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Abstract The present work deals with a new formulation
for transient large deformation contact problems. It is well
known, that one-step implicit time integration schemes for
highly non-linear systems fail to conserve the total energy
of the system. To deal with this drawback, a mixed method
is newly proposed in conjunction with the concept of a dis-
crete gradient. In particular, we reformulate the well known
and widely-used node-to-segment methods and establish an
energy-momentum scheme. The advocated approach ensures
robustness and enhanced numerical stability, demonstrated
in several three-dimensional applications of the proposed
algorithm.

Keywords Contact · Energy methods · Large deformation

1 Introduction

The objective of this paper is to develop a new time
integration scheme with enhanced numerical stability
properties for unilateral contact within the domain of large
deformation problems. The concept of the underlying node-
to-segment (NTS) approach, originally introduced by Hall-
quist [14], has been subject of various papers published
within the last 30 years. A survey of previous developments
can be found in the textbooks written by Laursen [24] and
Wriggers [31]. In contrast to that, the far more complex mor-
tar constraints (cf. [19,27,30] and the references therein) are
currently subject of intensive research. We will deal with
this kind of constraints in a subsequent paper. The main goal
of the present paper is to develop adequate time integration
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schemes for unilateral contact constraints in the context of
the NTS method.

Conserving time integration schemes for non-linear elas-
todynamics are widely used. Their development started in
the early 1990s of the past century with the work of Simo
et al. [28,29] and has been extended to the general concept
of a discrete gradient by Gonzalez [10,12]. Energy-decaying
variants of conserving integrators have been developed by
Armero and Romero [2,3]. We refer to Betsch and Steinmann
[6–8] for further details about conserving integrators for
mechanical systems.

Energy conserving time integration schemes for unilate-
ral contact problems have been developed previously within
the framework of the NTS method (e.g. [1,13,25,26]). The
extension of the notion of a discrete gradient to contact
problems has been developed by Hauret and Le Tallec [15]
and Betsch and Hesch [5]. Note, however, that the former
approach fails to conserve angular momentum, while the
latter treatment is confined to two-dimensional problems.

Mixed or reducible formulations are well-established in
present-day finite element methods, see Zienkiewicz et al.
[35,36]. A general mixed approach relies on the introduction
of additional fields by employing the Hu-Washizu functional.
We extend this concept to reformulate the NTS constraints.
The specific method used in this paper can be regarded as a
coordinate augmentation technique, originally introduced by
Betsch and Uhlar [9] in the context of multibody dynamics
for the description of joint-coordinates and conjugate joint-
forces. An application of this approach to domain decompo-
sition problems can be found in Hesch and Betsch [17].

An outline of the present work is as follows. Section 2
gives a short introduction to the governing equations rele-
vant for large deformation contact problems. In Sect. 3 a
finite element discretization of the continuous problem under
consideration is developed. Section 4 provides the mixed
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formulation of the specific contact constraints, which facili-
tates the design of an energy-momentum scheme. The semi-
discrete equations of motion are derived in Sect. 5, together
with the discretization in time and the newly developed
energy-momentum scheme. Representative numerical exam-
ples are presented in Sect. 6. Eventually, conclusions are
drawn in Sect. 7.

2 Governing equations

For the large deformation problem under consideration
we define the sets �(i) ⊂ R

3, i ∈ {1, . . . , k} as indi-
cated in Fig. 1, representing the reference configuration
of the involved bodies. For convenience we restrict our-
selves to a two body contact problem i ∈ {1, 2} exclud-
ing self contact (see [4,34]) without prejudice to the gen-
erality of the further development. The potential areas of
contact are defined on the surfaces ∂�(i) = �(i), which
are subdivided into the Dirichlet boundary �

(i)
u with pre-

scribed displacements, the Neumann boundary �
(i)
σ with pre-

scribed tractions and �
(i)
c , the potential contact area. It is

required that the different boundaries satisfy

�(i)
u ∪ �(i)

σ ∪ �(i)
c = �(i) and

�(i)
u ∩ �(i)

σ = �(i)
σ ∩ �(i)

c = �(i)
u ∩ �(i)

c = ∅. (1)

Adopting a Lagrangian framework, we assume a mapping
ϕ(i)(X(i), t), characterizing the current position at time t ∈
I = [0, T ] of a material point X(i) ∈ �(i). The corresponding
mapping of the surface �(i) is denoted by γ (i) = ϕ(�(i), t).

The prescribed tractions T̄
(i)

and displacements ϕ̄(i) are
stated as follows:

P (i)N(i) = T̄ on �(i)
σ and ϕ(i) = ϕ̄(i) on �(i)

u , (2)

where N(i) denotes the outward unit normal vector in the
reference configuration of body i and P (i) the first Piola-
Kirchhoff stress tensor. In the sequel we make use of the
notation

Fig. 1 The two body large deformation contact problem

∫

�(i)

(•) · (•) d�(i) =: 〈•, •〉(i) and
∫

�(i)

(•) · (•) d�(i) =: 〈•, •〉(i)�

(3)

The contribution of body (i) to the virtual work for a large
deformation contact problem can be expressed as follows

G(i)(ϕ, δϕ) = 〈ρRϕ̈, δϕ〉(i) + 〈P,∇X (δϕ)〉(i)
−〈ρR B̄, δϕ〉(i) − 〈T̄ , δϕ〉(i)�σ

− 〈t, δϕ〉(i)�c

(4)

The first term on the right-hand side specifies the contribution
of the inertia forces where a superposed dot denotes differ-
entiation with respect to time and ρR the reference mass den-
sity. The second term specifies the virtual work of the internal
forces using the nabla operator ∇X (δϕ) = ∂(δϕ)/∂ X . The
third and fourth term represent the virtual work of the exter-
nal forces. The former takes the body forces into account,
where B̄ denotes the forces per unit volume, while the latter
represents the forces acting on the Neumann boundary, where
T̄ denotes the forces per unit area. The last term specifies the
virtual work associated with the contact tractions t . We pos-
tulate that the weak form of the balance of linear momentum,
given by

2∑
i=1

G(i)(ϕ, δϕ) = 0 (5)

must hold for all t ∈ I. Considering the balance of linear
momentum across the current configuration of the contact
area

Gc(ϕ, δϕ) = −〈t, δϕ〉(1)
γc

− 〈t, δϕ〉(2)
γc

(6)

and postulating that the last equation equals zero for each
differential element dγc, i.e. t(1) dγ

(1)
c = −t(2) dγ

(2)
c , the

total contribution to the virtual work reads

Gc(ϕ, δϕ) = −〈t, (δϕ(1) − δϕ(2))〉(1)
γc

. (7)

In the case of frictionless contact only the normal compo-
nent of t(1), defined by t(1) · n(1)=: λ is nonzero, where n(1)

denotes the outward unit normal vector to dγ
(1)
c . Accord-

ingly, (7) yields

Gc(ϕ, δϕ) = −〈λn, (δϕ(1) − δϕ(2))〉(1)
γc

. (8)

3 Spatial discretization

To achieve a numerical solution for the nonlinear problem
under consideration, we apply a spatial discretization process
to each body �(i) by introducing a set of elements e ∈ Eh

via

�(i),h =
⋃

∀e∈Eh

�(i),h
e . (9)
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Using a standard displacement-based finite element app-
roach, we introduce finite dimensional approximations of ϕ

and δϕ given by

ϕ(i),h =
∑
A∈ω

N Aq(i)
A , and δϕ(i),h =

∑
B∈ω

N Bδq(i)
B , (10)

where q(i)
A = ϕ(i)(X(i)

A , t), A, B ∈ ω = {1, . . . , nnode} are
the nodal values of the configuration mapping at time t ∈ I.
Furthermore, N A(X(i)) : �(i),h → R are the global shape
functions associated with nodes A. In addition, N C (X(i)) :
�(1),h → R are the global shape functions associated with
nodes C ∈ ω̄ = {1, . . . , nsurf } on the corresponding contact
surface �(1),h.

Note, that we will make use of the summation convention
if convenient and unique. Substitution of the above approxi-
mations into (5) yields the semi-discrete form of the virtual
work principle

Gh(q, δq) =
2∑

i=1

δq(i)
A ·

[
M AB q̈(i)

B + f (i),int,A

+ f (i),ext,A + f (i),c,A
]
, (11)

where the nodal mass contribution is given by

M AB = 〈ρR N A, N B〉, (12)

and the internal nodal forces assume the form

f (i),int,A = 〈∇N A(X(i)) · S,∇N B(X(i))〉q(i)
B . (13)

Here, S denotes the second Piola-Kirchhoff stress tensor.
Similarly, the external forces can be written as

f ext,A = −〈N A, ρR B̄〉(i) − 〈N A, T̄ 〉(i)�σ
. (14)

Throughout this paper we assume that the internal and the
external forces can be associated with a potential energy func-
tion of the form

V (q) =
2∑

i=1

(
V (i),int(q(i)) + V (i),ext(q(i))

)
(15)

with

V (i),int(q(i)) =
∫

�(i)

W (C) dV and

V (i),ext(q(i)) = −q A · 〈N A, ρR B̄〉(i) − q A · 〈N A, T̄ 〉(i)�σ

(16)

using the right Cauchy-Green tensor C and a strain energy
density function W (C). For further details we refer to stan-
dard finite element textbooks (e.g. [20]).

At last, we have to discretize the virtual work associated
with the contact interface. Therefore, we introduce below
the node-to-surface (NTS) method. A summary of previous

Fig. 2 Initial configuration of the representative NTS element: Closest
point projection of the node q(1),S onto the surface γ (2),h

developments in the context of the NTS method can be found
in Laursen’s [24] and Wriggers’ [31] textbooks.

To illustrate the approach we consider a typical NTS ele-
ment depicted in Fig. 2. This method constrains the system
in such a way that the gap gN remains greater or equal zero.
The gap rests on the closest point projection of a node q(1),S ,
which is part of the slave side γ (1),h, onto the opposing master
side γ (2),h and measures the distance between q(1),S and the
projected point, on γ (2),h. Thus, a typical constraint function
depends on the set of relevant vectors

ηS =
{

q̄S
I

}
=

{
q(1),S, q(2)

1 , . . . , q(2)
4

}
(17)

The closest point projection yields

ϕ(2),h(ξ , t) =
4∑

C=1

N̂ C (ξ)q(2)
c (t), (18)

where the local convective coordinates ξ = (ξ1, ξ2) identify
the projected point on γ (2),h (see [21–23,32]). Since we use
isoparametric tri-linear solid elements, N̂ C (ξ) are standard
bi-linear local shape functions (see Fig. 2).

The new framework described in the following allows us
to accomplish two major goals: The determination of the con-
figuration dependent convective coordinates is simplified as
does the construction of an energy-momentum scheme based
on the notion of a discrete derivative in the sense of Gonzalez
[11].

A measurement of the aforementioned distance between
both surfaces can be established via the gap function
gS

N (X, t), given by

gS
N (X, t) =

(
q(1),S −

4∑
C=1

N̂ C (ξ)q(2)
C

)
· n(ξ). (19)
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Note, that the unit normal vector n(ξ) also depends on the
convective coordinates. Now the impenetrability condition
can be stated as


S(q̄S
I ) = gS

N (X, t) ≤ 0. (20)

The corresponding nodal force vector f c,A = f (1),c,A +
f (2),c,A can be written as (see 11)

Gc,h(q, δq) = δq A · f c,A = δq̄S
A · λS∇qA 
S, (21)

where λS denotes the Lagrange multiplier and λSn(ξ) the
corresponding traction in normal direction. Since we assume
no adhesion, the tractions have to be positive, i.e. λS ≥ 0. In
combination with

λS(X, t)gS
N (X, t) = 0 (22)

we get the classical Kuhn–Tucker complementary condi-
tions. These conditions separate the set of potential contact
nodes ω̄ into an active set A and an inactive set I, such that
ω̄ = A ∪ I and A ∩ I = ∅. The discrete multiplier space
can now be defined on the slave side as

Ch = {λh ∈ C−1(γ (1),h)|λS = 0, ∀λS ∈ I} (23)

with

λh =
∑
A∈ω̄

N A(X S)λA = δA
S λA = λS, (24)

where δA
S denotes the classical Kronecker delta and X(1)

S a
material point on �(1),h which coincides with the node S
on γ (1),h. Now we can define the total augmented potential
energy as follows

V aug(q) =
2∑

i=1

(
V (i),int(q(i)) + V (i),ext(q(i))

)

+
∑
S∈ω̄

λS

S(q̄ I ) (25)

so that the virtual work (11) reads

Gh(q, δq) =
2∑

i=1

δq(i)
A ·

[
M AB q̈ B + ∇

q(i)
A

V aug(q)
]

(26)

4 Mixed formulation

For our new approach we extend a specific coordinate aug-
mentation technique originally introduced by Betsch and
Uhlar [9] and adapted subsequently to domain decomposition
problems in Hesch and Betsch [17]. The coordinate augmen-
tation technique can be regarded as reducible formulation
and classified as mixed method (see [35,36]). This technique
leads to additional coordinates that can be appended to the

set ηS of original coordinates

η
aug
S = ηS ∪ {dS} ∪ { f S} (27)

pertaining to the representative NTS element. In the present
context the additional coordinates dS ∈ R

3 play the role of
the unit normal vector n, whereas f S ∈ R

2 stands for the
convective coordinates ξ . To link the new coordinates to the
original ones the following five additional constraint func-
tions are introduced

�aug,S(q̄S, dS, f S) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

dS · a1( f S)

dS · a2( f S)
1
2 (dS · dS − 1)(

q(1),S −
4∑

C=1
N̂ C ( f S)q(2)

C

)
· a1( f S)

(
q(1),S −

4∑
C=1

N̂ C ( f S)q(2)
C

)
· a2( f S)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(28)

where aα denote the tangential vectors

aα(ξ) =
4∑

C=1

N̂ C
,α(ξ)q(2)

C . (29)

The modified NTS constraints can now be expressed exclu-
sively in terms of the set η

aug
S


̄S(q̄S, dS, f S) =
(

q(1),S −
4∑

C=1

N̂ C ( f S)q(2)
C

)
· dS . (30)

To simplify later developments, we collect the constraints
(30) as well as the augmented constraints (28) and arrange
them in a vector of constraint functions

gS(q̄S, dS, f S) =
[


̄S(q̄S, dS, f S)

�aug,S(q̄S, dS, f S)

]
. (31)

4.1 Fundamental properties of the mixed formulation

For the verification of various conservation laws in the fully
discrete setting (see Sect. 5.1) we need additional relations.
In particular, we demonstrate the effects of rigid body trans-
formations, which we need later on to proof algorithmic con-
servation of linear and angular momentum. Therefore, rigid
motions of the form

q̄S,�
I = c + Qq̄S

I (32)

are considered. Here, c ∈ R
3 is a constant vector, and Q ∈

SO(3) is a rotation tensor. It is easy to verify the following
property
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gS(q̄S,�, dS, f S) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
q(1),S −

4∑
C=1

N̂ C q(2)
c

)
· QT dS

a1( f S) · QT dS

a2( f S) · QT dS
1
2 (( QT dS) · ( QT dS) − 1)(

q(1),S −
4∑

C=1
N̂ C ( f S)q(2)

c

)
· QT Qa1( f S)

(
q(1),S −

4∑
C=1

N̂ C ( f S)q(2)
c

)
· QT Qa2( f S)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= gS(q̄S, QT dS, f S) (33)

where the characteristics of the shape functions (
∑

A N A

(X) = 1) have been used. To show translational invariance
we substitute c = εμ, μ ∈ R

3 and Q = I , where I denotes
the identity matrix. Equation (33) implies, that

gS(q̄S + εμ, dS, f S) = gS(q̄S, dS, f S) (34)

holds for arbitrary ε ∈ R. Consequently,

0 = d

dε

∣∣∣
ε=0

gS(q̄S + εμ, dS, f S) =
∑

I

(
∂q̄S

I
gS

)
· μ

(35)

which proves translational invariance. Substituting c = 0
and Q = exp(εμ̂) into (33) yields

gS(exp(εμ̂)q̄S, dS, f S) − gS(q̄S, exp(−εμ̂)dS, f S) = 0

(36)

Here, exp(εμ̂) ∈ SO(3) denotes the exponential map of a
skew-symmetric tensor μ̂, which can be associated with an
axial vector μ, so that μ̂a = μ × a for any a ∈ R

3. Accord-
ingly, we end up with

0 = d

dε

∣∣∣
ε=0

[gS(exp(εμ̂)q̄S, dS, f S)

−gS(q̄S, exp(−εμ̂)dS, f S) = 0∑
A

(
∂q̄S

A
gS

)
· μ̂q̄S

A +
(
∂dS gS

)
· μ̂dS = 0

∑
A

(
∂q̄S

A
gS

)
· (μ × q̄S

A) +
(
∂dS gS

)
· (μ × dS) = 0

(37)

for any vector μ ∈ R
3.

4.2 Constraints in terms of invariants

Translational and rotational invariance properties have to be
in agreement with Cauchy’s representation theorem, i.e. it
has to be possible to rewrite the system in terms of appropri-
ate invariants. In particular, we define three sets of invariants

as follows1

S(η
aug
s ) = {(q̄S

I − q(2)
1 ) · (q̄S

J − q(2)
1 ), 1 ≤ I ≤ J ≤ 5}

S̃(η
aug
s ) = {(q̄S

I − q(2)
1 ) · dS, I = 1, . . . , 5} (38)

S̄(η
aug
s ) = {dS · dS}

and establish a fourth set composed of the augmented coor-
dinates f S

Ŝ(η
aug
s ) = { f S

α , α = 1, 2}. (39)

Next, we rewrite the modified NTS constraints in terms of
the above given invariants as follows


̄S(q̄S, dS, f S) =
(

q(1),S − q(2)
1 −

∑
J

N J ( f S)q(2)
J

+
∑

J

N J ( f S)q(2)
1

)
· dS

= (q(1),S − q(2)
1 ) · dS

−
4∑

J=2

N J ( f S)(q(2)
J − q(2)

1 ) · dS

(40)

Then we introduce a vector of invariants

π̄(q̄S, dS, f S) =

⎡
⎢⎢⎢⎢⎢⎢⎣

π1

π2

π3

π4

π5

π6

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(q(1),S − q(2)
1 ) · dS

(q(2)
2 − q(2)

1 ) · dS

(q(2)
3 − q(2)

1 ) · dS

(q(2)
4 − q(2)

1 ) · dS

f S
1

f S
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(41)

and rewrite the modified NTS constraints (30) in the form


̃S(π̄(q̄S, dS, f S)) = π1 −
4∑

I=2

NI (π5, π6)πI (42)

Note that the augmented coordinates f S
1 and f S

2 play the role
of linear invariants in (41). They do not depend explicitly on
the configuration and the constraints (28)4,5 used to calcu-
late them are invariant as shown in (33). Following the same
ideas, the additional constraints (28) can be written as

1 The invariance property of the last two sets can only be established,
if the augmented constraints (33) are fulfilled.
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�̃
aug

(π(q̄S, dS, f S)) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4∑
I=2

NI,π5(π5, π6)πI

4∑
I=2

NI,π6(π5, π6)πI

1
2 (π7 − 1)

4∑
I=2

NI,π5(π5, π6)πI+6 − K1

4∑
I=2

NI,π6(π5, π6)πI+6 − K2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(43)

with

K1 =
4∑

I=2

4∑
J=2

NI,π5 (π5, π6) NJ (π5, π6)
(

q(2)
I − q(2)

1

)
·
(

q(2)
J − q(2)

1

)

K2 =
4∑

I=2

4∑
J=2

NI,π6 (π5, π6) NJ (π5, π6)
(

q(2)
I − q(2)

1

)
·
(

q(2)
J − q(2)

1

)

(44)

This gives rise to the definition of the extended vector of
invariants

π(q̄S, dS, f S) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

π̄

π7

π8

π9

π10

π11

π12

π13

π14

π15

π16

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

π̄

dS · dS

(q(2)
2 − q(2)

1 ) · (q(1)
S − q(2)

1 )

(q(2)
3 − q(2)

1 ) · (q(1)
S − q(2)

1 )

(q(2)
4 − q(2)

1 ) · (q(1)
S − q(2)

1 )

(q(2)
2 − q(2)

1 ) · (q(2)
2 − q(2)

1 )

(q(2)
2 − q(2)

1 ) · (q(2)
3 − q(2)

1 )

(q(2)
2 − q(2)

1 ) · (q(2)
4 − q(2)

1 )

(q(2)
3 − q(2)

1 ) · (q(2)
3 − q(2)

1 )

(q(2)
3 − q(2)

1 ) · (q(2)
4 − q(2)

1 )

(q(2)
4 − q(2)

1 ) · (q(2)
4 − q(2)

1 )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(45)

At last, we can write

g̃S(π(q̄S, dS, f S)) = gS(q̄S, dS, f S) (46)

Of course, the fundamental properties derived in Sect. 4.1
are retained by the reformulated constraints. With regard to
(35) we can state that

0 = d

dε

∣∣∣
ε=0

g̃S
(
π

(
q̄S + εμ, dS, f S

))
= ∂π g̃S ·

∑
A

(
∂q̄S

A
π

)
· μ

(47)

which is true a priori due to the construction of the vector of
invariants. For the rotational part in (37) follows with regard
to property (33) and (36)

0 = d

dε

∣∣∣
ε=0

[ g̃S
(
π

(
exp

(
μ̂

)
q̄S, dS, f S

))

− g̃S
(
π

(
q̄S, exp

(−εμ̂
)

dS, f S
))

= 0

∂π g̃S ·
[∑

A

(
∂q̄S

A
π

)
· μ̂q̄S

A +
(
∂dS π

)
· μ̂dS

]
= 0

∂π g̃S ·
[∑

A

(
∂q̄S

A
π

)
·
(
μ × q̄S

A

)
+

(
∂dS π

)
·
(
μ × dS

)]
=0

(48)

which is also true a priori due to the construction of the vector
of invariants.

5 Equations of motion

The finite-dimensional, semi-discrete system at hand can be
associated with an augmented Lagrangian of the form

Lλ = 1

2
q̇ · Mq̇ − V (q) −

∑
S∈ω̄

g̃S
(
π

(
q̄S, dS, f S

))
· λS

(49)

where λS are the corresponding multipliers of the augmented
set of constraints. Then the equations of motion for the con-
strained system under consideration take the form (cf. [17])

Mq̈ =−∇V (q)−
∑
S∈ω̄

(
D1π

(
q̄S, dS, f S

))T ∇π g̃S (π) · λS

0 =
∑
S∈ω̄

(
D2π

(
q̄S, dS, f S

))T ∇π g̃S (π) · λS

0 =
∑
S∈ω̄

(
D3π

(
q̄S, dS, f S

))T ∇π g̃S (π) · λS

0 =
⎡
⎢⎣

g̃S=1 (
π

(
q̄S, dS, f S))
...

g̃S=nsurf
(
π

(
q̄S, dS, f S))

⎤
⎥⎦

(50)

For the semi-discrete system at hand we have to verify con-
servation of linear and angular momentum as well as total
energy. We omit the verification of conservation of linear
momentum due to the translational invariance of the con-
straints (47) and demonstrate exemplarily the verification of
conservation of angular momentum

J =
∑
A,B

M AB q A × q̇ B (51)

where we assume for simplicity the absence of external
forces. In particular, we assume that V = 0, since only the
modified constraints are of interest. For an arbitrary vector
μ follows
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μ · d

dt
J = μ ·

∑
A,B

M AB q A × q̈ B

= −μ ·
∑

A

q A ×
∑
S∈ω̄

(
∂q A π

(
q̄S , dS , f S

))T ∇π g̃S (π) · λS

=
∑
S∈ω̄

λS · D g̃S (π) ·
∑

A

(
∂q A π

(
q̄S , dS , f S

))
· q̂ Aμ (52)

With regard to (48) it is easy to show that

D g̃S(π) ·
∑

A

(
∂q A

π
(

q̄S, dS, f S
))

· q̂ Aμ

= −D g̃S (π) ·
(
∂dS π

(
q̄S, dS, f S

))
· d̂Sμ (53)

Insertion into (52) yields

μ · d

dt
J = −

∑
S∈ω̄

λS · D g̃S (π) ·
(
∂dS π

(
q̄S, dS, f S

))
· d̂Sμ

= μ ·
∑
S∈ω̄

dS ×
(
∂dS π

(
q̄S, dS, f S

))T ∇π g̃S (π) · λS

= 0 (54)

where use has been made of (50)2. Since the mechanical
system at hand is conservative, it is essential to verify con-
servation of energy for the semidiscrete, augmented system.
Scalar multiplication of (50)1 with q̇ yields

q̇ · Mq̈ + q̇ · ∇V (q)

+q̇ ·
∑
S∈ω̄

(D1π(q̄S, dS, f S))T ∇π g̃S(π) · λS = 0

d

dt

(
1

2
q̇ · Mq̇

)
+ d

dt
V (q)

+
∑
S∈ω̄

λS · D g̃S (π)
(

D1π
(

q̄S, dS, f S
))

· ˙̄qS = 0 (55)

Taking into account the consistency condition

D g̃S (π) ·
(

D1π
(

q̄S, dS, f S
))

· ˙̄qS

+D g̃S (π) ·
(

D2π
(

q̄S, dS, f S
))

· ḋ
S

(56)

+D g̃S (π) ·
(

D3π
(

q̄S, dS, f S
))

· ḟ
S = 0

we can rewrite (552) with regard to (50)2 and (50)3 as follows

d

dt
(T + V ) −

∑
S∈ω̄

λS ·
[

D g̃S (π) ·
(

D2π
(

q̄S, dS, f S
))

· ḋ
S

+ D g̃S (π) ·
(

D3π
(

q̄S, dS, f S
))

· ḟ
S
]

= 0

d

dt
(T + V ) = 0 (57)

Hence, the total system energy, defined as the sum of the
kinetic energy T = 1

2 q̇ · Mq̇ and the potential energy, i.e.

E(q, q̇) = 1

2
q̇ · Mq̇ + V (q) (58)

is conserved.

5.1 Time discretization

The goal of this section is to perform an energy and momen-
tum conserving time discretization of the semidiscrete
system at hand. Therefore we subdivide the time interval
of interest t ∈ I = [0, T ] into partitions [tn, tn+1] of con-
stant length �t and apply a one step time integration scheme,
similar to the energy-momentum schemes for constrained
mechanical systems developed by Gonzalez [11], see also
Betsch and Steinmann [8]. This is in contrast to the estab-
lished energy-momentum schemes developed for unilateral
contact constraints. In Laursen and Chawla [25] (and sim-
ilarly in [1]) an algorithmic gap rate has been defined in
exchange of the original constraints (50)4. This ensures con-
servation of energy as well as conservation of the momentum
maps by sacrificing the exact fulfillment of the constraints. In
Laursen and Love [26] a velocity update procedure has been
proposed to ensure the conservation properties. In contrast
to the algorithmic gap rate approach as well as the method
proposed in this paper the velocity update algorithm can dis-
play only first-order accuracy in time (see also [29]). Within
our approach, the fully discretized equations of motion are
given by

qn+1 − qn = �tvn+ 1
2

M (vn+1 − vn) = −�t∇ V
(
qn, qn+1

)

−�t
∑
S∈ω̄

(
D1π

(
q̄S

n+ 1
2
, dS

n+ 1
2
, f S

n+ 1
2

))T

∇π

× g̃S (πn,πn+1) · λS,n+1

0 =
∑
S∈ω̄

(
D2π

(
q̄S

n+ 1
2
, dS

n+ 1
2
, f S

n+ 1
2

))T

∇π

× g̃S (πn,πn+1) · λS,n+1

0 =
∑
S∈ω̄

(
D3π

(
q̄S

n+ 1
2
, dS

n+ 1
2
, f S

n+ 1
2

))T

∇π

× g̃S (πn,πn+1) · λS,n+1

0 =
⎡
⎢⎣

g̃S=1 (
π

(
q̄S

n+1, dS
n+1, f S

n+1

))
...

g̃S=nsurf
(
π

(
q̄S

n+1, dS
n+1, f S

n+1

))

⎤
⎥⎦

(59)

Here, the discrete gradient of the internal energy (in absence
of additional external energy) ∇ V (qn, qn+1) facilitates con-
servation of energy and both momentum maps by design.
We refer to Betsch and Steinmann [7] and the references
therein for further details of energy-momentum conserving
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schemes in the context of non-linear elastodynamics. Fur-

thermore, ∇π g̃S(πn,πn+1) denotes a discrete gradient of
the constraint functions, defined as (see [10])

∇π g̃S (πn,πn+1) = ∇π g̃S
(
πn+ 1

2

)

+
g̃S (πn+1) − g̃S (πn) + ∇π g̃S

(
πn+ 1

2

)
· �π

‖�π‖2 �π (60)

In this connection, the abbreviations�π = πn+1−πn,πn =
π(q̄S

I,n, dS
n , f S

n ), πn+1 = π(q̄S
I,n+1, dS

n+1, f S
n+1), and

(•)n+ 1
2

= ((•)n+(•)n+1)/2 have been employed. Analogous
to the time-continuous case, we start with the verification of
the algorithmic conservation of angular momentum. Since
the angular momentum map J(q, v) is a quadratic function
of (q, v) we can state that

Jn+1 − Jn

=
(

D1 J
(

qn+ 1
2
, vn+ 1

2

)) (
qn+1 − qn

) +
(

D2 J
(

qn+ 1
2
, vn+ 1

2

))

× (vn+1 − vn) = −
∑
A,B

M ABvB
n+ 1

2
× (

q An+1
− q An

)

+
∑
A,B

M AB q B
n+ 1

2

× (
vAn+1 − vAn

)
(61)

Scalar multiplication of the last equation with an arbitrary
vector μ and subsequently substituting from (59)1 and (59)2
yields

μ · (Jn+1 − Jn) = −�tμ ·
∑

B

q B
n+ 1

2

×
(∑

S∈ω̄

(
∂q B

π

(
q̄S

n+ 1
2
, dS

n+ 1
2
, f S

n+ 1
2

))T

∇π g̃S (πn,πn+1) · λS,n+1

)

= �t
∑
S∈ω̄

λS,n+1 ·
∑

B

(
∂q B

π

(
q̄S

n+ 1
2
, dS

n+ 1
2
, f S

n+ 1
2

))T

∇π g̃S (πn,πn+1) · q̂ B,n+ 1
2
μ (62)

Again, we incorporate the relation (48)

∑
A

(
∂q A

π

(
q̄S

n+ 1
2
, dS

n+ 1
2
, f S

n+ 1
2

))T

∇π g̃S (πn,πn+1) · q̂ A,n+ 1
2
μ

+∂dS π

(
q̄S

n+ 1
2
, dS

n+ 1
2
, f S

n+ 1
2

)T

∇π g̃S (πn,πn+1) · d̂
S
n+ 1

2
μ = 0 (63)

into the last equation

μ · (Jn+1 − Jn)

= −�t
∑
S∈ω̄

λS,n+1 · ∂dS π(q̄S
n+ 1

2
, dS

n+ 1
2
, f S

n+ 1
2
))T ∇π

× g̃S(πn,πn+1) · d̂
S
n+ 1

2
μ

= �tμ ·
∑
S∈ω̄

dS
n+ 1

2
× ∂dS π(q̄S

I,n+ 1
2
, dS

n+ 1
2
, f S

n+ 1
2
))T ∇π

× g̃S(πn,πn+1) · λS,n+1

= 0 (64)

Eventually, we verify algorithmic conservation of energy.
Two sources for the lack of energy conservation have to be
considered: (a) The nonlinearity of the constraints and (b)
the discretization error in time due to the active set strategy
(cf. [16]). We will deal with the former first and then explain
solution strategies for the latter at the end of this section.

For the verification of algorithmic conservation of energy
we have to show that the net power input to the system within
each time step is zero. Scalar multiplication of (59)2 with
vn+ 1

2
yields

vn+ 1
2

· M (vn+1 − vn) = −∇ V
(
qn, qn+1

) (
qn+1 − qn

)

− (
qn+1 − qn

) ·
∑
S∈ω̄

(
D1π

(
q̄S

n+ 1
2
, dS

n+ 1
2
, f S

n+ 1
2

))T

∇π g̃S (πn,πn+1) · λn+1 (65)

The last equation can be recast in the form

1

2
vn+1 · Mvn+1 − 1

2
vn · Mvn = −[V (qn+1) − V (qn)]

+λn+1 ·
∑
S∈ω̄

(
D1π

(
q̄S

n+ 1
2
, dS

n+ 1
2
, f S

n+ 1
2

))T

∇π g̃S(πn,πn+1) · (
qn+1 − qn

)
(66)

where the directionality property of the discrete derivative
(see [10]) has been employed. To show that the last term in
(66) equals zero, we have to consider the consistency condi-
tion (56) in the discrete setting, i.e. to prove that[(

q̄S
I,n+1 − q̄S

I,n

)
·
(

D1π

(
q̄S

,n+ 1
2
, dS

n+ 1
2
, f S

n+ 1
2

))T

+
(

dS
n+1 − dS

n

)
·
(

D2π

(
q̄S

n+ 1
2
, dS

n+ 1
2
, f S

n+ 1
2

))T

+
(

f S
n+1 − f S

n

)
·
(

D3π

(
q̄S

n+ 1
2
, dS

n+ 1
2
, f S

n+ 1
2

))T
]

·∇π g̃S (πn,πn+1) = 0 (67)

holds. Due to the specific structure of the invariants (cf. (45)),
we can recast (67) as follows
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(πn+1 − πn) · ∇π g̃S(πn,πn+1) = 0. (68)

In consequence of the discrete gradient (60) the last equation
can be written as

g̃S
n+1 − g̃S

n = 0. (69)

Insertion into (66) yields

En+1 − En

= −
∑
S∈ω̄

λS,n+1 ·
(

D2π
(

q̄S
n+ 1

2
, dS

n+ 1
2
, f S

n+ 1
2

))T ∇π g̃S(πn,πn+1)

·
(

dS
n+1 − dS

n

)
+ D3π

(
q̄S

n+ 1
2
, dS

n+ 1
2
, f S

n+ 1
2

))T

∇π g̃S
(
πn,πn+1

)
·
(

f S
n+1 − f S

n

))

= 0 (70)

where (59)3 and (59)4 have been taken into account. Accord-
ingly, algorithmic conservation of energy is facilitated if
the discrete persistency condition λS · ( g̃S

n+1 − g̃S
n ) = 0 is

fulfilled.
The active set strategy (see [18] and the references therein

for details) separates the set of constraints into the active and
inactive set within each time step. A constraint, moving from
the inactive into the active set violates the constraint require-
ments at time tn in general. This also violates the consis-
tency condition and (69), respectively. Different possibilities
are given to deal with the problem at hand (cf. [16]). First
of all, energy-momentum schemes have been developed to
overcome numerical instabilities in nonlinear elastodynam-
ics (see [28]). This requirement is fulfilled by the proposed
approach independent of the violation of the consistency con-
dition, so there is no need to correct this kind of artificial
energy. If necessary (e.g. for the numerical verification of
energy conservation), the consistency condition itself can be
used by replacing the original constraint function accord-
ing to

g̃S
n+1 → g̃S

n+1 − g̃S
n (71)

so that condition (69) is always satisfied.

6 Numerical investigations

In this section we investigate the numerical performance of
the newly developed energy-momentum scheme. A model
problem is used for the demonstration of the basic concepts.
Then two impact simulations are presented.

6.1 Nonlinear spring

As a first example we use this simple constrained non-contact
model problem to demonstrate the properties of the time inte-
gration scheme. Generally, the large deformation inequality

Fig. 3 Nonlinear spring
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Fig. 4 Total energy versus time. Note, that the red curve is congruent
to the green line

constraints possess a similar behavior in time, once a specific
constraint is active.

The three-dimensional model problem consists of a point
mass P with coordinates q = [x, y, z] and unit mass m = 1
(see Fig. 3). The point mass is connected to the point of ori-
gin O by a nonlinear spring, using a spring-potential V (ν) =
1
8 (ν− 1

ν
)c(ν− 1

ν
), where c = 106 is constant, and ν = q ·q/ l2

denotes a measure of stretch and hence a proper invariant.
Here, l = ‖q‖t=0 is the reference length of the spring. The
initial values are q =[0.5, 0.5, 0.7] and q̇ =[1.5, 3,−2]×q.
Furthermore, the chosen time-step size �t = 0.02263 spec-
ifies the largest possible value if a mid-point evaluation is
used. The Lagrangian reads

L(q, q̇) = T − V (72)

with the kinetic energy T = 1
2 q̇ · Mq̇, M = m I and I ∈

Rn×n is the n-dimensional unity matrix.
In the following, we demonstrate the advantages of an

energy-momentum scheme in comparison with a mid-point
integration using this model problem. Furthermore, we dem-
onstrate how to rewrite the system using augmented coordi-
nates, i.e. a mixed approach based on a Hu-Washizu potential
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Fig. 5 Total energy versus time

Fig. 6 Initial configuration of the two tori impact problem

and the advantages thereof. In a last step, we simulate the
inconsistency mentioned in Sect. 5.1 by disturbing the con-
straints of the mixed approach.

Mid-Point rule The equation of motion are given by

0 = d

dt

(
dL

q̇

)
− dL

q
. (73)

Thus, the implementation of a mid-point evaluation reads

0 = 2

�t
M

(
qn+1 − qn − �tvn

)

+�t

2
c

(
νn+1/2 − 1

ν3
n+1/2

)
qn+1/2

l2 (74)

with νn+1/2 = qn+1/2·qn+1/2

l2 and qn+1/2 = 1
2 (qn+1 + qn). As

can be seen in Fig. 4 (Mid point), we obtain large oscillations
in the total energy.

Energy-momentum scheme The advocated approach to
improve the performance of the time integration scheme is
based on the concept of discrete gradient, as proposed in
Gonzalez [10]. Consequently, (74) is replaced with

0= 2

�t
M(qn+1−qn −�tvn)+�t D1π(q)T ∇π V (πn, πn+1)

(75)

based on the invariant π = ν and

∇π V (πn, πn+1) = V (πn+1) − V (πn)

πn+1 − πn
. (76)

As can be seen in Fig. 4 (EM), energy is conserved exactly.
Mixed approach Next, we formulate a mixed approach

by introducing the strain measure ν as an additional aug-
mented variable to the system. In particular, this formulation
equals a Hu-Washizu type formulation of the system. For the
Lagrangian follows

L(q, q̇, ν, λ) = T − (V (ν) + λ
) (77)

supplemented by the constraint function


 = ν − q · q
l2 (78)

The equations of motion can be written as follows

0 =
⎡
⎢⎣

2
�t M(qn+1 − qn − �tvn) + �tλn,n+12

qn+1/2

l2

∇ν V (νn, νn+1) − λn,n+1

νn+1 − qn+1 · qn+1/ l2

⎤
⎥⎦

(79)

using a mid-point evaluation of the configuration qn+1/2 =
1
2 (qn+1 + qn) and a constant Lagrangian multiplier λn,n+1.
The discrete gradient can be defined as in (76). Indeed, the
mixed formulation (79) can be easily reduced to the EM
scheme (75). Note, however, that the introduction of addi-
tional augmented variables leads to a structural simplification
of the resulting equation in (79).

To simulate the behavior of the inconsistency of the con-
straints caused by the discrete active set strategy, we induce
a sinusoidal disturbance l� = l + 0.01 sin(t) into the refer-
ence length of the spring. Thereupon the constraint (79)3 will
not be satisfied in any time-step at time tn , which is structur-
ally the same type of inconsistency resulting from the active
set strategy. The left diagram in Fig. 5 shows the result of
the mid-point evaluation. What we receive is a blow up in
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Fig. 7 Deformation at time t = 2.5 and t = 5
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Fig. 8 Total linear, angular momentum and total energy

total energy. As expected, the energy-momentum schemes
remain stable as shown in the lower right diagram in Fig. 5.
Furthermore, the results of both energy-momentum schemes
are congruent up to some numerical fluctuations.

6.2 Two tori impact problem

In this example we consider an impact problem of two tori.
Initial values and the material properties have been taken
from Yang and Laursen [33]. The initial configuration is dis-
played in Fig. 6, the inner and outer radius of the tori are
52 and 100, the wall thickness of each hollow torus is 4.5.
Both tori are subdivided into 3,120 elements, using a Neo-
Hookean hyperelastic material with E = 2,250 and ν = 0.3.
The initial densities are ρ = 0.1 and the homogeneous, initial
velocity of the left torus is given by v = [30, 0, 23].

A time-step size of �t = 0.01 has been used to calcu-
late 1,500 time steps. A sequence of deformed configura-
tions at t = 2.5 and t = 5 is displayed in Fig. 7. Since no
external forces are acting, the system under consideration
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Fig. 9 Total linear, angular momentum and total energy

can be classified as a Hamiltonian system with symmetries.
The evolution of the total angular momentum is depicted in
the left diagram of Fig. 8. All three components [J1, J2, J3]
are displayed. Due to the initial values, the third component
(J3 ≈ −2.4 × 106) is larger than the other two components
(J1 ≈ 2.15 × 102) and (J1 ≈ −2.15 × 102). In addition to
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Fig. 10 Deformed configuration at t = [0, 20, 50]
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Fig. 11 Total linear, angular momentum and total energy

this, the upper and lower right diagrams show the total linear
momentum and the total energy, respectively. As expected,
all quantities are conserved up to numerical round-off.

Note, that we have used the modification described in
(71) for this simulation. Without this modification, linear and
angular momentum are conserved as well, only total energy
shows some minor artificial changes. The simulation itself
remains stable.

In contrast, the standard mid-point scheme fails to con-
serve energy. Figure 9 shows a comparison of the proposed
energy-momentum scheme and the mid-point type rule. As
can be seen, the newton iteration diverges after 394 time
steps.

Note that the characteristic of the energy-curve of the mid-
point type approach depends highly on the implementation
of the active set strategy.

6.3 Torus-cylinder impact example

This last example deals with a three-dimensional problem
similar to the last example in Yang and Laursen [33]. The
material properties and the initial geometry of the torus are
the same as in Sect. 6.2. The inner diameter of the cylinder
is 100, the wall thickness is 7.5 and the initial velocity of

the torus is [0, 0, 20]. In Fig. 10 a sequence of configurations
at t = 0, 20, 50 is displayed. The torus consists of 2,288
elements, the cylinder of 1,900 elements. Furthermore, the
time-step size has been set to �t = 0.01.

Once again, the evolution of the total angular momentum
is depicted in the left diagram of Fig, 11, whereas the upper
and lower diagrams on the right side show the total linear
momentum and the total energy, respectively. As expected,
all quantities are conserved exactly.

7 Conclusions

We have presented a newly developed energy-momentum
scheme for the NTS method in the context of large deforma-
tions. In particular, the NTS constraints have been reformu-
lated using a mixed approach in conjunction with the concept
of a discrete gradient. This ensures algorithmic conserva-
tion of energy as well as both momentum maps, leading to
an enhanced numerical stability while preserving the second
order accuracy of the original mid-point type time integra-
tion. The enhanced numerical stability is guaranteed even
if the non-penetration condition is enforced exactly. Due to
the simple structure of the proposed algorithm, the presented
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concept is well-suited for the extension to frictional contact
problems. Furthermore, due to the newly proposed augmen-
tation technique, the first and second derivative of the con-
vective coordinates required for detecting the contact points
are—in contrast to traditional methods—quite simple.

Several numerical examples are presented to demonstrate
the characteristics of the proposed algorithm. In particular,
the numerical results confirm the enhanced numerical stabil-
ity and robustness of the newly developed method.
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