(x) # 0 for x = 0, I.e., the characteristics does not go exactly
through the origin of the coordinate system, as it is the case for affine systems.

A life zero offers an important practical advantage. It allows to distinguish between a zero
measurement x = 0 with y = k, and a disconnection or other wire breakage (y = 0).
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6.2 Static Behavior of Sensors

Linearization 4 nonlinear
characteristics

Y
In reality every instrument will possess a nonlinear character-
Istics. It is possible to approximate this relationship by linear
or affine characteristics. Two alternative approaches exist:

1. GIObaI approximation: The Complete nonlinear Y [erresemrrasensrnsensnnsnnnnsennsassneZonass
characteristics in the whole range is approximated .- :
by a line (blue dashed). )

&V

2. Linearization around an operating point (OP): The nonlinear characteristics inxoa small
range around some operating point (OP) is approximated by a line (blue solid). Such an
approximation is superior to the first approach as long the systems stays close to the OP
(Xo» Yo)- Each OP requires an individual line since the slope and offset depends on the OP.
The line follows the equation:

_ W

= xo-(x—xo)ero

Y

Method 2 is better, if x changes slowly and it is possible to adjust the line as the OP changes.
If the behavior is rapidly time-variant the 1. method might be better.
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6.2 Static Behavior of Sensors

Sensitivity

The sensitivity S of an instrument is determined by the slope of its characteristics in the
considered OP:

dy If the sensitivity is low a change in the measured value x

S hardly affects the output y of the instrument!

dx -

In general, the sensitivity of a nonlinear characteristics is operating point dependent,
l.e., S = S(x). For linear or affine characteristics the sensitivity is constant over the whole

operating range because the slope never changes, i.e., S = k. _
4 progressively A

Common nonlinear characteristics possess a monotonically ?| increasing
mcrea_tsmg or decreasing ser]smwty (in absolut(_e va}lue). orogressivaly
The first is called progressive, the latter behavior is called decreasing

» »
Ll »

degressive. T T

A A

Of course, more complicated characteristics with inflection Y degressively

point(s) are possible as well. But the four main degressively decreasing
characteristics to the right cover at least 90% of all cases. Increasing ‘
T T
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6.2 Static Behavior of Sensors

Compensation of Nonlinear Behavior

If the nonlinear characteristics of a sensor 1s known (from manufacturer’s data or thorough
measurements) it can be compensated at least partially. Two alternative exist:

« Differential principle: This is a popular approach for inductive and capacitive sensors and
utilizes a bridge circuit. The nonlinearity often cannot fully be compensated but the
approximation is commonly of high quality.

 Inversion of characteristics: By connecting the sensors and its inverted static
characteristics in series theoretically both cancel each other. Theoretically, this is possible
If the characteristics is strictly monotonous.
However, practical problems occur if the sensitivity is extremely small or large. The latter
implies that the sensitivity of the inverted characteristics is extremely small.
This is also a standard method in control. Smart sensors commonly include such a
compensation as well. Together with such a compensation they offer (almost) linear
behavior which makes it very user friendly.
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6.2 Static Behavior of Sensors

Compensation Via Difference Calculation

The key idea is to calculate the difference between two signals that are caused by counter-
acting (e.g. opposite) effects. For inductive (or capacitive) displacement sensors e.g. one
signal shows a positive and the other a negative influence. Calculating the difference yields:

yi=f(@) ye=f(-2) — va=y1—vy2=f(z)— f(-2)
From a Taylor series expansion of the function f that gives

f(x) =co+ crx + cox® +c3x° + ...,

we recognize the quadratic terms (and all terms of even powers) are eliminated in the

difference calculation: y“ 1 = f(x)

Yd = 261x+203x3 + ...

By eliminating the quadratic terms the characteristics
between x and y, become more close to linear in a

wider range. For all purely quadratic relationship the
difference even yields an exact linear characteristics.
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6.2 Static Behavior of Sensors

Compensation Via Inversion

The key idea is to isolated x as a function of y (inversion):
y=flz) — z=f"(y)

The inverse function only exists of f(x) is biuniquely, i.e., if for every y from the physically
reasonable range, exactly one x exists. If f(x) does not fulfill this property (most will do) then
the inversion can be carried out in intervals in which this property holds. By such an inversion,
the electronics can compensate for all (at least most) nonlinearities in the sensor. The “~* shall
indicate that an exact inversion is never possible in practice.

A prerequisite for an inversion is that the function f(x) is known accurately. Special care is
necessary for very small or large (where the inverse is very small) sensitivities because tiny
errors cause huge deviations.

ylk f(aj) m“ :':
Sensor Evaluation ()
T . Y ~ 71 T
— y = f(z) ne=fWr——
x: y:
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6.2 Static Behavior of Sensors

Determination of the Static Characteristics

« The input signal must be held constant long enough that the output signal has time to
settle. Then one point on the x-y-characteristics can be read out.

— Time required for measuring through the entire characteristics is high!

« Characteristics typically are stored in a look-up table with
linear interpolation (red dashed). Alternatives: Polynomials, neural networks, ...

« Characteristics for more than 1 input are called characteristic maps. They are commonly
measured on a grid, e.g. 8 x 8 combinations for 2 inputs.

1 X(t) y 4
Yoo T
T /__/_/_W T
o
Time t Xo1 Xgs X
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6.2 Static Behavior of Sensors

Characteristics in Lookup Tables

If a quantity depends in a nonlinear way on several other quantities, a characteristic map is
required to describe such a behavior. For more than 2 input dimensions, however, only slices
can be graphically illustrated. Therefore a 2-D example:

Uq (t)

us(t)

— 5 5

A typically characteristic map out of
an automotive area: The control of
combustion engines. The engine torque
depends decisively on the engine speed .
and the throttle angle (for gasoline engines) & 7
or injection mass (for Diesel engines). 80

Engine torque [Nm]

R S 500060007000
40 4000

Throttle angle 20 > —15052900° """ Engine speed
[degree] 0 [rpm]
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6.3 Dynamic Behavior of Sensors

Dynamic Errors

The output y of an ideal instrument follows the input x instantaneously, i.e., without any time
lag. In reality such an ideal behavior cannot be realized. Masses have to be accelerated,
capacitors have to be charged, temperature must adjust, electric/magnetic fields have to build
up, signals need to be processed. Such delays or lags cause a so-called dynamic error.
Dynamic errors only show if the input signal changes. They are the higher, the faster these
changes are. Examples for really fast input signals are impulses or steps.

To compare the dynamic behavior of sensors it makes sense to relate to a common scenario
where the input changes step-wise and the deviation of the response y to a perfect step is
measured. The response can be partitioned into 3 parts:

1. 0...T: y(t) does not react at all. [ X

2. T,... T y(t) reacts. y(®

3. T -en 0 y(t) settles (almost) to its final value. ™ Transient

For Filters see Chapter 10 dea:me T, time t ]
settling time T,
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6.3 Dynamic Behavior of Sensors

The smaller the dead time T, and the settling time T are, the faster the sensor behaves and
the smaller the dynamic error becomes. An ideal sensor has: T, = 0 und T, = 0 but of course
this is not possible

Overshoot and Damping

Unfortunately the output is not always as nice with an asymptotic approach to its final value
as shown in the last slide. Often the dynamic behavior (at least approximately) follows a
differential equation of 2. order:

ii(t) + 2Dwoi(t) + wly(t) = z(t) y) | D=025

where D is the damping and «j, is the resonance frequency D=0.5

given by the physics of the sensor. The equation e.g. can
describe a mass-spring-damper-system as it occurs in every
instrument needle/pointer. If the damping D is too low (D < 1) D=1

oscillations will occur; if the damping D is too high (D > 1) D=2

the settling time will be too long. Therefore the best ‘
compromise is the so-called aperiodic limit case with D = 1. timet
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6.3 Dynamic Behavior of Sensors

How to Avoid or Reduce Dynamic Errors?

1. Wait after a change in the measured quantity x until settling is reached after time period
T, + T, and then read output value y or process it further, respectively.

2. In a post-processing step the delayed and time-lagged output y(t) is predicted into the
future (non-causal system).

set

3. Reduce the time-lag in the dynamic error with dynamic filter with differential character.
The price to be paid is a higher sensitivity to noise.

Method 1 and 2 can only work if the output y is not need at once! Method 1 additionally
requires that the changes are step-wise and not continuous.

Method 1 and 2 thus cannot be used for feedback control systems! In feedback control
It is crucial that the control variable x is fed back at once to the comparison with the desired
value. The controller must act as quickly as possible with respect to deviations. Any

additional delay will deteriorate the control performance.

w, ¢ u X
' T : I
That leaves us with method 3 where it is important to find a —*|controfierr—| Process
good trade-off between noise sensitivity and the reduction of y

dynamic errors. sensor

A 4

v

A
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2.1 Moving Coil Mechanism

Why is the measurement of electrical quantities so important?

Electrical current possesses many advantages over alternative physical means to transport
energy and information like with air pressure or hydraulics. Electricity is:

« Easy to measure with high efficiency.

« Easy and with high efficiency to transform to other quantities with motors (torque,
speed), electric heating (heat) or air conditioning (coldness), lamp or LED (light).

« Well and easy to control.

« Efficiently to transport over long distances.

« Almost everywhere available.

» Standard means to transmit information.

« Easy to covert into digital signals and to process in a computer.

Because of these advantages electricity plays a dominant role in measuring things (sensorics)
and manipulating things (actuation). At least the last part in sensorics and the first part in
actuators is often of electrical nature to exploit the good controllability properties.
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2.1 Moving Coil Mechanism

First Principles

A magnetic field of flux density B generates a force
on a wire of length | that is orthogonal to the field
and carries an electrical current I. The generated
Lorentz force is calculated by

F =I[BI

This force is proportional to the current and can be used to indicate
its value. If this force is in balance with a spring, a pointer can
display the size of the current.

auermagnet
s =

More accurately, the force is generated in N windings of a coil.
Because it acts on each side of the coil, the actual torque is twice
this force times the distance r (diameter of the coil = d = 2r).

This gives the torque:

M =2rNIBI = NdIBI _
Acting on a torsion spring with torque M = ca results in a displayed angle a.
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21 MOVing COII MeChanism Source: http://de.wikipedia.org/wiki/Drehspulmesswerk

(1) Weicheisenkern, (2) Permanentmagnet, (3) Polschuhe, (4) Skale, (5) Spiegelskale, (6) Rickstellfeder, (7) Drehspule, (8)
Ruhelage, (9) Maximalausschlag, (10) Spulenkdrper, (11) Justierschraube, (12) Zeiger, (13) Sudpol, (14) Nordpol
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2.2 Measurement of Current

Some Facts on the Moving Coil Mechanism Meter

Most frequently applied analog way to measure currents.

Range: 10 %A — 100A. Accuracy: 0,1% — 1,5%. Settling Time: 0,5s — 1s.
With resistors in parallel the range can be changed.

By coupling it with an DC converter it can be used to measure an AC current.
With an auxiliary resistor and Ohm’s law, it can be used to measure voltage.

Replacing the permanent magnet creating B by an electromagnet, the meter can be used
for measurement of power.

Change of Range: Internal Resistance: 10R,, Internal Resistance: 100R,,
Internal Resistance: Ry, 1 1
. o 10 s 100

110 9 | 110 I 99 |

= EI = mf
x 10 1 x 10 1
Ry s §RM Ry ®RM Ry

O O (o,
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2.2 Measurement of Current

Systematic Error of Current Measurement

Circuit without meter

1 >
| I | v

R L

w |

True current: [, = Y%

R

This leads to a relative error in the current measurement of:

Circuit with meter

U, JC

— Internal
R M ]
resistance
distorts the
M measurement!
. Uo
Measured current: [,y = ———
R + Ry

\ Current is

measured too

Iy — I R R for Ry, << R: - R_M for RM_)O>O small!

I, = R+Ru R+ Ry

Current meters should have an internal resistance as small as possible!
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2.3 Measurement of Voltage

Using a Current Meter for Measuring a Voltage

Circuit without meter Circuit with meter
l 1, |=NI finite internal
resistance
RI:I Yo RI:IJUM distorts the
M measurement!
: . RRy\
True voltage: Uy = RI, Measured voltage: U= ———1,
R+ Ry
This leads to a relative error in the voltage measurement of: \Voltage is
measured too
Up—Um Ry R forRy,>>R R for R,\,|—>oo‘0 smalll
Uo - R+ Rym - R+ R Ry

Voltage meters should have an internal resistance as large as possible!
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2.3 Measurement of Voltage

Change of Range

Internal Resistance: Ry, Internal Resistance: 10R,, Internal Resistance: 100R,,
o—> o—> o—>

Iy v 9 ﬁ] I 99 ﬁ]
: 10 i : 10 77
10 UMl IR\ 100 UMl 99R,,
V) O O
C x 10 x 10
= =~

1 1

(o, (e,

Nomenclature of Voltage Meters

The internal resistance is given in relation to the upper range value and in Q /V.
E.g. “1 kQ /V” means:

« 100 kQ internal resistance within the range 0...100 V.

« 10 kQ internal resistance within the range 0...10 V, etc.
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2.3 Measurement of Voltage

Considerations About the Systematic Errors in Current and Voltage Measurements:

« To reduce the deterioration in current measurements, we want to have a small internal
resistance, in the ideal case R, = 0.

« To reduce the deterioration in voltage measurements, we want to have a large internal
resistance, in the ideal case Ry, = .

« The demand for a small internal resistance is much more difficult to fulfill than the
demand for a large internal resistance, because

— the coil of the moving coil mechanism naturally has a finite resistance, in particular if
N is high,

— also the connections/contacts where the meter is attached have a resistance,

— amplifier circuits easily can generate a resistance close to R, = « (see Chapter 2.6).

These arguments show that a voltage measurement can be performed more accurately
than a current measurement.

Therefore we can apply a trick to use voltage measurements for determining currents.
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2.3 Measurement of Voltage

Indirect Current Measurement With a Shunt

A Shunt is a measurement resistor that has been manufactured with care (expensive!) to
ensure a low resistance with great accuracy almost independent of disturbing influences like
temperature. The voltage drop over such a shunt is measured and by Ohm’s law the flowing
current is determined. Compared to a direct current measurement, which incorporates the
meter in series within the circuit, the following advantages are obtained:

- . S\ utomatic Control
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The resistance of shunt is more accurate than the internal 2' rect current measurement

resistance of the meter. |
— Smaller measurement error.

The resistance of the shunt can be chosen to be smaller than Ry <<1

the internal resistance of the meter.

— Smaller measurement error. Indirect current
measurement via a shunt

O

The wires and connections to the meter lead to a voltage drop o
and are sources of measurement errors. Because the current
through the voltage meter is tiny (<< 1), these are insignificant
compared to the direct method.

I

Shunt Ry >>1

(o
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2.4 Measurement of Power and Energy

First Principles
Electrical power is the product between voltage and current:
P=UI

Replacing the permanent magnet of the moving coil mechanism creating the magnetic field B
by an electromagnet, constructs the electrodynamic instrument. It can measure power. If
the electromagnet is fed with voltage U this creates a current and subsequently a magnetic
field proportional to U:

B =kU
With the formula for the moving coil mechanism we obtain:
M = NdIBI = kNdIUI = kNdlP

The generated torque is proportional to the power P.
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2.4 Measurement of Power and Energy

Measuring Electrical Energy

Measuring energy is based on the measurement of power. Energy is power integrated over
time:

o /O P

If the power is constant over time, energy is simply power times time:

E =Pt

Otherwise can be fed to an integration circuit (see Chapter 2.6) and be computed in an analog
manner. Alternatively it can be measured (counted) by a motor meter. A motor meter
basically is an induction measuring system (see Chapter 2.5) in which the electromagnets are
replaced with an electromotor whose torque is proportional to the power. The number of
revolutions of the disk is proportional to the energy.
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2.5 Measurement of AC Quantities

Mean, Peak, Rectified, and Root Mean Square (RMS) Values

AC Quantities are periodic signals x(t) with a period (cycle duration) of T. The following
measures of “size” have to be distinguished:

T
Mean: 7 = % / z(t)dt Peak: & = max{z(t)}
0
. 1T 1t
Rectified: 7] = — / z(t)|dt RMS: Xet = \| 7 / z(t)dt
T 0 T 0

The by far most important periodic signal type is a sine or cosine signal. A sine oscillation
with amplitude A has the following characteristic values:

Mean: =0 Peak: r=A

- 2 1
Rectified: x| = ;A = 0.637A RMS: Xeft = EA = 0.707A

For a rectangular oscillation the mean, peak, rectified, and RMS values are all identical to its
amplitude A. The rectified value is the mean of the absolute value. The RMS value is a
measure for the signal power or energy.
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2.5 Measurement of AC Quantities

Measuring Mean Values

The mean value of an electrical AC quantity can be directly measured with a moving coil
mechanism, if the frequency of the signal is high enough. Often occurring frequencies around
50 or 60 Hz (power net frequency) are so much higher than the bandwidth of the moving coil
mechanism (around 1 Hz) that the instrument shows only the mean value. I.e., only the offset
value of the AC signal is displayed.

u(t)

~

U
Measuring Peak Values

A diode lets only the positive half part of an oscillation
signal u(t) pass. A capacitor C stores the highest occurring
value of this voltage. Since the voltage meter has a very
high internal resistance R,,, the capacitor will be hardly © {>| !
discharged (dashed line) before it is charged again at the +
next period T. A circuit manages to half the refresh times ~ %(%) ¢ =
by an additional diode. Il

(o, @
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2.5 Measurement of AC Quantities u(t)

u]

Measuring Rectified Values 9

A

The most straight forward way to rectify a signal is to

let only the positive half of the oscillation pass by a diode.
The negative halves are blocked. In contrast to its
definition, this approach in the mean measures only Y2 u(t)
of the rectified value. Therefore the result has to be
multiplied by 2.

let the negative halves pass in the other direction. Thus ul
the full rectified value is determined.

More advanced is the Graetz circuit which requires 4 ‘
diodes that manage to let the positive halves pass and u(t)

Because for oscillations of sin type, the relation between o
the rectified value and both, the peak value and the RMS Vi
value are known, both values can be calculated from the u(t)
rectified one: R
—_— —_— 7T _— —_—
o= Tl =157 U= ——Jul = 1111fa] | V4
2 2v/2 o
2. Measurement of Electrical Quantities Page 360 Prof. Dr-Ing M

Oliver Nelles -
of Siegen



2.5 Measurement of AC Quantities

Apparent, Active, and Reactive Power

In coils and capacitors where inductivity and capacity are the dominant factors, AC voltage
and current are phase shifted by +90° and —90°, respectively. Thus, if not purely ohmic
Impedances are present, phase shifts ¢ between voltage and current have to be taken into
account in any AC circuit in general. The apparent power Pg in such a impedance is simply
the product between the RMS values (called “effective” in German) of voltage and current:

Ps = Uett Lofr
But the entire apparent power cannot perform work. One part of it just oscillates around the

mean value 0. The really useful part of it is called active power (“Wirkleistung” in German).
This part can perform work and is calculated by:

Py, = Pscosp

The part that cannot perform any work is called reactive power (“Blindleistung” in German)
and calculated by:

Pp = Pssing s P
If voltage and current are not phase-shifted (¢ = 0), then the %
reactive power = 0 and apparent power = active power. “ Py i
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2.5 Measurement of AC Quantities

\oltage and Current Apparent Power

I

n
N
~
N—
d A N o N AN O ®

80 2 4 6 8 10
t[s]
Active Power Reactive Power

8 8
6 6
PWI ) \
""" 2l 2l
pw(t) 0 0
-2 -2
-4 -4
-6f -6f

80 2 ’ 6 8 10 80 2 4 6 8 10

't [s] t[s]
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2.5 Measurement of AC Quantities

Power Measurement

What happens if we measure an AC current with a moving coil mechanism instrument like a
DC current?

u(t) = usin(wt) i(t) = isin(wt + @)
The displayed deflection is proportional to the product between voltage and current
ps(t) = u(t)i(t) = 4isin(wt) sin(wt + @) = %fmt [cosp — cos(2wt + )]

The 2. cos term is averaged out to 0, because we can assume a high frequency of AC
quantities (e.g. 50 Hz) compared to the bandwidth of the instrument (around 1 Hz). This
gives the mean value of the apparent power pg(t) which is identical to the mean of the
amplitude of the active power:

1 -
5 11 cosp = Uegrlog cOsp = Py

The reactive power can be measured by shifting the voltage by —90° before feeding it to the
Instrument. The displayed value is proportional to the reactive power:

1 -
3 01 cos(p — w/2) = Uest Lot sing = Pp
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2.5 Measurement of AC Quantities

Measuring the Apparent Power

One way to measure apparent power is to measure the RMS of voltage and current separately
and subsequently multiply them:

Ps = UegrLesr

An alternative is to let this multiplication happen in a moving coil mechanism instrument by
physical law. To do this, the instrument has to be fed with the rectified values of voltage and
current. The scale must then consider the quadratic nature of the result and the conversion
factor between rectified and RMS values.

Measuring the Phase Shift

There are instruments to measure the phase shift between voltage and current. If this is
determined, the active and reactive powers can be calculated form the apparent power.

Besides these possibilities there are some tricky measurement circuits for three-phase
systems that are beyond the scope of this chapter.
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2.5 Measurement of AC Quantities

Energy Measurement

Because only active power can perform work, the energy (work)
can be calculated by integration: P oo v i

o /Ot Py (r)dr

If the power is constant over time this gives:

U
N
3

i e —

E = Uesglegcospt

To really measure the energy, can be done by an
Induction-based system. Such a reliable measure-
ment system is very common, e.g. in any household
for measurement of the consumed electricity
(“Stromzahler”).

An electromagnet generates a field that creates
eddy currents in the revolving disk. These cause

a torque which is proportional to the product of
voltage and current, i.e., the active power.
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2.6 Measurement Methods and Amplifier Circuits

Operational Amplifier

An operational amplifier (OpAmp) is an active component. This means that it needs an
external energy source which is given by a supply voltage U,,. An OpAmp is a multi-stage
amplifier circuit that incorporates many transistors. Since 1962 it is available as an integrated
circuit on a chip. Practically all measurement circuits are realized with the help of OpAmps. It
IS easy to build filter, integrator, differentiator and many more kind of circuits. Analog
computers are based on OpAmp circuits and allow to simulate differential equations in a
straight forward manner. They can be seen as the predecessor of Simulink.

A real OpAmp has the following properties: +Uv
« 2inputs U, und U_, whose difference U, +
Is amplified and generates the output U, = Vu,. IUe Ij& o .
* Input resistance R, Is in the mega ohm range. o C)Ra
« output resistance R, is only a few ohm. Us _/ Ua

i .. U_ Uy
« Gain Vs in the range 10.000 — 100.000.

vy v
O o O
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2.6 Measurement Methods and Amplifier Circuits

Ideal Operational Amplifier

Idealized an OpAmp can be described by the following approximations:

« Input resistance R, = oo. L]
‘ I
« Output resistance R, = 0. —
U, Ui
- GainV = oo, o + J
Uq
Amplifier with Feedback o o

An OpAmp is either used as a switch (comparator) or most frequently applied with feedback
that typically is used with negative sign (like in feedback control). l.e., the output is fed back
to the “—"-input. This ensures that the input voltage U, becomes very small since U= U_/V
with V = oo. Furthermore, the current into the OpAmp is insignificant since the input
resistance is huge (R, = o). Therefore, all fed back OpAmps are assumed to follow the
Important simplifications:

«  OpAmp input voltage U, = 0.
«  OpAmp input current |, = 0.
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2.6 Measurement Methods and Amplifier Circuits

Voltage Amplification (Non Inverting)

A voltage amplifier has the task to convert an o
input voltage U, in an output voltage U, = KU.. — R
Moreover the load on the input voltage should 0. R’y l R +1 o Ua
be as small as possible, i.e., only a tiny current Ua
should be drawn from the circuit at the input. Uel Rs l o
On the other side, the output should be capable

to drive significant currents.

v v
o, O

The gain of the voltage amplification has to be adjusted by the components within the circuit
easily.

U, can be measured over the resistor R,, because between the “+ and “—* inputs of the
OpAmp almost no voltage drops. U, splits according to the standard voltage divider rules
onto both resistors, since almost no current goes into the OpAmp. Therefore the transfer
function becomes:

R Ri + Ro Ry
U, = —2 _y. U, =12y (143,
R+ Ry * R, < * R2>
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2.6 Measurement Methods and Amplifier Circuits

Application of a VVoltage Amplifier

« Voltage Measurement: The voltage that shall be measured is connected to the input.
At the output any circuit can draw a high current without influencing the measure-
ment circuit. The evaluation circuit itself does not need to possess a very high resistance.

« Constant Voltage Source: If a voltage source is connected to the input, the OpAmp
output can draw big currents without putting any load on the input. The voltage source is
then in no danger to break down.

« Voltage Amplification: With an appropriate choice of R, and R, almost any desired gain
K > 1 can be created.

Voltage Follower / Impedance Converter

Interesting is the special case R, = 0 (short circuit)
and R, = oo (wire open). Such a circuit just converts the -
resistance/impedance. The transfer function is unity: ‘ Ua

Us = Ue

v v
O O
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2.6 Measurement Methods and Amplifier Circuits

Ua
Voltage Amplification (Inverting) E
e : U, Ry
The voltage amplification circuit has a small input —
resistance. Furthermore, it changes sign (inverting). 7 % -
U, also drops at the resistor R,, because between +
the “+*“ and “—* inputs almost no voltage drops. Ue U,
According to the same argument, the output
voltage U, drops over R,. No current flows Y | v
into the OpAmp. This means:
Ue Voo = Boy,
1 2 1 o — ]
Ro R3
It is also possible to add additional input in
parallel. It can be used to build more complex T % B
addition or subtraction circuits., e.g.: Ueo +
Uer U,
Ua — _%Uel — %UeQ | | |
(o, O ® O
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2.6 Measurement Methods and Amplifier Circuits

Creation of Desired Dynamic Behavior

With the OpAmps any dynamic behavior can be achieved by using not only ohmic
Impedances, but also applying frequency-dependent components like capacitors and coils.

With a current of sin-type we get:

i(t) = 1 sin(wt) u u(t) = Ri(t)
At a resistor with resistance R the voltage becomes: — i ) — 1
- R i(t) Ru(t)
u(t) = Risin(wt)
. u(t) = Li(t)
At a coil with inductivity L: —’- | 1t
~ A 1 —
u(t) = Licos(wt) - w = wLisin(wt + 7/2) L i(t) = I fo u(T)dr
At a capacitor with capacity C: u 1
— u(t) = 6/ i(T)dT
1 1 1 - 4| |—>— 0
u(t) = ——=1cos(wt) - — = — isin(wt = 7/2) i
C w wC C i(t) = Cu(t)
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2.6 Measurement Methods and Amplifier Circuits

Integrator T
An integrator circuit is needed e.g. for the simulation of . )
differential equations. It is also required for computing - — D ¢
energy from power, speed from acceleration, distance R
from speed, electrical charge from current etc. +
Ue
u
Ue (T , 1 t ¢
;(2 ) +Cug =0 —|ug(t) = e i Ue(T)dT | |
O ® O
Ug
Differentiator ‘—:
At the OpAmp circuit it is obvious, that this is the exact —< h
opposite of the integrator shown above. o I I —
Uy ¢ +
C'e(t) + = 0 — |ug(t) = —RCUe(t) Ue y
With R and C the proportionality (time) constant can
be adjusted. 4 . 4
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2.6 Measurement Methods and Amplifier Circuits

Low Pass Filter i <7I”L—T
This circuit simulates a first order differential " I
. . : — Cs
equation. It is a simple low pass filter (PT,) L D
to suppress high frequency disturbances like Ry . le
noise. ! +
Ue
I ta
Ue(t) = Ryte(t) + = / ie(T)dT
Cl O v v
O ® O
ie(t) = —ig(t) = —Catig()
C C
s ue(t) = —Ry Caitg () — =2 ug(?) — | = Zue(t) = ua(t) + RiChita(t)
01 C'2
The factor —C,/C, is a gain factor, i.e., it determines L %
the static gain of the transfer function. For a filterit |G(s) = ———>— = — 2
i o + Ry 1+ sR{Cq
IS thus reasonable to choose C, = C,. A subsequent 5

inverter should be used to get rid of the “—* sign. R,C; is the time constant and 1/R,C, is
called the corner frequency which determines the filter bandwidth.
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2.6 Measurement Methods and Amplifier Circuits

PID Control

This OpAmp circuit realizes a PID controller, which |

Is the most widely used controller type. The
(P) part realizes the proportional, the (I) part
realizes the integrative, and the (D) part Ry
realizes the derivative action. The respective e
values can be adjusted by the corresponding

resistors and capacitors.

R0 19 )

Uy (t) = ——Rlﬂ"w{ﬂ?ﬁ?ut,(t)— L F' e (T)dT—RoCyu1,(t)

With help of nonlinear components like diodes, e.g. an expo-

—|i = f(u)

nential characteristics can be constructed. It is even possible  «, ‘ ta
to construct circuit that calculate the logarithm. Based o—{
on these, multiplication and division are easy to build. R
Ue (T Ue (T Ue

1;) + f(ua(t) =0 — |uq(t) :@(_ 1:(3)) | l/ \Ua

O O
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2.6 Measurement Methods and Amplifier Circuits

Bridge Circuit

Measurement of impedances (purely ohmic or frequency-dependent) can be reduced to a
simple voltage and current measurement and a subsequent division. But very powerful and
widely used are direct measurements via a bridge circuit. For simplicity, the procedure shall
be explained for resistances but an extension to any kind of impedance is straight forward.
There are 2 alternative approaches:

1. The unknown resistance is compared to an adjustable resistance.
The adjustable resistance will be tuned as long the bridge circuit is balanced.

2. The unknown resistance deviates only insignificantly from its (known) nominal value.
In this case, it is possible to calculate the resistance from the diagonal bridge voltage.

Method 1 has the advantage that the diagonal bridge voltage has to be measured only for
very small (positive or negative) values around 0. It is not necessary to have an instrument
that can handle large amplitudes. It is possible to achieve with a high accuracy with simple
Instruments. On the other hand the tuning can be tedious.

Method 2 is fast and effective but works only around an operating point, i.e., if the resistance
IS close to its nominal value.
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2.6 Measurement Methods and Amplifier Circuits

O

Balance the Bridge

This bridge circuit was invented and first applied by Wheatstone
in 1843. Under the following condition this bridge is balanced, Uq

I.e., the diagonal voltage is zero (U, = 0): Yo -
U =Us Ro R4
According to the voltage divider rule this means: |
(e,
Rl Rg

— Ri{Rs+ R1R4 = RiR3s+ RoR3 — |R1R4 = RoR3

R+ Ry Rs+ R,

If the resistance R, is unknown, we can tune one resistor (in principle, any one or more than
one) until the diagonal voltage is zero: U, = 0. The bridge then is balanced. The unknown
resistance thus can be calculated from:

RiR,
Ry —
2 R

Advantage: Independent of quality of the voltage source U,. Only measurement of U, around
Zero is necessary.

Drawback: Tedious tuning of the comparing resistance.

University

u

of Siegen

2. Measurement of Electrical Quantities Page 376  Prof. Dr-Ing,

Oliver Nelles



2.6 Measurement Methods and Amplifier Circuits

O

Bridge Voltage - .
If the unknown resistance deviated only slightly from its nominal
value, the diagonal voltage can be used as a measure of this Us _Ua |
resistance:
R R AR U R+AR R
Ui =—=Uy— Up =
“T 2R 2R+AR ° 2R+ AR 2 !
If the resistance deviation AR is small compared to R, in approximation we have:
AR U
Uj~ —— .
‘"R 4 o

However, the relation between AR and U, is only
approximately linear:

AR=0 — U;=0 o
U, i
AR=R — Ug=-_ i
Us |

AR=—-R — Uyg= Y 02 0 1 2 3 4

AR/R
University
2. Measurement of Electrical Quantities Page 377  Prof. Dr-Ing M

Oliver Nelles -
of Siegen



2.6 Measurement Methods and Amplifier Circuits

O

Increase of Sensitivity
Half Bridge R RTAR
The sensitivity of the measurement can be doubled by utilizing ¢/, < Uda
2 measurement resistors (red) instead of 1.:
. ARU, R+AR R
‘TR 2 5
Full Bridge

A further increase of sensitivity can be achieved by utilizing
2 positively (red, R + AR) and negatively (green, R — AR)
changed resistances. This is e.g. a common approach for
resistance strain gauges. Typically the strains are attached U,

on opposite sides of a bar. Uo *
UdzﬁUo R+AR R-AR
R v
O

2. Measurement of Electrical Quantities Page 378  Prof. Dr-Ing,

Oliver Nelles

of Siegen



2.6 Measurement Methods and Amplifier Circuits

Oscillators u(t) ‘
Electrical oscillators consist of a capacitor with o—1{ +— Il I I +—o
capacity C and a coil with inductivity L and a R L C i)

resistor with (relatively small) resistance R.

Such an oscillator is the equivalent to a mass-damper-spring system in mechanics. Only in
the resistor or the damper, respectively, energy is lost (more strictly speaking converted to
heat). Without these dissipative elements, they would oscillate forever with their resonance
frequency wj,. This resonance frequency depends on C and L (or the spring constant ¢ and
the mass m, respectively). Therefore, it can be utilized to measure capacities and/or
Inductivities in an indirect manner.

Electrical oscillators follow the relationship between voltage and current given by:

u(t) = Ri(t) + Li(t) +%/0 i(TYdr  — a(t) = Ri(t) + Li(t) + %z’(t)

With a current of sin-type: j(¢) = jsin(wt)

1
i(t) = Rigwcos(wt) — Ligw?sin(wt) + e io sin(wt)
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2.6 Measurement Methods and Amplifier Circuits

Resonance in Oscillators

In the case of resonance, the change of voltage at the capacitor and the coil cancel each other
exactly. Resonance happens for:

Lcu2:l

C

Then, the impedance of the oscillator is purely ohmic. In the ideal case of no energy loss
(R — 0 or in the mechanical case damper constant d — 0, respectively) the current would be
of infinite amplitude and oscillating at the resonance frequency of:

Wo = ——=

1 or for the mechanical counter part: g = , /£
v LC m

The resonance frequency «, can be used to determine:
« the inductivity L if C s known,
« the capacity C if L is known.

Colls, capacitors, and whole oscillators can naturally be build in OpAmp circuits.
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3.1 Sensors and Sensor Systems

Desired Properties for Sensors

« Conversion of a physical measurement quantity into a signal that is suitable for further
processing. Typically, this is an electrical signal because it is especially well suited for
this task.

« Sensitivity: High as possible reaction with respect to the quantity that shall be measured.
« Selectivity: Low as possible reaction with respect to everything else.

« Stability: Constant as possible behavior with respect to all environmental changes like
temperature and aging.

Sensor Systems

« Sensors integrated with intelligent components such as micro-controllers with software
(also called smart sensor).

« Combination of many identical or different sensors.

« Integration of sensors, actuators, and appropriate control equipment.
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3.1 Sensors and Sensor Systems

Sensor Fusion

Examples for Sensor Fusion:

3. Measurement of Non-Electrical Quantities Page 384  Prof. Dr.-Ing,

Information of many sensors is combined in a clever way to achieve advantages.
Stochastic measurement errors can be reduced by averaging.

Different principles can be combined to reduce their weaknesses and
gain strengths from synergy effects.

Stereo Vision: 2 cameras build up a 3D picture or video.

Navigation System: Modern such systems for planes, ships, and cars make use of the
satellite-based GPS and combine it with local sensing of speed, steering angle, etc.

Driver Assistance: Adaptive cruise control (ACC), lane detection, night vision, lane
changing assistant (blind spot detection), etc. are based on a variety of different sensors
like radar, laser, CCD camera, ultrasonic, navigation maps, ...

Smart Dust: Next page.
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3.1 Sensors and Sensor Systems

Smart Dust

A few cm? small, intelligent sensor systems communicate over a wireless network with a
base station and possibly with each other. This is performed by the means of laser beams.
These concepts are currently developed at UC Berkeley by Pister and some ideas and
problems are known from the novel “Prey” by Crichton. Maybe it becomes reality!

Interrogating
Laser Beam

Integration of Different Technologies:

« Ultra energy efficient micro-electronics.

Active Transmitter

b M E M S: m | CI’O-e|eC'[I’O-mEChan | Cal Passive Transmitter with with Beam Steering

Incoming Laser
Communication

Corner-Cube Retroreflector

systems.

Wireless laser-based e
communication (1 kB/s).

Photodetector and Receiver

Analog I/0O, DSP, Contro

« Management of huge distributed networks.

Power Capacitor

Solar Cell

» Possible sensors: camera, microphone,
acceleration sensor, temperature, humidity.

Thick-Film Battery

|<—1-2mm—>|
» Extremely cheap.

&\ utomatic Control University
3. Measurement of Non-Electrical Quantities Page 385  Prof. Dr-ng. -
Q Oliver Nelles m

of Siegen



3.2 Displacement and Angles

Resistive Measurement Methods

Many of the techniques to measure displacement and angels can also be used for the
determination of force, torque, and pressure. It is just necessary to have a spring whose
displacement is proportional to these quantities.

Principle of Resistive Displacement Measurement

The ohmic resistance of a electric wire depends on its length |, its cross-section area and its
specific resistance ¢ which in turn depends on the material:

[

If the wire is pulled apart with a force F this is influencing the relative resistance:
AR Al AA  Ap Al . Al —L
R AT, TR TR mhem 0] 0

The factor K summarizes the influence of length and area change
and the variation of the specific resistance.
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3.2 Displacement and Angles

Resistive Measurement Method: Strain Gauge

Resistive strain gauges utilize the resistance change caused by a length change €. They are
commonly manufactured as an elastic foil and glued on the body to be measured. It can be

distinguished between different material types:

« Metal: Typical sensitivity is around K = 2.
The resistance change is mainly based on the
length and area change. Specific resistance
changes only insignificantly.

« Semiconductor: Typical sensitivity is very

Bild 3.91 Zwei Foliendehnmessstreifen

0
il
bl

mit um 90° versetzten Beanspruchungs-
richtungen

high in absolute values, either around K =100 or around K = 100 for n- or p-doped

semiconductors. The piezoresistive effect is utilized, i.e., the internal generation of

electrical charge resulting from an applied mechanical force. It changes the specific
Havleiersueifen —— F@SIStance significantly. This extremely high sensitivity must be

/

Folie

™ Anschlussdrihte ~ Bild 3.92 Halbleiterdehnmessstreifen
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paid for by an undesirable high temperature dependency.
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3.2 Displacement and Angles

L J 3
Resistive Method: = L1/
Strain Gauge Embodiments [3] : =
C 7 A
a) i b)
1 2 3
e JM/_‘ = _'_/_ --_ﬂ__-‘___q_L
c) A 5

Bild 3.47: DehnungsmeBstreifen

a) DrahtmeBstreifen

b) Folienmefstreifen als Membranrosette (Hottinger Baldwin MeBtechnik)

c) Querschnitt durch einen aufgeklebten Mefstreifen; | MeBgitter, 2 Abdeckung, 3 Streifenan-
schluB, 4 Kleber, 5 zu untersuchendes Werkstiick

/L /’L -
- ~ 4
/ -3 Y
i o R A A— P
/ P -~ / ///
7772~ 177272727
a) b) c)

Bild 3.48: Biegebalken-Kraft-MeBaufnehmer mit Diinnfilm-DMS [3.18]

a) nach einseitig-vollflichiger Beschichtung; | Federkorper aus Bronze oder Stahl, 2 Isolierschicht,
3 dehnungsempfindliche Widerstandsschicht, 4 niederohmige Leiterschicht

b) nach photolithographischer Strukturierung

¢) Aufnehmer unter Belastung
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3.2 Displacement and Angles

Resistive Measurement Method: Placement of Strain Gauges

Applying multiple strain gauges can improve the sensitivity of the measurement. Like shown
below, in a bridge circuit the sensitivity can be quadrupled (4x). The higher selectivity of
such an approach is desirable. However, most important is the robustness against temperature
changes because the temperature effects (and others) cancel each other. If the resistances are
all changed relatively in the same manner, the bridge voltage is not affected at all.

upper strains

are stretched

)
Yo

<

Verformungs-
korper

. R
lower strains _— @

are compressed a)

F

Bild 3.93 Dehnmessstreifen in einer Vollbriicke
a) Anordnung, b) Schaltung
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3.2 Displacement and Angles

Resistive Measurement Method: Effect of Magnetic Field

« Hall sensors: A magnetic field orthogonal to an electrical current leads to an Lorentz
force on the electrons. This causes a Hall voltage orthogonal to magnetic field and
current. For currents around 100...500 mA the voltage is typically around 50...400 mV
with reasonable field strength. Such Hall sensors are commonly used as limit switches.

« Field-plates: The Hall effect deflects the current and enforces it not go the direct way but

to take a detour. As a consequence, the resistance increases (magneto resistive effect). A
++++++++

quadratic characteristic results. - By iprr R s :
+
It can be compensated by a | : CID_. | :
A . :
- - - - - —_— ] + e '
differential bridge circuit. «{g :
5 (© oy :
‘ ‘ GO gt il N oS S i S b) Fe
As
<+—>
o— O | Bild 4.2.8A: Magnetowiderstand. Feldplat-
I R © te. a) Feldplatte mit positiven und negativen
Ladungstrigern, cinan E-Feld in Platten-
richtung und einem B-Feld senkrecht dazu.
S b) Hall-Winkel ©y. ¢) Strombahnen in ei-
— nem Feldplattenausschnitt mit nadelférmi-
c) B @ gen gutleitenden Ausscheidungen.
A . University
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3.2 Displacement and Angles

Inductive Measurement Method: Inductivity of a Coil [3]

The inductivity of a coil can be calculated from its number of
windings N and its magnetic resistance R,

L= ith R, ="
Ry, profir A

where s is the length of the flux lines, A is the area where the

flux lines pass through, and y, is the relative magnetic

permeability of the material. For the coil three such parts add up: a) inside the coil in a part

that is filled with iron (i, >> 1), b) inside the coil in a part that is filled with air or nothing

(1, = 1) and c) outside the coil that usually also consists of air or nothing (u, = 1):

Siron S Soutside S
Ry, =Rpma+ Ryp+ Rpye = + + ~

" e ™ ™ ,UO,LLTA /L()A ,UJOAoutside ,LLOA
The 1. term can be neglected due to the very high value for p.. The 3. term can be neglected
due to the large area A, i OUtside. This leaves us the 2. term. Therefore the inductivity is

inverse proportional to the length of the part inside the coil which is not filled:

N2upA  k
[ — 2 HoA R
S S
. I 2\ utomatic Control University
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3.2 Displacement and Angles

Inductive Measurement Method: Plunger and Differential Plunger

A small displacement 4s of the armature

from the operating point s influences the unger Differential Plunger
inductivity in a nonlinear way as follows: . -
k k I .
L — p— A
s+ As 1+ Ts L Ly Lo

This means that only for tiny displacements the inductivity L is roughly proportional to the
displacement 4s (with negative sign, i.e., 4s >0 — AL < 0). To enlarge the roughly linear
range, the differential approach was developed. The idea is to introduce a second coil whose
Inductivity operates in the other direction. The displacement drives the armature opposite to
the first coil and a displacement 4s leads to a decrease in the first but increase in the second
coil, or the other way round:

k k
Ly =
s+ As s — As
A clever combinations of both inductivities by a circuit creates a linear measurement

characteristics. The linear behavior is achieved in an exact way, not only by approximation or
linearization, which would be valid only for small displacements 4s.

L, =
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3.2 Displacement and Angles

Inductive Measurement Method: Differential Measurement Principle

Such a bridge circuit can be used to create a linear characteristics. The diagonal bridge
voltage Uy is equal to the difference between the voltage drop along the upper resistance and
Inductivity:

R L,y 1 Ly L+ Lo—214
T RAR T’ Li+L 0 2% Li+Ly °  2Li+Ly)
O
U, Lo — Ly :L%_L%Uo
AL+ L) T L2 Ly R
_ _ _ Ugsin(wt + ¢)
Introduction of the dependency on the displacement gives:  Upsinwt s
s+As—(s—As)Uy 2AsUy AsUy
Ud — — = — L2 R
s—As+s+As 2 2s 2 s 2 !

O

The differential principle together with the bridge circuit results in an exact proportionality
between displacement and diagonal voltage. This type of “physical linearization” is widely
applied in many circumstances (also with capacitor, etc.).
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3.2 Displacement and Angles

Inductive Sensors [3]

Bild 4.20: Anwendung von induktiven

Aufnehmern

a) Messung der Relativdehnung zwischen
Turbinenwelle 1 und Gehéuse 2 [0.17]

b) Messung der Dicke von nichtmagneti-
schen Schichten; 1 Drossel, 2 nichtma-
gnetische Komponente (Folie, Lack-
schicht), 3 Eisenkern

¢) Messung der Ventilstellung in einer
Hochdruck-Dampfleitung [4.4]; 1 Ven-
tilstange, 2 Anschliisse der Spule

a)

a

as

L

c)

Bild 4.18: Querankeraufnehmer; einfache Ausfiihrung (a), Differential-Querankeraufnehmer (b) und
Differential-Querankeraufnehmer mit Topfkern (c)

b)

K ;
K2 0’.’0’0’.’.‘."

&\N

w\s
i

Ll

Ll ldddddddldddddlld
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3.2 Displacement and Angles

Capacitive Measurement Method

The capacity C of a plate capacitor depends on the distance between the plates d, the area of
the plates A and the permittivity e, determined by the material between the plates:

80€7~A
d

C:

Change of Capacitor Plate

A change in the distance between both plates has the same Capacitor
nonlinear effect as the just discussed displacement in the inductivity: ° |

- C d
O kK k — T I

Cd+Ad 14 Ad
Similar to the inductivity change, the capacitor can be built Differential Capacitor
according to the differential principle. Again, together with ]
a bridge circuit a linear characteristics can be created. . O %d +Ad
Co d— Ad
o T
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3.2 Displacement and Angles

Capacitive Measurement Method: Change of Capacitor Plate

A change of the plate area directly (without any tricks) effects the capacity in a linear way:

AA A

~ s

C:]{(A+AA>::Z€(1—|-7) Depth b —
O—

With an original plate area of A = bs this yields a change of that area of 4A = b4s. Thus, the
capacity changes linearly with the displacement of the plates against each other:

C’:kb(s—i—As):c(s—i—As)—é<1+§>

S insulation layer electrode
'

This approach is commonly applied for displacement and angle T_
measurement as well as fill level measurement in tanks and other types

of reservoirs. It is important to notice that the liquid must be conducting
electricity. The reservoir together with the conducting contents acts as the
one capacitor plate, the electrode as the other. The insulation layer acts as
dielectric medium. The effective plate area (proportional to the capacity)

IS proportional to the fill level.

B syt ety
T g T e

R

T g e g
e sty ta vt e ey

conducting”
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3.2 Displacement and Angles

Capacitive Measurement Method: Change of Dielectric Medium
With the shown approach the thickness of layers can be measured if their  © |

permittivity &,, is known. On one capacitor plate the material layer €rl I di
is applied; the remaining part is typically filled just with air, i.e., ., = 1. ez 1§ dy

The capacity of the capacitor is influenced in a nonlinear way by the
thickness of the material layer d,. According to the rule of a series connection of two
capacitors, we get the following overall capacity (d, =d-d,):

1 1 1 dl d2 8()A
- = + = 5 C=
C C1 Oy eperid  eoer24 di/er1 + d2/er2
- - - - O—
Displacement, angles, and fill levels even of non-conducting materials S 59
+«—————>

(as long as ¢,, Is significantly different from ¢,,) can be measured with 4:’ o
the approach shown to the right. Here, the relationship between the o 1

displacement s, and the overall capacity follows the rule of two capacitors o— o
In parallel which yields a linear relationship (s, =s—s,):

£0Er1b s £0Er2b s gob 5
C=01+0C = omrl ol + Oere? o2 20 (er181 + €r2s9) NON- /%ﬁ
d d d conducting
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3.2 Displacement and Angles

Optical Measurement Technigues

« Incremental Displacement Measurement: The distance is divided into equidistant

intervals whose width determines the resolution of the measurement. The intervals are
counted and the measurement is always relative to a starting point.

« Coded Displacement Measurement: Coding of the position allows to determine the
absolute, not only the relative, position.

« Interferometric Displacement Measurement: Highly accurate measurement based on
interference of laser beams. Displacement around .4/8 can be determined (. ~ 600 nm).

feststehender Reflektor

halbdurchlissiger

Yy Spiegel
I )
.......... -
Bild 3.74 Inkrementales hcwcglichc‘: Reflektor
U, U, Léiingenmesssystem (Messobiekt)
2 S500)
22
L
2(]
g3 Bild 3.75 Codierte
gé Lingenmesssysteme
gl a)l )'"”I'(:”‘I"' Bild 3.77  Grundprinzip
g0 b) Gray-Code Empfiinger des Interferometers
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3.2 Displacement and Angles

Miscellaneous
Displacement measurement techniques applied in modern driver assistant systems:

» Infrared: Based on the emission and reflection of laser impulses and the measurement of
their time delay (ns range!). Can be used to measure the distance to the ahead driving car
for adaptive cruise control systems. Good visibility is required, but then good signal
quality can be expected. Quite low price.

« Radar: An alternative to infrared technology. Typically, realized with 77 GHz radar
frequency. According to the Doppler principle besides the distance, the relative velocity
to the next car can be measured. Bad visibility is no handicap. Relatively expensive.

In the short range 24 GHz radar is used for parking sensors.

« Ultrasound: Used for parking sensors (only short distances!). High importance for
nondestructive material testing.

» CCD camera: Together with powerful but expensive and complex image data processing,
this can support the other sensors. It is necessary for lane and blind spot detection. Very
flexible but complicated. Not very robust.
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3.3 Speed

Possibilities for Speed Measurement
Three main alternatives are available for speed measurement:

1. Measurement of a time interval At, in which are certain distance 4s is covered.
Subsequently the speed can be calculated by v = 4s/ At. Speed measurement is done by

measuring distance and time. ,\w
2. Measurement of a rotational speed «w and conversion into the @
translational speed with v = wr. v
3. Direct measurement of speed by the use of:
- Doppler effect of acoustic waves.

- Doppler effect of electromagnetic waves with radar or light.

- Combination of 2 cameras and correlation analysis
(strictly speaking based on method 1, but only used for speeds).
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3.3 Speed

Doppler Effect for Acoustic Waves W/‘\
\"

The Doppler effect describes the relative velocity between >
the object that emits the waves and the objet that reflects

the waves. The acoustic Doppler effect is typically used in W
the ultrasonic range.

For departing objects the frequency shift becomes /\/\f/\ v

(c = speed of sound): > ——
_ v f—rf-
f__fc_|_rU v_cf+f_ W

For approaching objects:

Doppler Effect for Electromagnetic Waves (Radar, Light)
Due to the theory of special relativity (¢ = speed of light):

c—v fF=f c+v 2 — f?
= 2+ 12 + c—v 2+
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3.3 Speed

Speed Measurement with 2 Cameras and Correlation Analysis

With well-structured surfaces like bulk on

a conveyor belt or a street below a car,
these patterns can be recorded with 2
distant cameras.

Comparing both camera signals with
the help of correlation analysis, yields
the time interval between both signals.

,,,,,,d, ,,,,,._________.’{
Lichtquelle Lichtquelle
Sensor 2 Sensor 1
y(t) x(1)
h
\
[\
Q S
‘ -

Abbildung 6.4. Modell eines Forderbandes zur beriihrungslosen Geschwindigkeitsmessung
tiber das Laufzeitkorrelationsverfahren

With known camera distance d, the 2 camera 1
speed can be calculated from v = d/ At. X(t)
ol
correlation function r,, 2| ‘ , ‘ ‘
1 _ 1 I \ 0 20 40 t [S] 60 80 100
Toy(At) = — y(t + At .
oy N z:: ) s : maximum! camera 2
VA
At=10s «—2% 1IoAt [5] 20 0 20 40 i [S] 60 80 100
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3.3 Speed

90"

Speed Measurement: Optical Methods

A disc as shown to the right can be mounted on “

an aXIe and Illumlnated by a Ilght SOUrce. The Bild 3.119 Impulsscheibe fiir Bild 3.120 Codescheibe fiir Absolut-Dreh
reflected light can be accepted from a photo diode, "men-Prehseber R SR R s
The discs can be marked incrementally or coded. Typically they have a marking of the initial
point, that give an absolute reference for the incremental disc. The speed range that can be
covered by this kind of approach is typically around 0 — 12000 min-2.

0’

Speed Measurement: Tachogenerators

A generator can be used for speed measurement.

DC motors/generators yield a DC voltage m
proportional to the speed. AC motors/generators

yield an AC voltage that has to be rectified

before its amplitude is proportional to the !

speed. However the direction information ‘3
(sign) is lost by this procedure.

Bild 2.107: Gleichspannungs-Generator Bild 2.108: Wechselspannungs-Generator
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3.3 Speed s

N
Speed Measurement: Inductive Method = IU
The inductivity of a coil depends on the relative magnetic permeability f 0

u, of the material through which the field line pass. Therefore, teeth
and gaps can be detected, if the cog wheel is built of ferromagnetic
material. In contrast to optical speed sensors, this approach is very
robust against dirt and other environmental disturbances.

- - - 6
ThUS, they are Commonly used In automotive IndUStry Bild 8.3.2: Induktiver Aufnehmer fiir Drehzahl und Drehwinkel,

Ferromagnetische Zahnscheibe mit Zahnliicke A, Dauermagnet

A dOUbIe gap markS the Inltlal pOInt mit Weicheisenkern in einer Induktionsspule.

Speed Measurement: Magneto Resistive Method

It is similar to the inductive method. With a field plate the ' 1 pmearé?]ae?ent
dependency of the electrical resistance of a resistor on the K*_ feld plae
strength of a magnetic field is utilized (see Hall effect).

By using nonsymmetrical teeth-gap sequences, even the crown gear

speed direction can be recovered. _45 —

Bild 3.123 Feldplatte in
Drehzahlmessanordnung
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3.3 Speed

Yaw/Angular Velocity Measurement: Coriolis Principle (e.g., for ESP)

With micromechanics it is possible to realize an equivalent
of a tuning fork that can be excited by permanent oscillations
(in direction left/right). Due to these oscillations, the endings
of the fork move with speed v. An angular velocity @ (from
outside) with the oscillation orthogonal with respect to the
movement creates the Coriolis force orthogonally

Fo~wXu e S

which is proportional to the angular velocity w. w  movement of tuning fork v
Sensierrichtung / ’ l

spring

acceleration sensor seismic mass
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3.4 Acceleration

Measurement Principles

For measurement of accelerations (translationally or rotationally) the following two
approaches are important:

« The derivative of speed signals (attention: Derivatives enhance the noise!).

« Measurement of the force F or torque M at a body with mass m or a moment of inertia ®
and determination of acceleration via:

F=ma O M=0Qw

The first approach leads to the two previous sections. Therefore only the second approach is
pursued here. Hereby the inertia of a mechanical resonator acts on a seismic mass. The
equations of motion are those of a standard spring-damper-mass system:

mi(t) +dr(t) +cr(t) =—ma(t) — 7(t)+ %f(t) + % r(t) = —i(t)
— —
2Dw0 Wi
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3.4 Acceleration wo—i]E D=2
m 2/ mc

Measurement of Acceleration with a Seismic Mass

With the usual notations for the damping D and the resonance frequency «,, a seismic mass

follows the equation: s =
: O &
P(t) + 2Dwor(t) + wir(t) = —&(t) = —a(t) N ;
_ PP ANl
If @, is chosen to be big (via a stiff spring and a small mass) then the ' &\\
3. term dominates the left part of this equation which yields | d :
approximately: (I J ]
A X
2 C Fe(t)
a(t) = —war(t) = ——r(t) = — :
(t) = —wdr(t) = —r(t) = - = [. )
Acceleration measurement: 5
Y/
c >> ]_’ m << ]_, D << 1,(,00 >> 1 Trigerrahmen (Grundmaterial)
. R
Velocity measurement: . | I EE
)
c << ]., m << 1, D > > 1 AN AR RN LRy ausgedtzte N
2l b) = Biegefedern e E
DISpIacement measurement: Bild 3.101 Beschleunigungssensoren
c << 1.m >> 1 D << 1 wo << 1 a) piezoelektrischer Beschleunigungssensor, b) monolithischer
? ? ! Si-Beschleunigungssensor, ¢) kapazitiver Beschleunigungssensor
. . utomatic Control University
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3.4 Acceleration

Frequency Response of a Seismic Mass

The frequency response is very dependent on the damping D around w =~ wq. Therefore,
either the low frequency range w < wq (tuned to high resonance frequency) or the high
frequency range w > wo (tuned to low resonance frequency) is utilized. The high frequency
range is used for measuring accelerations (slide before), the low frequency range is used for
measuring displacement of oscillations 10

The frequency response shown on the : D = low resonance
right is given by the relationship: g = frequency
1 A - -
r w? ”
i V(w2 — w?)2 + (2Dwow)? 3 R te
0 0 X high resonance Dw 4
011 frequency D= T
acceleration displacement
0.01 } measurement measurement
\ l ey R
0,1 0,5 1 5 10

0)/(1)0 —
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3.5 Force, Torque, Pressure, and Mass

Force Measurement

Measurement of force is typically achieved via measurement of displacements. The following
principles are the most common ones:

« Strain Gauges: In elastic deformation the force is proportional to the change of length
which in turn results in a change of electric resistance (see Chapter 3.2).

* Piezoelectric Effect: A force or stress applied to a crystal generates an electric charge
(“piezo” means “squeeze” or “press” in Greek). This principle is well-suited to measure
highly dynamic (fast and/or oscillating) forces.

This effect is a reversible process, i.e., a mechanical force is generated if an electrical
field is applied to the crystal. The force @field effect can be used for sensors; the
field @orce effect can used to build actuators. The latter is e.g. used to generate
ultrasound or for injection valve control of modern Diesel engines.

« Magnetoelastic Effect: The dependency of the magnetic properties of certain alloys with
respect to an external force can be used to measure this force. The caused displacement is
minimal.
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3.5 Force, Torque, Pressure, and Mass

L_oad Cell

A load cell consists of an elastic, cylindrical body that is compressed or elongated by an
external force. Strain gauges are glued on this body which measure the resulting stress.

« Range: 50N ... 5 MN.
« Uncertainty ~ 0,05%.
« Applications, e.g. electromechanical scales (balances):

- Commercial balances.

- Horizontal containers. AN
- Weighbridges. - il
N N
- Rail scales. § %r-%
% §P/ strain gauges 3.54'2 KraftmeBdose
- Belt scales. § § ..... <matischer Aufbau
§ \ o I Hohlzylinder
\ % 2 Dehnungsmelstreifen
& \ 3 Gehiiuse
4 Deckel
| 5 Druckstiick
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3.5 Force, Torque, Pressure, and Mass

Piezoelectric Force Measurement

Certain types of crystal, e.g. SiO,, generate an electric field in response to mechanical force
or stress. Dependent on the polarization direction, an electric charge gathers on the stressed
areas (longitudinal effect, “Langseffekt”) or in the orthogonal direction (transverse effect,
“Quereffekt”) or from a shear force (shear effect, “Schereffekt™)

The amount of electric charge Q is proportional to the belastet
- unbelaste o
causing force F: “

Q=kF with k = 2,3-10-12 As/N

In order to increase this tiny amount of charge,
those crystals are typically build as stacks, i.e.,
many crystals are placed in series.

F
Shortly after their generation the charges try Ir_—_—f—_—_nl fesasf °
to balance each other. Thus, the effect is only I |0 - | o
temporarily. The electric charge has to be 1::'_::‘ e qzz==f |
stored somehow after its generation. longitudinal transverse shear

Bild 2.130: Wirkungsrichtungen des piezoelektrischen Effekts
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3.5 Force, Torque, Pressure, and Mass

Piezoelectric Force Measurement: Dynamic Behavior

It is possible to describe the crystal as a current source with an internal resistance R, and a
capacity of C, (see figure b) below). If a force appears suddenly (step input), then quickly a
charge Q, Is generated. With a time constant of R C, this charge exponentially fades away
although the force continues to act. Via the internal resistance the capacitor discharges. If it is
required to measure static forces, it is therefore necessary to feed the voltage to an integrator
OpAmp circuit.

This transient behavior of the piezoelectric effect is a drawback for stationary measurements,
but is well-suited for fast dynamic measurement because it possesses a high bandwidth.

The voltage generated as a result

of the electric charge can be F ¢ Fo
calculated as: TZzZzZzZz2 ' ‘ -
++ + ++ 0 t
| e a5 o [

a) F % b)

Bild 2.132: Aufbau (a), Ersatzschaltbild (b) und Sprungantwort (c) eines piezo-elektrischen Aufneh-
mers
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3.5 Force, Torque, Pressure, and Mass

Reversed Piezoelectric Effect: Principle of Actuators

The piezoelectric effect offers new possibilities in actuation because of its high bandwidth.
High injection pressures of 2000 bar spray the Diesel fuel very accurately and smoothly into
the cylinder. This allows to partition the injection into several small injections to shape the
combustion profile. Thereby, it is possible to make the explosion more efficient and at the
same time optimize its other properties like decent acoustics.

Piezoelectric Injector for Diesel Engines [Siemens VDO]
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3.5 Force, Torque, Pressure, and Mass

For the measurement of torque
the technique discussed for
force measurement can be applied. Strain gauges can
be applied to an axle to measure torsional stress. The
change in resistance can be evaluated in a bridge circuit,

Torque Measurement
a)

A different possibility is to measure the torsional dis-
placement between a flange-mounted disc and a pipe
mounted in further distance. The displacement measure-
ment can be performed inductively or capacitively.

Source: http://www.telemetrie-

Signal Processing \_?volrld.df/_faczirtikeI/7._Drehmomentmessung_mit_
One difficulty with measuring torques is the transmission p pipe Il: disc

of the measurement signals outside of the rotating axle to a

fixed system around. This can be solved via slip rings. S é ———————————— =
A more robust technique is via a transformer. ‘———r

Modern systems are based on infrared or radio systems.
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3.5 Force, Torque, Pressure, and Mass

Pressure Measurement

Pressure measurement is typically based on the measurement of force. The force acts on a
defined area, normally a membrane. Actually, pressure differences are measured, i.e., the
deviation between a pressure and some reference pressure:

« |f the reference is equal to the atmosphere pressure, measurement value is called
excess (over) pressure or under pressure. Example: tire of a car.

« Sometimes the reference pressure is zero (vacuum). Then, the
measurement value is called absolute pressure.

The difference pressure lifts or lowers the membrane.
By this, the pressure difference is converted
Into a displacement. This can either be
displayed directly (see figure) or it can

be further converted with the principles
discussed in Chapter 3.2

(resistive, inductive, capacitive)

intO an eleCtriC Signal. Bild 7.2: Federdruckmesser [0.17]

a) RohrfedermeBwerk, b) PlattenfedermeBwerk, ¢) KapselfedermeBwerk

X ¥
5

27272277777
77777777

7
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W
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o
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3.5 Force, Torque, Pressure, and Mass

Mass Measurement

Masses m can be determined via their proportional weight force F. The proportional constant
Is the acceleration due to gravity g:

F=mg

A counter force is created that balances the weight force. If the counter force is also
generated by masses, the acceleration g cancels out. If, on the other hand, the counter force is
generated by springs, magnetic or electric fields, or similar, the scale has to be calibrated
dependent on the location because g is influenced by the location on earth (not a perfect,
homogeneous sphere!), even so in higher heights.

ﬁ Permanent-
[~ magnet

X

|- Tauchspule

Verformungs-
korper

DMS

o

L

Bild 3.102 Neigungswaage mit Bild 3.103 Elektrodynamische
Parallelogrammfiihrung Kraftkompensationswiigezelle Bild 3.104 DMS-Wiigezelle Bild 3.105 Ringtorsionswdgezelle
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3.6 Temperature

A) Thermocouples

« 2 wires consisting different materials (usually metal alloys) A and B that produce a
voltage proportional to a temperature difference between either end of the pair of
conductors. Thermocouples are a widely used type of temperature sensor for

measurement and control of temperature T.

« At the ends of the wires a circuit is connected. These connection have temperature T,. For

reference, these connection can be put into ice water.

T T i R O
» The voltage generated by the thermocouple consisting 7 - / w
. . . 7 Fe-CuNi
of wire A and B is given by: 60 [
4 K
U= kAB(T—TO) 0 /
U/mV 40 : o
The proportionality constant k,g and the reference NiCr-Ni
. . 30 =
temperature T, have to be known a priori!
20 i
Pt 30 % Rh-Pt 6 % Rh
A ‘ Cu 10 | //{
. I JE] I ]| I L |
T ‘< 1o Ul Evaluation —1271)/[ 0 300 600 900 1200 1500 1800
B Cu ~10 [ T-T, 1°€¢ ———
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3.6 Temperature

B) Resistance Thermometer (PTC, Positive Temperature Coefficient) — Metal

The ohmic resistance of a metal wire depends on the temperature T approximately as follows:

R =Ry [1+a(T —Tp) + B(T — Tp)’]

The coefficients @ und £ are material dependent, R, denotes the resistance at a reference
temperature T, (as well material dependent). Because £’ is much smaller than «, the quadratic
term can be neglected — at least for small and moderate temperate changes.

Typically the reference temperature is chosen as T, = 0°C:
R = Ro(l + 0419)

where 7 denotes the measured temperature in °C.
The temperature coefficient « describes the relative
change of the resistance with the temperature:

R/Q

400 — T 1 r

T

L~

300 -
~ o

200

800

1 dR a >0 for PTC
T Ry dY a < 0 for NTC =
From the measured value we obtain: ]
_ standardized . : L
9 — R — Ro £100 O 200 0 200 400 600
aRo a 3°C —=
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3.6 Temperature

Signal Processing for Resistance Thermometer
« Processed with bridge circuits
« Direct voltage measurement possible if current is forced by a constant current source.

« CAUTION: The current through the measurement resistor must be small enough that the
power loss (dissipation) is negligible. Otherwise, the heat can distort the temperature
measurement.

» For the Pt-100 resistance thermometer two accuracy classes are standardized:
Class A: +(0.15 + 0.002|9 |)°C Class B: +(0.30 + 0.005[9 |)°C

PTC Resistance Thermometer (Metal) Thermocouples

more accurate less accurate
up to max. 850°C even for higher temperatures
slower (large time constant) faster (small time constant)
no point-wise measurement point-wise measurement
. I 2\ utomatic Control University
3. Measurement of Non-Electrical Quantities Page 419 Prof. Dr-Ing M
Oliver Nelles

of Siegen



3.6 Temperature

C) Resistance Thermometer (NTC, Negative Temperature Coefficient) — Semiconductor

In semiconductors the number of free electrons grows with the temperature significantly. The
Intrinsic conductivity increases, the resistance decreases. With the material constant b and the
resistance R, at temperature T, the following relationship holds:

With the constant K, = Rye= %o this yields:

100 =X T T

I 3 S S B

T T T T

T 10° N\ R — Koeb/T
- S \ 1 Thus, the sensitivity becomes:
: N\ 1 dR b
4 AN =~k
10* £ : & 1 dl’ T2
2 \ The temperature coefficient is:
= ! 2 -
I()l o) A-JI—-P—“""T'—A——L—T-I—_
e T L B ldit b a < 0: negative temperature coefficient!
3/°C —— R dTI T2
Bild 3.7 Widerstand eines Heifileiters | (Nennwiderstand 50 k2 ) und eines App|IC8IIOnS car, app“ances

Platinwiderstandsthermometers 2 (Nennwiderstand 1000 Q) in Abhdingigkeit von
der Temperatur v.
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3.6 Temperature

PTC Resistance Thermometer

a 1s positive and small

a 1s almost constant
(~ linear characteristics)

resistance is small; Calibration
of the wires is necessary

extensive in space
no point-wise measurement

slow
high accuracy

high long-term-stability
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NTC Resistance Thermometer

« 1S negative and has large absolute value

a 1s strongly temperature dependent
(strongly nonlinear characteristics)

resistance is so large that no calibration of the
wires is necessary

manufactured in tiny sizes
point-wise measurement possible

fast
medium accuracy

little long-term-stability
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3.6 Temperature

D) PTC Resistance Thermometer — Semiconductor

PTC thermometers consisting of semiconducting and ferromagnetic material and not of metal.
In the low temperature range it has a small resistance with negative temperature coefficient.
Above a material dependent critical temperature T,, the Curie temperature, the unified
orientation dissolves. This leads to a exponential increase of the resistance in a small
temperature band (T, — Tg). In this range the approximate relationship holds:

R = Rge" T =10)

0t [ Sensitivity and temperature coefficients are:
dR bR 1 dR )
3 L — = o= ——— =
10 dl’ R dr
R/Q The temperature coefficient
10° | Bild 3.8 is 5 x higher as with NTC.
; Widerstand eines Kaltleiters in
| Abhéingigkeit von der Temperaer  Drawbacks are the extremely
l()l E : ,I'A 'I;""I)('rl”l”; h('i der (/(‘l‘ ’“'I",)('" dispersive material properties and
! b raturkoeffizient positiv wird ] o
To! Tni Ty In Nenntemperatur, Beginn des volatile Stab”lty. Thus, only a low
Tyt PSS UL PSR Sl L1 W o] steilen Widerstandsanstiegs P -
0 50 100 150 Ty Endtemperatur, Ende des steilen preC|3|on IS pOSSIb'G.
8°C ——n Widerstandsanstiegs
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Source: http://de.wikipedia.org/wiki/Temperaturmessung

3.6 Temperature

E) Miscellaneous

Besides the discussed temperature measurement approaches, there exist
many alternatives that also work according to a contact principle. The
following things have to be considered:

«  First, the sensors measure their own temperature.

« The instrumentation engineer has to ensure that the sensor adopts -
the temperature of the medium which shall be measured. |

« The sensors affect the medium which shall be measured. Thus, the sensors can introduce
or draw heat from the medium. This means, the measurement is interacting!

Alternatively, there exist sensors which work according to the radiation principle.
Especially for high temperatures this is a common approach. The sensors do not have any
contact to the measured medium. They evaluate its radiation, e.g.:

« Thermopile: Series connection of thermocouples that are sensitive to heat radiation.

» Pyroelectric temperature sensor (see picture): Based on the change of polarization of
certain dielectric materials whose charge density on their surface is measured.

« Radiation pyrometer: Based on the measurement of the radiation power density ~ o T4.
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3.7 Flow

Volume Flow and Mass Flow

The volume flow is defined as:

. dV
Qv =V = pr
The mass flow is defined as:
, dm
Qm =100 ="
Both quantities are related via the density ¢ of the fluid:
Qm — PQV

If the density is known theoretically (commonly the case for incompressible fluids) or can be
measured, then it is possible to convert volume flow in mass flow and vice versa.

Mass flow as a quantity has the advantage that it is constant in closed systems, while volume
flow of compressible fluids depends on their density and thus also on pressure and
temperature. On the other hand, the measurement of volume flows is cheaper, simpler, and
more widely used.
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3.7 Flow

A) Differential Pressure Method

The flow measurement is indirectly performed by measuring pressures. A narrowing pipe
increases the flow velocity due to a decreasing cross-section. Following Bernoulli, the flow

velocity increases accordingly:

p1+ Bv% = p2 + Bv% (‘1) L 2 Y2, p2 ()Az

2 2
The pressure drop therefore becomes:

2 2
p p ofv p oA 1
=i =5 =508 (33 1) = 54 (3 -1) - 58 (3~ )

The volume flow can be calculated from the square root of the difference pressure:

Ap
P

Qv =k

Dependent on the kind of narrowing (orifice, nozzle, venturi), an additional pressure drop of
9% — 60% has to be considered due to turbulence (energy loss). That has to be taken into

account with a proportionality factor k.
With a Pitot tube well-known through Prandtl such difference pressures can be measured.
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3.7 Flow

Different Kinds of Narrowing Pitot Tube
mﬂd'&ﬂﬂm nmm%m == =
e o - |
2) u:::::::ﬂlﬂ:nm b) m:n::n:Jb-; ‘‘‘‘‘‘‘‘‘ | |
Iy Y s
[ R e — B e e :
r ; r ;: o, F/0
c) d) Y -
i H = g Mounted on Airbus A380
Bild 3.33 Ubersicht iiber die in der Bundesrepublik Deutschland : ﬁt(i::r/(;i:n.wikipedia.org/wiki /Pitot._tu
c}Staurehr mitt pgeg und pst be

genormten Drosselgerdite
a) Blende, b) Diise, ¢) Venturidiise, kurz, d) Venturidiise, lang

Properties of Flow Measurement with the Differential Pressure Method

%

Pges
L1

« Robust, simple and resistant (endure hard environmental conditions).
« No moving parts. Limited measurement range due to quadratic pressure dependency.

« Most commonly used and standardized approach.
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3.7 Flow

B) Volume Counter Measurement

Volume counter with metering chamber Aex 0
oG,
2

Transports fluid in chambers and thus
counters its amount and therefore flow. /

oval
gear meter

Volume counter with hydrometric vane

A wheel with vanes (or blades) is
turned by the fluid flow. Actually,
the flow velocity is measured but
a multiplication with the cross- meter with
section yields the volume flow. meter with axial wings vertical wings

Modern method: The energy for turning the wheel is not taken from the fluid flow. Rather it
Is supplied from outside. The pressure drop is feedback controlled to zero.

Properties: Large measurement range, independent of viscosity, sensitive with respect to
contamination of the fluid because of moving parts.
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3.7 Flow

C) Float Measurement

A floating body with large cross-section A is placed inside the fluid flow. It is lifted to a

height where the force caused by the flow balances exactly the force caused by its weight:

pv

F = CWAKT
Here v is the flow velocity inside the ring-formed opening A — A between the tube and the
floating body. According to the balance of continuity the flow is proportional to the square

i B of the height h (~ diameter):

measuring
tube Qv =v(A — Ak) ~ h?
In order to not only display the height but transmit
the signal to the outside world, it is reasonable to
~ primary  convert it into an electrical signal. An effective way
coll to realize that, is to use a ferromagnetic floating
body as coupling between two coils works like in a

guidance

secondary
coil

floating
body transformer.
flow meter
with floating body
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3.7 Flow

D) Magnetic Inductive Measurement

For all conducting fluids, the flow can be measured based on Faraday’s law in a contact-free
manner. Orthogonally to the flow a magnetic field with density B is generated. Thus, in a
moving conductor (as such the fluid can be interpreted) orthogonal to the field, a voltage is
induced. This voltage is generated orthogonal to the magnetic field and to the flow direction
and amounts to:

dd BdA The flow can be calculated by multiplication of

u=——p =g =B velocity v with cross-section A.
u
— V="pg, Properties:
B — Very good linearity, big measurement range.
A _,E'eC”OdeS — Independent of density, viscosity, pressure, temperature.
2 — Also suitable for corrosive fluids and fluids that contain
\. solids.
— No internal constructions necessary.
B magnetic inductive

u flow meter — Minimum conductivity is necessary.
< p >
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3.7 Flow

D) Remark: Reversal of the Sensor Principle as Actuator

In the movie “The Hunt for Red October” [Sean Connery, Alec Baldwin] a new and silent
drive system plays an important role. This is no science fiction! The movie refers to a so-
called magneto-hydrodynamic drive, which is constructed without any moving parts.
However, it works only in salt water because it is based on Faraday’s law and requires a
conducting medium.

The magnetic field is generated by a
superconductive generator. Orthogonal to the
field an electric current is send through the
water. Together with the current the magnetic
field results in a force on the water that is
accelerated orthogonal to field and current.
This causes the water to shoot outside the _
ship without any propeller! - S

-

1
0"

- N - -

The picture shows the first ship of this type S -
with superconductive magneto- The world's first superconducting
hydrodynamic drive [Mitsubishi, 1998]. propulsion ship Yamato-1.
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3.7 Flow

E) Coriolis-based Measurement

A body that rotates with the angular velocity «
that moves with a speed of v orthogonal to the
axis of rotation experiences a Coriolis force
orthogonal to this axis and the speed direction
of

F=mow(t)=2pALvw(t)

This force bends the U-pipe to an angle «.
With a sin-type excitation, a phase |ag exists Coriolis flow meter in U-pipe configuration
between point A and B. This phase lag is

: SN N¢ S S
proportional to the mass flow. > sl
o N .h.
. e S N\ e
Properties: = =
— No constructions inside necessary.
— Robust with respect to all fluid properties. S, D S,
— Suitable for liquids and gases. Coriolis flow meter in straight configuration
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3.7 Flow

F) Hot Wire Measurement

A hot wire or a hot foil are heated by an electric
current via a constant voltage or current source.
The flow that flows around the wire or foil
decreases its temperature. This temperature drop causes a change in the electric resistance
that is measured (typically by a bridge circuit).

Here the mass flow is directly measured because the cooling is proportional to the
temperature difference between wire/foil and fluid and proportional to the number of
molecules that impact. Corrections with respect to density or pressure changes are

superfluous.
R "// _
hot wire
Properties:
— Especially well suited for low velocities.
— Sensitive with respect to dirt and burn-out. —H
i i i hot wire meter
— Because of aging frequent calibrations are necessary. with bridge circuit

&\ utomatic Control University
3. Measurement of Non-Electrical Quantities Page 432  Prof. Dr-lng. -
Q Oliver Nelles m

of Siegen



3.7 Flow

G) Miscellaneous

Beside the approaches discussed more detailed above, many alternatives are worth at least to
mention briefly:

« Vortex method: The frequency of a vortex shedding (Karman vortex street) behind a
body where a fluid flows around is proportional to the velocity of the fluid.

« Transit time method: Within a short interval a short injection is carried out into a pipe.
The velocity of the fluid is determined by measuring the time interval and the distances
between 2 points of the solution clouds.

« Laser Doppler flow measurement: The frequency shift of laser light that is scattered on
particles inside the fluid yields a point-wise velocity measurement.

« Ultrasound flow measurement: a) Transition time method: A sound wave runs inside the
medium, i.e., the speeds add up (wave + medium). This speed minus the wave speed in
the resting medium yields the medium (fluid) speed. b) Doppler method: The frequency
shift of reflecting sound waves is used. It is dependent on the speed of the medium.
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3.8 Miscellaneous

Many other quantities can be measured which are not discussed here. The most prominent
certainly are:

« Density: Weighting methods determine the mass and the volume via suppression. The
density can be calculated by division. For solid materials, the uplift in liquids or gases can
be used. For liquids, the hydrostatic pressure difference can be used. For gases, Bunsen’s
law describing the relationship between volume flow and density for exhausting gas
through a hole can be used.

« Concentration: A huge number of special methods exist dependent on the kind aggregate
state of the studied material. Frequently these methods are based on absorption, emission,
or reflection of radiation. For Chromatography different delays of different
components inside an intermixture are used. For Spectroscopy different properties of
atoms or molecules (mass, spin, ...) are used for their division. The
Refractometry uses changes in the optical refractive index and Polarimetry uses
changes in the polarization level.
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3.8 Miscellaneous

« Concentration: Changes in the thermal conductivity can be utilized. Of particular
Importance are the measurement of:

1. Humidity: Many approaches exist based on changes in the evaporation rate,
conductivity, permittivity inside a capacitor &,.

2. pH Value: Between electrodes within different liquids a voltage occurs, an effect
known from a galvanic cell (battery). A diaphragm enables the exchange of ions but
prevents the mixing of the liquids.

3. Particle: E.qg, the particle-induced couldiness or scattering of light is measured.

« Light: Photoresistors are resistors whose resistance depends on the amount of light they
measure. Photodiodes and CCDs (charge coupled devices) convert light (point-, row-, or
matrix-wise) into electrical current. The sensitivity depends strongly on the wave length of
the light.

« Sound: A dynamic microphone works according to Faraday’s law. This means a
membrane is coupled with a wire that moves though an magnetic field. The induced
voltage in this wire is proportional to membrane movement. However, Capacitor
microphones are based on a capacity change dependent on the membrane movement.
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