..
Suche
Hinweise zum Einsatz der Google Suche
Personensuchezur unisono Personensuche
Veranstaltungssuchezur unisono Veranstaltungssuche
Katalog plus
 

M.Sc. Tobias Münker

 Profilbild2
Telefon:

+49 (0) 271 740 - 2316

E-Mail:

tobias.muenker@uni-siegen.de

Raum:

PB-A 251

Sprechstunde:

nach Vereinbarung

 


 Lehre  

 

Ansprechpartner für:
  • Übung Regelungstechnik, Wintersemester 2017/18 
  • Übung Regelungstechnik, Wintersemester 2016/17
  • Übung Regelungstechnik, Wintersemester 2015/16
 

Publikationen

 
2019

- M. Schüssler, T. Münker, O. Nelles, Deep Recurrent Neural Networks for Nonlinear System Identification, Symposium Series of Computational Intelligence (SSCI), IEEE Conference on, 2019, Xiamen, China

- M. Schüssler, T. Münker, O. Nelles, Local Model Networks for the Identification of Nonlinear State Space Models, Conference on Decision and Control (CDC), IEEE Conference on, 2019, Nizza, Frankreich

 

2018

- T. Münker, O. Nelles, Nonlinear System Identification with Regularized Local FIR Model Networks, Engineering Applications of Artificial Intelligence, 2018

- T. Münker, O. T. J. Peter, O. Nelles, Gray-box identification with regularized FIR models, at-Automatisierungstechnik, 66(9), 704-713, 2018

- T.O. Heinz, T. Münker, O. Nelles, Identification of Hysteretic Behavior Using NOBF Local Model Networks, Nonlinear System Identification Benchmarks Workshop 2018, Liege

- T. Münker, O. Nelles, Improved Incorporation of Prior Knowledge for Regularized FIR Model Identification, American Control Conference (ACC), IEEE Conference on, 2018, Milwaukee

- T. Münker, O. Nelles, Sensitive Order Selection via Identification of Regularized FIR Models with Impulse Response Preservation, IFAC Sympossium on System Identification (SYSID) 2018, Stockholm

 

2017

- T. Münker, O. Nelles, Generalizing Piecewise Affine System Identification to Local Model Networks, Symposium Series on Computational Intelligence (SSCI), 2017, Honolulu, Hawaii

- T. Münker, O. Nelles,  Algorithms for the Identification of Merged Local Model Networks, Workshop on Computational Intelligence (CI, 2017, Dortmund

- T. Münker, T. O. Heinz, O. Nelles, Hierarchial Model Predictive Control for Local Model Networks, American Control Conference (ACC), 2017 IEEE International Conference on, pp.  5026-5031, Seattle, USA

- T. Münker, T.O. Heinz, J. Belz, O. Nelles, Regularized Local FIR Model Networks for a Bouc-Wen and a Wiener Hammerstein System, Nonlinear System Identification Benchmarks Workshop 2017, Brüssel

- H. Jung, T. Münker, G. Kampmann, O. Nelles, C.P. Fritzen, A Probabilistic Approach for Fault Detection of Railway Suspensions , International Workshop of Structural Health Monitoring (IWSHM), 2017, Stanford, USA

- J. Belz, T. Münker, T. O. Heinz, G. Kampmann, O. Nelles, Automatic Modelling with Local Model Networks for Benchmark Processes, IFAC World Congress 2017, Tolouse, France

 

2016

- T. Münker, O. Nelles,  Local Model Network with Regularized MISO Finite Impulse Response Models, Fuzzy Systems (FUZZ-IEEE), 2016 IEEE International Conference on pp. 1-8, Vancouver, Canada

- H. Jung, T. Münker, G. Kampmann, K. Rave, C.P. Fritzen, O. Nelles, A Novel Full Scale Roller Rig Test Bench for SHM Concepts of Railway Vehicles, 8th EWSHM 2016, Bilbao, Spain

- T. Münker, O. Nelles, Nonlinear System Identification with Regularized Local FIR Model Networks, ICONS 2017, IFAC-PapersOnLine 49 (5), 61-66,  2016, Reims, France

 

2012

- D. Anders, T. Münker, J. Artel, K. Weinberg, A dimensional analysis of front-end bending in plate rolling applications, Journal of Materials Processing Technology 212 (6), 1387-1398, 2012

- T. Münker, D. Anders, K. Weinberg, Application of Buckingham Π‐theorem to asymmetric plate rolling processes, PAMM 12(1), 647-648, 2012

 
 
 

Betreute Masterarbeiten

- Max Schüssler, Local Model Networks for the Identification of Nonlinear State-Space Models

- Christian Engelbertz, Modellbildung und Regelung einer Feindrahtumspulmaschine

- Timm Peter, Regularisierung für die lineare Systemidentifikation

- Tim Decker, Identification of Local Gaussian Process Models