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Abstract

A new Matlab toolbox for nonlinear system identification with local model networks is
introduced. Its goal is to provide even unskilled users with an easy possibility to generate
nonlinear models from data. It trains a number of different models of different complexity
with different architectures and a polynomial for comparison. At the end it gives an overview
on the achieved performances and makes a recommendation for the best model. In [?] a more
detailed description of the validation methods used for this toolbox is given.

The toolbox can be used by the trivial function call LMNTrain(data) where the training data
data = [u 1 u 2 ... u p y] contains the inputs in the first columns and the output in the
last column. The model with the best penalty loss function value (AICc) is recommended
[1, 2].

1 Introduction

This toolbox limits itself to nonlinear models with p inputs and 1 output. For several outputs
the user has to generate separate models for each. In the static case, the generated models
are of the type

ŷ = f(u1, u2, . . . , up) (1)

Dynamic models can be constructed by using tapped delay lines, i.e.:

ŷ(k + 1) = f(u1(k), . . . , u1(k − nu1), u2(k), . . . , u2(k − nu2), . . . ,

up(k), . . . , up(k − nup), y(k), . . . , y(k − ny)) (2)

However, such models performs only one-step-ahead predictions from y(k) to ŷ(k + 1). For
a simulation feedback is necessary.

This documentation concentrates on static models only. Dynamic models are not docu-
mented so far. They will be included in the documentation with future toolbox releases.
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2 Toolbox Methods

The toolbox carries out several incremental learning algorithms for local model networks.
It is build to run automatically and recommends the ”best” model achieved. Here ”best”
stands for the least expected squared error on new data. Therefore, it tries to find a good
bias/variance tradeoff and thus to avoid overfitting. Of course, each method can be called
on each own and many parameters and options are available to fine tune the results. The
primary goal of this toolbox, however, is to address the non-expert and deliver a very robust
performance. It is highly encouraged and recommended to look into more details of the
proposed methods. This can improve the performance even further.

The investigated methods are:

1. LOLIMOT with local linear models

2. LOLIMOT with local quadratic models

3. HILOMOT with local linear models

4. HILOMOT with local quadratic models

These methods are briefly discussed in the following. They will be extended and improved
in the future. More methods will be added. Some methods can easily be commented out in
order to save computation time.

2.1 LOLIMOT with Local Linear Models

LOLIMOT (LOcal LInear MOdel Tree) is extensively covered in [5]. It is an incremental
tree-structured algorithm that starts with a simple (typically linear) global model and refines
its performance in each iteration by splitting the input space in an axes-orthogonal manner.
In each iteration the worst local model is split into two equal halves. The associated local
linear models are estimated by a local least squares approach. The algorithm is very fast
and robust. Its performance can deteriorate with increasing input dimensions due to the
sub-optimality of the axes-orthogonal splits.

2.2 LOLIMOT with Local Quadratic Models

In this case, the LOLIMOT algorithm trains local models of full polynomial type. All
quadratic local model terms including all cross-terms of type u1u2 and similar are consid-
ered. It also is recommended for optimization purposes but becomes inefficient for high-
dimensional input spaces due to the huge number of cross-terms. Then the sparse quadratic
models might be a superior choice.

2.3 HILOMOT with Local Linear Models

HILOMOT and its original ideas are discussed in e.g. [3, 4]. It realizes two major improve-
ments over the LOLIMOT algorithm. a) The strong limitations of axes-orthongonal splits
fall and b) the flat (parallel) model structure is transferred into a hierarchical model struc-
ture. Advantage a) means that axis-oblique splits are carried out which overcomes the key
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weakness of LOLIMOT. The price to be paid is that the split has to be optimized which
necessarily is a nonlinear optimization problem. This makes HILOMOT one or two orders
of magnitude slower than LOLIMOT. However, it results in much better and more compact
models. Advantage b) means that re-activation effects [6] due to the normalization can be
completely avoided and only involves drawbacks on truly parallel hardware.

2.4 HILOMOT with Local Quadratic Models

Axes-oblique version of the method from Section 2.2; see Section 2.3.

3 Toolbox Inputs and Outputs

The toolbox can be called with two inputs traindata and optionally valdata and/or
testdata, respectively, and delivers two outputs LMNBest and AllLMN :

[LMNBest, AllLMN] = LMNTrain(traindata, valdata, testdata)

This is the help of the toolbox:

Each method builds its models incrementally. The choice for a good model complexity is of
paramount importance.

Commonly, no separate validation data set is available. Then the function is just called
as LMNTrain(data). The complexity is determined for each method individually with the
help of the AICc criterion [1, 2]. It is not aimed for the optimal bias/variance trade-off but
other benefits for parsimonious models are also considered such as: computational demand,
interpretability, and ease of handling. Furthermore, a too complex model with significant
overfitting is considered more dangerous than a too simple model, because it causes the
illusion of a good model fit to the unexperienced user.

If validation data is available, the toolbox shall be called by LMNTrain(traindata, valdata).
Then the model is assessed and the recommendation is made according to this separate vali-
dation data set which is more reliable. Additionally, the user can provide a separate test data
set by calling LMNTrain(traindata, [ ], testdata), which is then used only for testing
the model. This ensures comparability to other models.

4 Model Use

The model considered best is characterized by the structure LMNBest. The model output
can be evaluated for a single data point or a whole data set by

output = LMNBest.calculateModelOutput(input)

with input as 1 × p vector (p = number of inputs) or N × p matrix (N = number of data
points), respectively.

For a one- or two-dimensional visualization of the model the user can type LMNBest.plotModel
into the Matlab command window. For further information type help plotModel. Fur-
thermore, the partitioning can be plotted by typing LMNBest.plotPartition.
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If there are more than two inputs, a graphical user interface (GUI) can be used to visualize
the model at a demanded operating point. The user is free to choose the two dependent
variables, that span the input space. While changing the operating point the change in the
model output is simultaneously calculated and visualized. Furthermore, different models or
different complexities of one model can be compared. There are two different possibilities
to load a model to the GUI. Either you use the following syntax to import the trained local
model networks lmn1 up to lmnN from the MATLAB workspace:

GUIvisualize(lmn1, lmn2, ..., lmnN),

or you save a trained local model network to a variable named ’model’ and save this variable
as a mat-file. The mat-file can be imported within the GUI.

5 Toolbox Examples

The toolbox functionality is demonstrated on four static example data sets. The user just
has to run the function LMNTrainDemo. After choosing the example the training procedure
starts and after completion the user gets informed about the modeling via the LMNTool
output screen (see Figs. 1 and 2).
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A Installation Instructions

This short installation guide should help the user to install the Local Model Network (LMN-)
Toolbox and get started with the help of the implemented demonstration examples.

1. Navigate to the folder, where all files and sub folders of the toolbox are contained.

2. Open and run the installLMNTool.m file in MATLAB.

After the execution of the installLMNTool.m file, the LMN-Toolbox has been added to the
MATLAB path. Furthermore the documentation of the toolbox is added to the MATLAB
help.

To get started with HILOMOT, LOLIMOT and the LMNTool please refer to the m-files
located in the folders hilomot/demo, lolimot/demo and LMN Tool/LMNTrainExamples. For
further information just type in one of the following commands in the MATLAB command
window:

1. doc hilomot,

2. doc lolimot or

3. doc LMNTrain.
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B Implementation Notes

Here one will find additional notes regarding specific MATLAB code implementations. These
notes should help to understand some mathematical background as well as weird looking
respectively confusing code lines.

B.1 WLSBackwardElimination.m

WLSBACKWARDELIMINATION selects a subset of regressors using the method of back-
ward elimination. The algorithm starts with the whole set of regressors and then iteratively
eliminates unimportant regressors.

In every iteration a weighted least squares problem has to be solved with an other subset
of regressors contained in the regression matrix. At first the (unweighted) regression matrix
~Xorg as well as the matrix ~yorg (containing the measured output values) are weighted as
follows:

~Xi =

√
~Wi · ~Xorg , (3)

~yi =

√
~Wi · ~yorg . (4)

The weighting matrix ~Wi contains the validity values of each data point in the i-th local model
on its diagonal and hence the transposed weighting matrix equals the weighting matrix itself:

~Wi = ~W T
i . (5)

Because the weighting matrices are diagonal, the square root of these matrices can be cal-
culated by taking the square root of all entries. Through the weighting in equation 3 and
4, the parameters that minimize the weighted sum of squared errors can be obtained by the
following calculation:

~̂θopti = ( ~XT
i
~Xi)

−1 ~XT
i ~yi . (6)

In fact the optimal parameter vector ~̂θopti is calculated with the economy size1 QR-decomposition

of ~Xi:

~Xi = ~Q~R . (7)

with the orthogonal matrix ~Q (its columns are orthogonal unit vectors meaning ~QT ~Q = ~I)

and the upper triangle matrix ~R. With the QR-decomposition of ~Xi equation 6 turns into:

~̂θopti = (~RT ~QT ~Q︸ ︷︷ ︸
=~I

~R)−1 ~RT ~QT~yi︸ ︷︷ ︸
=~zi

= (~RT ~R)−1 ~RT~zi . (8)

Now we look at the weighted error√
~Wi~e = ~yi − ~Xi · ~̂θopti (9)

1Note that because of the economy size of the matrices ~Q and ~R, ~Q~QT 6= ~I
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and replace ~Xi with equation 7 as well as ~̂θopti with equation 8:√
~Wi~e = ~yi − ~Q ~R(~RT ~R)−1 ~RT︸ ︷︷ ︸

=~I

~zi

= ~yi − ~Q~zi . (10)

The weighted squared sum of errors is given by:

~eT
√
~Wi

√
~Wi~e = (~yi − ~Q~zi)

T (~yi − ~Q~zi)

~eT ~Wi~e = ~yTi ~yi − ~yTi ~Q︸︷︷︸
=( ~QT ~yi)T=~zTi

~zi − ~zTi ~QT~yi︸ ︷︷ ︸
=~zi

+~zTi ~QT ~Q︸ ︷︷ ︸
=~I

~zi

= ~yTi ~yi − ~zTi ~zi − ~zTi ~zi + ~zTi ~zi

= ~yTi ~yi − ~zTi ~zi . (11)

As can be seen in equation 11, the calculation of the weighted MSE on the training data can
be computed very efficiently.

7



References

[1] H. Akaike. Information theory and an extension of the maximum likelihood principle.
In Second international symposium on information theory, volume 1, pages 267–281.
Springer Verlag, 1973.

[2] K.P. Burnham and D.R. Anderson. Model selection and multimodel inference: a practical
information-theoretic approach. Springer Verlag, 2002.

[3] S. Ernst. Hinging hyperplane trees for approximation and identification. In IEEE Con-
ference on Decision and Control (CDC), pages 1261–1277, Tampa, USA, 1998.

[4] B. Hartmann and O. Nelles. Automatic adjustment of the transition between local models
in a hierarchical structure identification algorithm. In European Control Conference
(ECC), Budapest, Hungary, August 2009.

[5] O. Nelles. Nonlinear System Identification. Springer, Berlin, Germany, 2001.

[6] R. Shorten and R. Murray-Smith. Side-effects of normalising basis functions in local
model networks. In Multiple Model Approaches to Modelling and Control, chapter 8,
pages 211–229. Taylor & Francis, London, 1997.

8



0 50 100 150 200 250 300
0.32

0.34

0.36

0.38

0.4

0.42

0.44

model complexity − no. of parameters

J(
A

IC
c)

penalty loss function − suggested model: 

hilomotQuad

 

 

lolimot

lolimotQuad

hilomot

hilomotQuad

0 50 100 150 200 250 300

0.2

0.25

0.3

0.35

0.4

0.45

0.5

model complexity − no. of parameters

N
R

M
S

E

training error

 

 

lolimot

lolimotQuad

hilomot

hilomotQuad

−5 0 5
0

10

20

30

40

50

error histogram for suggested model

training output − model output
10 15 20 25 30 35 40 45

10

15

20

25

30

35

40

45

data output

m
o
d
el

 o
u
tp

u
t

correlation plot for suggested model

 

 

Training Data

Figure 1: Output screen of the LMNTool for modeling without test and validation data.
In contrast to modeling just using the training data now the model complexity is selected
on the validation data (top right). The selected model is marked with the black cross
and highlighted in the title of the figure for the penalty loss function. As additional plots
the model vs. test data correlation (bottom middle) and the model vs. validation data
correlation (bottom rigth) are drawn.
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Figure 2: Output screen of the LMNTool for modeling with test or validation data. The
model complexity is chosen with respect to the penalty loss function value (top left). Fur-
thermore, training errors of each modeling approach (top right), error histogram (bottom
left) and data vs. model correlation (bottom right) are illustrated.
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