
1. LMN Toolbox

This chapter briefly introduces a Local Model Network (LMN) toolbox in
Matlab. It can be downloaded from

http://www.mb.uni-siegen.de/mrt/lmn-tool/

for non-commercial use. The two algorithms for building local model networks
with axis-orthogonal partitioning (LOLIMOT) and with axis-oblique parti-
tioning (HILOMOT) introduced in Chapters ?? and ?? are implemented.

Both algorithms incrementally construct a tree with local models as their
leaf nodes. However, the obtained model structures are flat with LOLIMOT
and hierarchical with HILOMOT. While LOLIMOT ensures the partition of
unity by normalizing the membership functions (defuzzification step), HILO-
MOT hierarchically ensures that each split maintains the partition of unity by
utilizing complementary splitting functions and 1� . LOLIMOT uses local
membership functions (Gaussians) while HILOMOT uses S-shaped splitting
functions (sigmoids). Note that the exact functional from of theses functions
is not very relevant; just their principal shape and their smoothness is im-
portant.

The toolbox is implemented in MATLAB in an object-oriented manner.
First an object corresponding to a tree of local model networks needs to be
established for either axis-orthogonal or -oblique partitioning by

lmn = lolimot

or

lmn = hilomot .

Then the networks can be trained with the default settings by

lmnTrained = lmn.train

resulting in a tree of trained networks lmnTrained. Afterwards, the output
of the trained model can be calculated by

ModelOutput = lmnTrained.calculateModelOutput(input)

2 1. LMN Toolbox

or

ModelOutput = lmnTrained.calculateModelOutput(input, output)

where output is optional and only used for one-step prediction in dynamic
models (if kStepPrediction=0) and initialization in case of simulation (if
kStepPrediction=inf).

In the following, the most important settings to influence the training are
explained. These settings can be altered from their default value by

lmn.property = new value

before training.

1.1 Termination Criteria

One decisive factor for the quality of a model is an appropriate bias/variance
tradeo↵. The toolbox o↵ers a variety of criteria for finding a good model
complexity. In particular, these are information criteria (AIC

C

and BIC
C

)
and performance on validation data. In addition, the model complexity can
be directly controlled by the maximal number of local models or e↵ective
number of parameters or indirectly controlled by choosing a maximal training
time.

1.1.1 Corrected AIC

The Akaike information criterion (AIC) corrected for finite data sets called
AIC

C

is the most popular choice, compare Section ?? and [1, 2]. For the
number of parameters the e↵ective not the nominal number is used, compare
Section 1.1.5. The goal is finding the network associated with the global
minimum of the information criterion. This model is suggested by the toolbox.

At some point the incremental training has to be terminated to keep the
computational demand low. Sometimes random fluctuations on the conver-
gence curve can be observed that are due to noise and suboptimalities in
the training algorithm. Therefore it is advisable to NOT terminate training
after the first deterioration of the criterion. Rather a couple of subsequent
deteriorations are required for termination, see Fig. 1.1. The default number
is

maxValidationDeterioration = 2 .

1.1 Termination Criteria 3

5 10 15 20
0

0.2

0.4

0.6

0.8

1

iterations

A
IC

c

one deterioration

two deteriorations

Fig. 1.1. Convergence of the AICC criterion. The model corresponding to the
global optimum (here at M = 18) shall be selected. Training is terminated after
the criterion increases 2 times (by default)

1.1.2 Corrected BIC

The Bayesian information criterion (BIC) corrected for finite data sets called
BIC

C

exhibits a larger parameter penalty than the AIC, compare Section ??
and [1, 2]. Therefore it yields simpler models. This may be advisable for
scenarios with huge training data sets or whenever the motivation for simple
models is higher than normal. These circumstances are often fulfilled for
dynamic models since typically much more data can be gathered in the same
amount of time than with static measurements.

Note that many motivations exist for simpler models than the best
bias/variance tradeo↵ which can be seen as the upper threshold for model
complexity. These additional motivations include:

• Computational demand (computing time and memory) during training and
use.

• Interpretability.
• Robustness.

In order to force even simpler models than those suggested by the BIC
C

the following property allows to increase a factor multiplied with the param-
eter penalty of the AIC

C

or BIC
C

criterions, i.e.,

complexityPenalty = 1 .

1.1.3 Validation

If plenty of data is available it may be the best choice to generate a sep-
arate representative validation data set. Instead of the information criteria
discussed above then the performance on validation data is monitored in
exactly the same manner.

Note that the user possesses two alternative procedures

4 1. LMN Toolbox

1. Validation data: Splitting the data into training and validation data.
Both should be representative. Determining the model complexity on
the validation data performance.

2. No validation data: Using all data for training. Determining the model
complexity on an information criterion.

Procedure 2 o↵ers the potential for better models (more training data) but
this comes with a worse choice of model complexity (no validation data).

1.1.4 Maximum Number of Local Models

The number of local models or neurons or rules M can be used as termination
criterion. Note that a minimum number of data is requested for each local
model. By default it is required that the number of data points within each
local models is at least as big as the number of parameters to be estimated.
Because the validity functions overlap this requirement is formulated in a
fuzzy way

ni 
NX

j=1

�i(j) (1.1)

where ni is the number of parameters in local model i and �i(j) is the validity
of data point j in the local model i under investigation. If (1.1) is violated
then this split of the local model is not allowed.

In case of LOLIMOT, other splits of the same model may be possible. If
none of the splits of the worst local model is possible then the next worse
local model is considered for splitting. Therefore a reasonable limit on the
choice of M

max

is given by the data density and distribution.
In case of HILOMOT, the split optimization is constrained with (1.1);

thus it is always met. However, local models which violate (1.1) for all initial
splits even before splitting optimization starts, are locked and the next worse
local model is split.

1.1.5 E↵ective Number of Parameters

The e↵ective number of parameters gives a good indication of the flexibility
of the model. For LOLIMOT just the e↵ective number of parameters of the
local models are summed up, see also (??) in Section ??

n

e↵

=
MX

i=1

n

e↵,i (1.2)

with

n

e↵,i = tr{Si} (1.3)

1.2 Polynominal Degree of Local Models 5

where Si is the smoothness matrix of local model i. There is some discussion
whether the e↵ective number of parameter should be calculated as tr{Si} or
tr{ST

i Si} but the statistics literature seems to agree on tr{Si}.
The degrees of freedom contained in the flexibility of the partitioning

determined by the centers and standard deviations of the Gaussians are ne-
glected. This can be justified by the coarse LOLIMOT algorithm which de-
livers far from optimal partitioning.

For HILOMOT the partitioning is much more flexible and the splitting
parameters are numerically optimized. Thus, in addition to the local model
parameters in (1.2), the number of splitting parameters needs to be consid-
ered. For each split there is one splitting parameter per dimension (in the
space of the validity functions spanned by z) plus the o↵set. However, the
smoothness of the sigmoid is not optimized but rather normalized and de-
termined by a heuristic smoothness adjustment. Thus each split possesses
nz independent splitting parameters, compare Section ??. Since for an LMN
with M local models there are M � 1 splits this yields

n

split

= nz(M � 1) . (1.4)

Thus a HILOMOT trained LMN withM local models is considered more flex-
ible than a LOLIMOT trained one. This discrepancy increases if the validity
function input space dimensionality nz grows.

These e↵ective number of parameters also enter the AIC
C

and BIC
C

cri-
teria mentioned above. Note that these are very rough estimates. The split-
ting parameters are not optimized concurrently which would make the model
much more flexible. Thus, (1.2)+(1.4) is an overestimation of HILOMOTs
flexibility.

1.1.6 Maximum Training Time

For huge models that may be generated for large training data sets it can
be reasonable to specify the maximum training time [in seconds] which can
be utilized as termination criterion. In practice, this feature can be used for
generating the best possible results over night, for example.

1.2 Polynominal Degree of Local Models

The local models in the LMN toolbox can be polynomials of any order. If
the order of the polynomials and/or input space dimensionality nx grows
then the number of parameters increases rapidly. Therefore, good trade-o↵s
typically are low order polynomials. The most frequently chosen local model
types certainly are

6 1. LMN Toolbox

• Linear models: The default choice. The number of parameters per local
model is nx+1. They o↵er particular advantages for dynamic models due
to their extrapolation behavior which maintains the dynamics in extrapo-
lation.

• Sparse quadratic models: This refers to quadratic models without cross-
product (or interaction) terms, i.e., in the two-dimensional case

y = w

0

+ w

1

u

1

+ w

2

u

2

+ w

3

u

2

1

+ w

4

u

2

2

(1.5)

without w

5

u

1

u

2

. The number of parameters per local model is 2nx + 1,
i.e., grows only linearly with nx. Nevertheless they are able to describe
a minimum or maximum without the support of neighboring local models
which is a clear benefit for non-monotonous models. In contrast, local linear
models need to change sign in each dimension to describe a minimum
or maximum. This is di�cult to achieve, particularly in high dimensions.
Furthermore, it is sensitive with respect to the exact shape of the validity
functions which makes the model less robust. Therefore sparse quadratic
models are a good choice in theses cases. Contrary to full quadratic models
they can be used even for large nx.

• Full quadratic models: The number of parameters per local model is
(nx+ 2)(nx+ 1)/2. Certainly the best choice if optima of the model are
of interest. They can be interpreted as a nonlinear extension of Newton’s
method for optimization where local quadratic models are estimated in cer-
tain areas of the input space, compare Section ??. However, the number
of parameters grows quadratically with nx which limits their applicability
to low-dimensional problems.

Higher order polynomials usually are recommended only if motivated by
prior knowledge about the process. Of course, subset selection techniques like
orthogonal least squares or lasso allow to extend the limits by local regressor
selection, compare Section ??.

1.3 Dynamic Models

In order to build dynamic models the delays of the inputs and possibly out-
puts must be specified. To allow for a maximum of flexibility not just the
dynamic order (and dead time(s)) can be chosen but specifically every delay
for every network input. This also be done individually for the regressors of
the local models (or rule consequents) gathered in x and those for the validity
functions (or rule premises) gathered in z, compare Section ??.

Pure feedforward structures of NFIR type just require delays of inputs.
They are specified in the properties xInputDelay for x and zInputDelay

for z.

Example 1.3.1. NFIR of Fourth Order
The model is

1.3 Dynamic Models 7

ŷ(k) = f (u(k � 1), u(k � 2), u(k � 3), u(k � 4)) . (1.6)

This require in the general form x = z and thus

xInputDelay = zInputDelay = {[1 2 3 4]} .

The “{}” indicates a cell array.
The delayed output does not enter either x or z and thus

xOutputDelay = zOutputDelay = {[]} .

It may be su�cient to provide the validity functions (rule premises) just
with the level of u(k), not with any dynamics (like first and/or second derivate
of u(k)). Then it would be su�cient to choose

zInputDelay = {[1]}

which makes the whole problem significantly simpler going from 4D to 1D
still maintaining the fourth order in the local models.

ut

Example 1.3.2. Dead Time
A fourth order model with dead time d is

ŷ(k) = f (u(k � 1� d), u(k � 2� d), u(k � 3� d), u(k � 4� d)) (1.7)

which translates in the following delays

xInputDelay = zInputDelay = {[1 + d 2 + d 3 + d 4 + d]} .

ut

Example 1.3.3. MISO NFIR
For system with multiple inputs it is possible to specify the delays individually
because the properties are cell arrays and thus can have individual lengths
for each input. Assume the following model:

ŷ(k) = f (u
1

(k � 1), u
1

(k � 2), u
1

(k � 3), u

2

(k � 1), u
2

(k � 2)) . (1.8)

For x = z this is specified by

xInputDelay = zInputDelay =

⇢
[1 2 3]
[1 2]

�
.

ut

Example 1.3.4. MISO NARX
For NARX models the delayed outputs also enter the network. Assume

8 1. LMN Toolbox

ŷ(k) = f (u
1

(k), u

2

(k � 1), u
2

(k � 2), y(k � 1), y(k � 2)) . (1.9)

For x = z this is specified by the following input delays

xInputDelay = zInputDelay =

⇢
[0]
[1 2]

�

and the following output delays

xOutputDelay = zOutputDelay = {[1 2]} .

ut

Example 1.3.5. MIMO NARX
For a first order NARX model with two inputs and two outputs di↵erent
possibilities exist. Two separate models of the following type can be used

ŷ

1

(k) = f

1

(u
1

(k � 1), u

2

(k � 1), y

1

(k � 1)) (1.10)

ŷ

2

(k) = f

2

(u
1

(k � 1), u

2

(k � 1), y

2

(k � 1)) (1.11)

where each model describes one output without relating to the other output.
Here two models – one for y

1

(k), the other for y
2

(k) – are set up. For x = z

with

xInputDelay = zInputDelay =

⇢
[1]
[1]

�

and

xOutputDelay = zOutputDelay = {[1]} .

Alternatively, both delayed outputs can be used in both models

ŷ

1

(k) = f

1

(u
1

(k � 1), u

2

(k � 1), y

1

(k � 1), y

2

(k � 1)) (1.12)

ŷ

2

(k) = f

2

(u
1

(k � 1), u

2

(k � 1), y

1

(k � 1), y

2

(k � 1)) (1.13)

which not only requires feedback from each model’s output to its input in
simulation but also from each model’s output to the other model’s input.
This certainly will increase potential stability problems.

WARNING: Such an approach can only be used for one-step prediction
with the discussed toolbox. For simulation it would require two simulate two
models in parallel and feed back the outputs in a crosswise manner.

For prediction the “other” output can be treated as an additional (third)
input which could be realized by

xInputDelay = zInputDelay =

8
<

:

[1]
[1]
[1]

9
=

; .

and

1.4 Di↵erent Input Spaces x and z 9

xOutputDelay = zOutputDelay = {[1]}

with u

3

(k) = y

2

(k) for model 1 and u

3

(k) = y

1

(k) for model 2.
Finally, a real MIMO model can be established:

ŷ

1

(k)
ŷ

1

(k)

�
= f (u

1

(k � 1), u

2

(k � 1), y

1

(k � 1), y

2

(k � 1)) . (1.14)

ut

Often significant improvements can be achieved by keeping z low-dimen-
sional. Especially for high-order dynamics it is very beneficial to choose only
x high-dimensional where it only increases the estimation variance and com-
putational demand moderately; while keeping the dimensionality of the z

input space to a minimum which is essential for combating the curse of di-
mensionality.

Nonlinear Orthonormal Basis Function Models. This dynamic real-
ization is not specifically supported. It can be realized by filtering the inputs
appropriately and utilizing them with a “static” model.

1.4 Di↵erent Input Spaces x and z

Static models do not require any delays. Therefore always

xOutputDelay = zOutputDelay = {[]} .

The entries for xInputDelay and zInputDelay can either be 0 or empty
dependent on whether the inputs do exist in x and z or not.

Example 1.4.1. Scheduling
The following relationship shall be modeled where the parameters depend on
u

3

. Such models are called linear parameter varying (LPV):

ŷ(k) = w

0

(u
3

) + w

1

(u
3

)u
1

+ w

2

(u
3

)u
2

. (1.15)

The local model network describing this relationship has three inputs: u
1

and
u

2

enter x and u

3

enters z. Thus

xInputDelay =

8
<

:

[0]
[0]
[]

9
=

;

and

zInputDelay =

8
<

:

[]
[]
[0]

9
=

; .

ut

10 1. LMN Toolbox

1.5 Smoothness

The smoothness of the validity functions is determined by the standard de-
viations of the Gaussians in the LOLIMOT case and by the absolute values
of the direction weights of the sigmoids in the HILOMOT case, respectively.
The property smoothness determines the proportionality factor between the
partitions’ extensions and the standard deviations in the LOLIMOT case and
determines a minimum validity value for data points close to the split or close
to the center of the local model in the HILOMOT case.

Since the smoothness is not optimized but heuristically determined it can
be increased to make the model smoother or decreased to make the model
crisper. Its default value is 1.

smoothness = value .

Even after training this value can be changed. Although, strictly speaking,
it changes the validity values and thus the outcome of the weighted LS esti-
mations of the local models’ parameters, this e↵ect typically is small. If the
smoothness is altered significantly a re-estimation of the local models’ param-
eters is recommended. Slight suboptimalities with respect to the partitioning
usually can be tolerated.

1.6 Data Weighting

By default all data points are weighted equally with weight 1. It can be set
by the property

dataWeighting = [w(1) w(2) · · · w(N)]0 .

By choosing an appropriate weighting “badly” distributed data which is un-
desirably dense in some regions and sparse in others can be “normalized” in
its importance on the model fit. Alternatively, sometimes it is desirable to
over-pronounce certain regions compared to others because their performance
it more important. Data weighting is an easy and e↵ective method to deal
with these issues.

1.7 Visualization and Simplified Tool

For first steps that do not require (and allow) delving into the details of
the toolbox and dealing with the settings/properties explained above a very
simplified approach is as follows. Local model networks can be trained by the
trivial function call

LMNTrain(data)

1.7 Visualization and Simplified Tool 11

0 100 200 300 400 500 600
model complexity - no. of parameters

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

J(
A

IC
c)

penalty loss function - suggested model:
hilomotQuad

lolimot
lolimotQuad
hilomot
hilomotQuad

0 100 200 300 400 500 600
model complexity - no. of parameters

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

N
M

SE

training error

lolimot
lolimotQuad
hilomot
hilomotQuad

-20 -10 0 10 20
training output - model output

0

50

100

150

200

250

error histogram for suggested model

10 20 30 40 50 60 70 80
data output

10

20

30

40

50

60

70

80

m
od

el
 o

ut
pu

t

correlation plot for suggested model

Training Data

Fig. 1.2. Typical outcome of the LMN toolbox. Default setting is the train-
ing of four networks with local linear and quadratic models with axis–orthogonal
(LOLIMOT) and -oblique (HILOMOT) partitioning

where the training data

data = [u 1 u 2 ... u p y]

contains the inputs in the first columns and the output in the last column.
The model with the best penalty loss function value (AIC

C

) is recommended
[1, 2]. Figure 1.2 shows the plot that is generated by this function call. The
data set is the benchmark “Concrete Compressive Strength” from the UCI
data repository1.

In extension, this simplified tool can be called with two or three inputs
traindata and optionally valdata and/or testdata, respectively, and de-
livers two outputs LMNBest and AllLMN:

[LMNBest, AllLMN] = LMNTrain(traindata, valdata, testdata)

1 https://archive.ics.uci.edu/ml/datasets.html

12 1. LMN Toolbox

Then the model is assessed and the complexity recommendation is made
according to this separate validation data set which is more reliable (if rep-
resentative).

Commonly, no separate validation data set is available. Then the function
is just called as LMNTrain(traindata) without test data or
LMNTrain(traindata, [], testdata) with test data. The complexity then
is determined with the help of the AIC

C

criterion [1, 2].
If the user provides a separate test data set then it is used purely for

testing the model. This allows comparability to other models. It is important
that no actions are based on the test data performance, e.g. any further sub-
sequent selection step by comparing di↵erent model architectures. Then the
test data would be used as some kind of validation data whose performance
is over-optimistic.

References

1. H. Akaike. A new look at the statistical model identification. IEEE Transactions

on Automatic Control, 19(6):716–723, 1974.
2. Kenneth P Burnham and David R Anderson. Model selection and multimodel

inference: a practical information-theoretic approach. Springer Science & Busi-
ness Media, 2002.

