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Abstract. We introduce a novel computational framework for the multiscale simulation
of higher-order continua that allows for the consideration of first-, second- and third-
order effects at both micro- and macro-level. In line with classical two-scale approaches,
we describe the microstructure via representative volume elements (RVE) that are at-
tached at each integration point of the macroscopic problem. To take account of the
extended continuity requirements of independent fields at micro- and macro-level, we
discretize both scales via isogeometric analysis (IGA). As a result, we obtain an IGA2-
method that is conceptually similar to the well-known FE2-method. We demonstrate
the functionality and accuracy of this novel multiscale method by means of a series of
multiscale simulations involving different kinds of higher-order continua.

Keywords: higher-order gradient material, representative volume element, energetic
criteria, consistent linearization, NURBS, IGA2-method, multigrid.

1 Introduction

Whether or not morphological features of a material are visible depends on the observed
length scale. While a material may appear perfectly homogeneous at one scale, it may
be heterogeneous at another. A typical example for such a material is a composite,
whose phases are distinguishable only at a small length scale and whose heterogeneous
properties are linked to homogeneous properties at a larger scale. In general, the involved
length scales are considered separated if their contrast is sufficiently high.† In such cases,
it is reasonable to describe the homogenized behavior with classical, first-order theories.
In contrast to that, when the scales are not clearly separated, the description of the
homogenized behavior needs to be based on generalized, higher-order theories.

Generalized theories for materials are nowadays well-established. They trace back to the
seminal work of [14], who investigated the emergence and significance of couple stresses
for the modeling of the size-dependent response of materials more than a hundred years
ago. In their theory, the Cosserat brothers linked couple stresses to the gradient of a
microscopic rotation field and classical force stresses to the gradient of the macroscopic
translation field (i.e., the displacements). In that context, the microscopic rotation field
is understood independent from the macroscopic rotation field. An extended theory

∗Corresponding author. E-mail address: christian.hesch@uni-siegen.de
†More strictly speaking, separation of scales is present when the wavelengths of physical fields at the

higher scale are very much larger than the dimensions of heterogeneities at the lower scale ([70]).
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based on the consideration of both macroscopic translational and macroscopic rotational
degrees of freedom was later developed by [80, 81, 63]. We refer to [4] and [22] for rigorous
expositions of the Cosserats’ couple-stress theory as well as to [23, 24, 37] for further
developments and generalizations.

Next to classical couple-stress theories, there exist a number of further approaches to
the modeling of size effects in materials. An important branch is given by so-called
strain-gradient theories, which for linear elastic solids have first been proposed by [61].
Associated theories are based on the incorporation of higher-order gradients of the dis-
placement field into the material description. We refer to [62] for further specifications
based on the first gradient of strain and to [64] for an extension involving the second
gradient of strain. The interested reader is further referred to [35] and [48] for under-
lying virtual-work and variational principles, respectively, to [43] for extensions towards
fully nonlinear settings, and to [85, 6, 27] for possible numerical implementations. A
general overview of gradient-extended continua is available through the monographs of
[56, 5, 9]. Next to gradient-theories for elastic materials, there exists a rich theory on
gradient-extended models for dissipative solids. In these cases, the gradient extensions
are classicaly linked to internal variables like the plastic strains ([1, 28]) and the damage
field ([67]). We refer to [60] for associated variational treatments.

The above mentioned formulations have in common that they incorporate the notion of
microstructure (and its size) in a phenomenological way. In contrast to that, microstruc-
tural information about morphology and material properties can be accounted for in an
explicit manner by means of homogenization methods. As in case of phenomenological
material modeling, size effects may be incorporated in related schemes, depending on
the existence of scale separation. If the considered scales are clearly separated, classi-
cal or first-order homogenization schemes are applicable; if they are not, generalized or
higher-order schemes become necessary.

In the context of first-order homogenization schemes, we refer to [39, 38, 40, 65, 83] for
fundamental analytical approaches and to [77, 59, 26, 52] for seminal contributions to
two-scale finite-element (FE) simulations. In the context of higher-order and general-
ized continua, analytical approaches have been explored by [17, 32, 10, 21], see also the
overview by [29] as well as the more recent contributions of [42], [57, 33], [34], [2]. As-
sociated computational homogenization schemes have been developed in the framework
of couple-stress and micromorphic theories by [11, 25, 44, 69] and in the framework of
macroscopic strain-gradient approaches by [51, 53, 8, 84]. We refer to [30, 31] for seminal
treatments.

The present work is devoted to the multiscale computational homogenization of gradient-
extended continua and unites ingredients of the works of [51] with respect to the gradient
extensions at the homogenized scale, of [58] with regard to the algorithmic linearization
of the macroscopic field equations, and of [13, 41] with regard to spatial discretizations.
In contrast to the contribution of [51], which combines a Cauchy continuum at the
lower length scale with a gradient-extended continuum at the larger length scale, we
will take into account gradient-extended continua at both scales. This endeavor poses
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additional challenges not only for the theoretical treatment, but also for the numerical
implementation.

From a theoretical perspective, we are dealing with overall three spatial scales given by
(i) a macroscopic scale, at which the homogenized, gradient-extended behavior will be
obtained through computational homogenization of (ii) a mesoscopic scale, at which we
assume the presence of representative volume elements (RVE), which are themselves
characterized by size dependent material response at each mesoscopic material point
and thus inherently linked to (iii) a microscopic scale, at which we assume the existence
of a microstructure that we capture with phenomenological, gradient-extended material
models. The latter could be motivated, for example, through the presence of microscopic
fibers with spatial extensions and distributions that could still be distinguished from
further morphological entities like holes, inclusions, etc. at the level of the RVE . We refer
the interested reader to [75, 47] for associated analytical, numerical and experimental
details.

From a numerical perspective, challenges arise because the gradient extensions come
along with the requirement of C1-continuous approximations of independent fields at
both scales. Such a requirement can be captured in an elegant way by employing iso-
geometric analysis (IGA) in the sense of [13, 41]. A further algorithmic feature of the
proposed implementation is due to the linearization of the macroscopic boundary value
problem. Here, we employ the approach advocated by [58], which was originally devel-
oped in the context of first-order homogenization. As we will see, the associated gradient
extensions result in settings that remind of the linearized structures appearing in the
coupled homogenization schemes considered by [72, 45, 46].

As the present work proposes a computational multiscale method based on numeri-
cal discretizations involving isogeometric analysis at two scales, we denote it as IGA2-
method in analogy to the well-known FE2-methods mentioned above. We refer to [71]
for a review of FE2-methods and to [55] for a general overview of computational mul-
tiscale techniques. As already mentioned, the motivation behind using IGA instead
of classical finite elements is due to the straightforward and elegant implementation of
C1-continuous independent fields. In case of classical FE methods, the contruction and
implementation of higher-order element continuities is usually cumbersome. It could, for
example, be realized by the use of Hermite shape functions, which however come with
a complex algebraic structure and a high number of degrees of freedom, in particular in
three spatial dimensions. Alternative FE approximations are given by mixed and non-
conforming methods. While mixed methods can be implemented with standard C0-type
shape functions, they need to satisfy the inf-sup condition ([12]). Non-conforming finite
elements indeed allow for a more or less straightforward numerical implementation at a
reasonable amount of degrees of freedom ([79]), still their finite-element function space
is not a subspace of the solution space ([16]). In contrast to that, IGA-based schemes do
not suffer from such limitations, but allow for an elegant implementation of higher-order
continuities. ‡ As IGA-based multiscale methods have thus far been limited to homoge-

‡Alternative schemes with even C∞-continuous interpolations at the microscopic level have been pro-
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neous macroscopic problems ([3, 82]), we believe that the here proposed IGA2-method
provides a useful and innovative framework for the modeling of higher-order continua
across length scales.

The outline of the paper is as follows. In Section 2 we discuss fundamental concepts
of the multiscale modeling of higher-gradient continua. In that consequence, suitable
boundary conditions based on an energetically consistent scale transition are derived.
In Section 3 we discuss the numerical implementation of the proposed scheme. Here, we
put an emphasis on the consistent linearization of the macroscopic field equations and
the IGA-based discretization of representative volume elements (RVE). In Section 4 we
present a number of benchmark tests to demonstrate the performance and accuracy of
the proposed multiscale technique. We close the paper with a summary and a conclusion
in Section 5.

2 Preliminaries and problem description

In this section, we present the basic concepts for the homogenization of second- and
third-gradient media for the macro- and microcontinuum. Moreover, suitable boundary
conditions with respect to energetic criteria for the scale transition are provided. As
higher-order tensor notations and operations on them are required, a brief summary is
given in Appendix A.

2.1 Macroscopic boundary value problem

We start with a short summary of the second-gradient macroscopic continuum. There-
fore, we introduce a reference configuration Ω̄0 ⊂ R3 with boundary ∂Ω̄0 and outward
unit normal N̄NN and a current configuration Ω̄ ⊂ R3, with outward unit normal n̄nn and
boundary ∂Ω̄, with subsets Γ̄ϕ and Γ̄σ, and properties Γ̄ϕ ∩ Γ̄σ = ∅ and Γ̄ϕ ∪ Γ̄σ = δΩ̄.
The deformation mapping ϕ̄ϕϕ : Ω̄0 → R3 relates the reference and current configuration

to each other, Ω̄ = ϕ̄ϕϕ(Ω̄0). Furthermore, the vector to an arbitrary material point P
is labelled by X̄XX ∈ Ω̄0. In the current configuration, the location of the corresponding
point p is given by x̄xx = ϕ̄ϕϕ(X̄XX), see Figure 1.

The first order deformation measure F̄FF : Ω̄0 → R
3×3 and the second order deformation

measure F̄ : Ω̄0 → R3×3×3 are given by the first and second gradient of the mapping
ϕ̄ϕϕ(X̄XX) as

F̄FF = ∇̄ϕ̄ϕϕ and F̄ = ∇̄2ϕ̄ϕϕ . (1)

posed by [66] and were recently implemented in the framework of so-called FE-FFT methods. As
the name suggests, associated schemes combine macroscopic solvers based on finite elements with
microscopic solvers based on spectral methods (Fast Fourier Transforms; FFT), see [78, 49, 36].
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Figure 1. Reference and current configuration.

Here, ∇̄ refers to the gradient with respect to X̄XX, see (54) in Appendix A. Following
[50, 43, 18], we postulate the virtual work of the internal contributions as

δΠ̄int =
∫

Ω̄0

(

P̄PP : δF̄FF + P̄
... δF̄

)

dV , (2)

where P̄PP denotes the macroscopic two-point first Piola-Kirchhoff stress tensor and P̄ the
macroscopic two-point third-order stress tensor, conjugate to F̄. Moreover,

δF̄FF = ∇̄δϕ̄ϕϕ and δF̄ = ∇̄2δϕ̄ϕϕ , (3)

where the space of virtual or admissible test functions is given by

V = {δϕ̄ϕϕ ∈ H2(Ω̄) | δϕ̄ϕϕ = 000, ∇̄δϕ̄ϕϕN̄NN = 000 on Γ̄ϕ} (4)

with boundary Γ̄ϕ, see Figure 2. Applying integration by parts twice in (2) yields

δΠ̄int(ϕϕϕ) =
∫

Ω̄0

∇̄ · (∇̄ · P̄ − P̄PP ) · δϕ̄ϕϕ dV +
∫

∂Ω̄0

δϕ̄ϕϕ · (P̄PP − ∇̄ · P̄) N̄NN + ∇̄δϕ̄ϕϕ : (P̄ · N̄NN) dA. (5)

Introducing the orthogonal decomposition ∇̄⊥ · (•) = ∇̄(•) : (N̄NN ⊗ N̄NN) and ∇̄‖ · (•) =

∇̄(•) : (III − N̄NN ⊗ N̄NN), we obtain after some further technical steps

δΠ̄int(ϕϕϕ) =
∫

Ω̄0

∇̄ · (∇̄ · P̄ − P̄PP ) · δϕ̄ϕϕ dV +
∫

∂Ω̄0

δϕ̄ϕϕ · (P̄PP − ∇̄ · P̄) N̄NN dA

−
∫

∂Ω̄0

[

δϕ̄ϕϕ · (K (P̄ N̄NN) N̄NN + ∇̄‖ · (P̄ N̄NN)) − ∇̄⊥δϕ̄ϕϕ :
(

P̄N̄NN
)]

dA

+
∫

∂2Ω̄0

δϕ̄ϕϕ · (P̄ : ( ˆ̄NNN ⊗ N̄NN)) dS,

(6)
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for a sufficiently smooth Ω̄0, where ˆ̄NNN is the normal to ∂2Ω̄0 and the tangent to ∂Ω̄0.
Note that ∂2Ω̄0 is defined by the union of the boundary curves of the boundary surface

patches and thus, ˆ̄NNN can be defined differently from both adjacent surfaces, see Javili et
al. [43] and the citations therein for details. Moreover, K = −∇̄‖ · N̄NN is the curvature of
the surface.

Omitting line forces for the ease of exposition, the external contributions to the virtual
work are given by

δΠ̄ext =
∫

Ω̄0

B̄BBext · δϕ̄ϕϕ dV +
∫

Γ̄σ

T̄TT ext · δϕ̄ϕϕ dA +
∫

Γ̄∇σ

M̄MM ext : ∇̄⊥δϕ̄ϕϕ dA (7)

with the common body force per unit volume B̄BBext, the traction forces T̄TT ext on boundary
Γ̄σ and the hyperstress traction force M̄MM ext on boundary Γ̄∇σ, see once again Figure 2.

X̄XX ∈ Ω̄0

XXX

eee1

eee2

eee3

Γ̄ϕ

Γ̄∇σΓ̄σ

RVE
RVE driven by

F̄FF , F̄

constitutive quantities

P̄PP , P̄, ∆P̄PP , ∆P̄

Figure 2. Meso-macro transition of the mechanical boundary value problem, left: boundary decompo-
sition of the macroscopic continuum in Dirichlet boundaries Γ̄ϕ and Neumann boundaries
Γ̄σ, Γ̄∇σ of the traction force and the hyperstress traction force, right: RVE as defined for
every macroscopic point.

Thus, the principle of virtual work reads

δΠ̄int − δΠ̄ext = 0 , ∀ δϕ̄ϕϕ ∈ V (8)

and the internal contributions can be related by applying partial integration and the
Gaussian integral theorem to the external contributions, see Javili et al. [43]:

T̄TT ext = (P̄PP − ∇̄ · P̄) N̄NN ,

M̄MM ext = P̄ N̄NN .
(9)
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Note, that the last equation can be decomposed in tangential and normal components,
see Madeo et al. [54] for details. Taking the balance equation

∇̄ · (P̄PP − ∇̄ · P̄) + B̄BBext = 000 (10)

into account, completes the set of equations for the strong form of the second-gradient
boundary value problem. In the following, we omit volumetric body forces as gravity
forces, thereby B̄BBext = 000.

2.2 Mesoscopic boundary value problem

In every material point P̄ of the macroscopic domain, we assume the existence of a repre-
sentative volume element RVE on a mesoscale, sufficiently separated from the macroscale
and sufficiently large to be representative, containing the information on the inhomoge-
neous mesoscopic continuum, see Figure 2. To be specific, we postulate a second-gradient
material in the RVE analogous to (8) on the macroscale for two reasons: First, this gen-
eral approach for the homogenization from a second-gradient micro-continuum towards
a second-gradient macro-continuum allows us to demonstrate that the formulation pro-
posed by Kouznetsova et al. [51] is a special case of the methodology presented next.
Second, we can now generalize this concept for general higher-order materials.

We start with the mapping for the microscopic relative position of the material points
xxx = ϕϕϕ(XXX):

ϕϕϕ(XXX) = F̄FF XXX +
1

2
F̄ : (XXX ⊗ XXX) + w̃ww . (11)

Here, w̃ww describes the unknown microcroscopic fluctuation field, which includes all
higher-order terms of the Taylor series expansion, see Kouznetsova et al. [51]. In analogy
to the macroscopic quantities, we obtain the microscopic first-order deformation measure
FFF = ∇ϕϕϕ and the second-order deformation measure F = ∇2ϕϕϕ:

FFF = F̄FF + F̄XXX + F̃FF and F = F̄ + F̃ , (12)

where F̃FF := ∇w̃ww and F̃ := ∇2w̃ww. The averaged microscopic deformations over the volume
of the RVE can be connected to the macroscopic counterparts F̄FF and F̄ via

1

V

∫

RVE

FFF dV = F̄FF and
1

V

∫

RVE

F dV = F̄ , (13)

see Appendix B§ for further information. The local balance equation of the microscopic
second-gradient continuum is given analogously to (10) by:

∇ · [PPP − ∇ · P] = 000 , (14)

§All appendices are written most generally with regard to a third-gradient medium. For the proposed
second-gradient material, the corresponding terms of the third gradient can be removed easily.
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where PPP := ∂FFF Ψ(FFF,F) and P := ∂FΨ(FFF,F) are defined in terms of a Helmholtz energy
function Ψ.

The macro-homogeneity condition is given by an energetic criterion that states that the
virtual work applied to the system in the material point P̄ is equal to the virtual work
in the RVE , hence we assume

1

V

∫

RVE

(

PPP : ∇δϕϕϕ + P
... ∇2δϕϕϕ

)

dV = P̄PP : δF̄FF + P̄
... δF̄ . (15)

Note that this excludes Neumann conditions on the RVE , which would add an effective
contribution to the virtual work on the mesoscale. The left-hand side of the energetic
criterion can be rewritten as

1

V

∫

RVE

PPP dV : δF̄FF +
1

V

∫

RVE

(

PPP ⊗ XXX + P
)

dV
... δF̄ = P̄PP : δF̄FF + P̄

... δF̄ , (16)

see Appendix C. Comparing the left- and right-hand sides of the last equation, yields

P̄PP =
1

V

∫

RVE

PPP dV and P̄ =
1

V

∫

RVE

PPP ⊗ XXX dV

︸ ︷︷ ︸

P̄PPP

+
1

V

∫

RVE

P dV

︸ ︷︷ ︸

P̄P

. (17)

Here, the macroscopic third-order stress tensor P̄ is split into P̄PPP , which is given by
the volume average of the first moment of the microscopic stresses PPP , and P̄P, which
is a volume average of the microscopic third-order stress tensor P. Note that if a first-
gradient material within the RVE is assumed, the macroscopic hyperstress P̄P vanishes
and we obtain the formulation provided by Kouznetsova et al. [51]. To obtain information
about the boundary conditions, (15) can be rewritten as:

1

V

∫

RVE

([

P̄PP − PPP
]

: [δF̄FF + δF̄XXX − δFFF ] +
[

P̄P − P
] ...

[

δF̄ − δF
])

dV = 0 , (18)

see Appendix D.1. Obviously, the simplest assumption for all points of the mesoscale,
that fulfils the last equation is given by postulating the constraints P̄PP := PPP or δF̄FF +
δF̄XXX := δFFF and additionally P̄P := P or δF̄ := δF, compare Schröder [71] in the
context of first-order theories. An alternative expression of (18) yields:

1

V

∫

∂RVE

([

P̄P − P
]

NNN
)

:
[

δF̄FF + δF̄XXX − δFFF
]

dA

+
1

V

∫

∂RVE

([

P̄PP − (PPP − ∇ · P)
]

NNN
)

·
[

δF̄FF XXX +
1

2
δF̄ : (XXX ⊗ XXX) − δϕϕϕ

]

dA = 0 ,
(19)

see Appendix D.2 for further information. Thus, regarding a deformation-driven ap-
proach, suitable Dirichlet boundary conditions on the boundary ∂RVE are

F̄FF XXX +
1

2
F̄ : (XXX ⊗ XXX) − ϕϕϕ = 000 ,

F̄FF + F̄XXX − FFF = 000 ,
(20)
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satisfying (19). Note that due to F̄ the boundaries are quadratic functions.

For a stress driven approach, (19) yields possible Neumann boundary conditions, how-
ever, that would render an inherently complex implementation for large deformations,
see Kouznetsova [50]. A comparison of the Dirichlet boundary conditions with the map-
pings (11) and (12)1 provides the following relationship for these conditions, w̃ww = 000
and ∇w̃ww = 000 on the boundary. Furthermore, the microscopic stress tractions are
TTT ext = (PPP − ∇ · P) NNN and the hyperstress tractions are given by MMM ext = PNNN , peri-
odic boundary conditions as shown in Figure 3 require

w̃ww(XXX+) = w̃ww(XXX−) , TTT ext(XXX
+) = −TTT ext(XXX

−) ,

∇w̃ww(XXX+) = ∇w̃ww(XXX−) , MMM ext(XXX
+) = −MMM ext(XXX

−) ,
(21)

satisfying the energetic criterion (15). Here, XXX+ and XXX− refer to opposite surfaces,
see Figure 3 for details. Note, that the tangential part of the constraint ∇w̃ww = 000 is
already fulfilled by the condition w̃ww = 000. Therefore, we can either restrict the gradient
term to the normal component or, alternatively, make use of a least-square minimization
approach within the context of Mortar domain decomposition methods. We refer to [76]
for details on the theoretical background and to [19, 20] for the implementation.

Note that the periodicity is given in terms of the fluctuation w̃ww, i.e. with regard to
(11) follows immediately that the geometrical boundaries for a second-order problem
are not periodic within the RVE in contrast to a first-order problem. To be specific, the
boundary deformation emanating from F̄FF is periodic whereas the deformation emanating
from F̄ is not due to the quadratic formulation in XXX. The latter term does not drop out
if (21), left, is formulated in the total deformation ϕϕϕ(XXX).

∂RVE

∂RVE

ϕϕϕ(XXX)

xxx

XXX

NNN+

NNN−

+

+

+

+
+

+
−

−

−−

−
−

Figure 3. Mesoscopic boundary value problem, periodic boundary conditions on ∂RVE , here only
displayed for top and bottom for better understanding.

Remark 1. Third-gradient medium: The proposed formulation at hand can be extended
in a straightforward manner towards a macroscopic third-gradient medium with hyper-
stress P̄ and the conjugate deformation measure F̄ = ∇̄3ϕ̄ϕϕ. The corresponding application
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of the energetic criterion reads

1

V

∫

RVE

(

PPP : ∇δϕϕϕ + P
... ∇2δϕϕϕ

)

dV = P̄PP : δF̄FF + P̄
... δF̄ + P̄ :: δF̄ . (22)

The mapping of the microscopic position reads

ϕϕϕ(XXX) = F̄FF XXX +
1

2
F̄ : (XXX ⊗ XXX) +

1

6
F̄

... (XXX ⊗ XXX ⊗ XXX) + w̃ww . (23)

Insertion yields the relations

P̄PP =
1

V

∫

RVE

PPP dV,

P̄ =
1

V

∫

RVE

PPP ⊗ XXX dV

︸ ︷︷ ︸

P̄PPP

+
1

V

∫

RVE

P dV

︸ ︷︷ ︸

P̄P

,

P̄ =
1

V

∫

RVE

1

2
PPP ⊗ XXX ⊗ XXX dV

︸ ︷︷ ︸

P̄PPP

+
1

V

∫

RVE

P ⊗ XXX dV

︸ ︷︷ ︸

P̄P

,

(24)

where we have again made use of
∫

RVE
XXX dV = 000, see Appendices B to D. This yields the

set of Dirichlet boundary conditions

F̄FF XXX +
1

2
F̄ : (XXX ⊗ XXX) +

1

6
F̄

... (XXX ⊗ XXX ⊗ XXX) − ϕϕϕ = 000 ,

F̄FF + F̄XXX +
1

2
F̄ : (XXX ⊗ XXX) − FFF = 000 ,

(25)

where we omit again further discussion on possible (periodic) Neumann conditions. With
this at hand, a first-gradient medium within the RVE can be established by removing all
terms related to P. An extension towards a third-gradient medium within the RVE
seems plausible, but up to now constitutive equations for this need further investigations.
Moreover, we note here, that a typical RVE is in the range of µm, and thus, inhomo-
geneities in the first Piola-Kirchhoff stress tensor are weighted with µm2 in P̄, which is
often negligible and the reason, why we do not further take this into account here. For
further information on scale separation, see Schröder [71].

3 Consistent linearization and discretization

For the computation of the macroscopic boundary value problem with attached meso-
scopic RVEs, we introduce here the IGA2-method, analogous to the FE2-method, see
Schröder [71] and references therein. We omit here details on the spline-based discretiza-
tion of the macroscale within the concept of IGA, as numerous papers have already
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presented this and instead focus on the mesoscopic RVE , assuming that the discrete
macroscopic quantities of the deformations (F̄FF , F̄) are known at the particular Newton
step. Note that higher-order continua at the macroscale require appropriate continuity
of the spline based discretization.

Thus, in a first step the macroscopic quantities (F̄FF , F̄) are transferred to the mesoscale
RVE at every material point, see Figure 2. After that, the boundary value problem on
the mesoscale is solved using suitable boundary conditions and the homogenization is
performed using volumetric averaged mesoscopic quantities as well as the linearization
of these quantities. In the last step, the macroscopic boundary value problem is solved
and the next Newton iteration starts.

3.1 Linearization of macroscopic stresses and hyperstresses

Since the macroscopic boundary value problem is solved with a Newton-Raphson itera-
tion, we need a consistent linearization of the macroscopic field equations. Therefore, it
is necessary to linearize the stresses P̄PP and P̄, evaluated via the incremental relations:

∆P̄PP :=
∂P̄PP

∂F̄FF
: ∆F̄FF +

∂P̄PP

∂F̄

... ∆F̄ and ∆P̄ :=
∂P̄

∂F̄FF
: ∆F̄FF +

∂P̄

∂F̄

... ∆F̄ . (26)

However, the macroscopic quantities are given by the averaged mesoscopic stresses and
hyperstresses, hence P̄PP := P̄PP (PPP (FFF,F)) and P̄ := P̄(PPP (FFF ,F),P(FFF,F)), see (17). Thus
we have to use the chain rule for the partial derivative of the macroscopic stresses with
respect to the corresponding deformations and end up after some calculations with:

[

∆P̄PP
]

iJ
=

1

V

∫

RVE

[C]iJsT dV
[

∆F̄FF
]

sT

+
1

V

∫

RVE

(

[C]iJsT [XXX]U + [D]iJsT U

)

dV
[

∆F̄
]

sT U

+
1

V

∫

RVE

(

[C]iJsT

[

∆F̃FF
]

sT
+ [D]iJsT U

[

∆F̃
]

sT U

)

dV

(27)
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and
[

∆P̄
]

iJK
=

1

V

∫

RVE

(

[C]iJsT [XXX]K + [E]iJKsT

)

dV
[

∆F̄FF
]

sT

+
1

V

∫

RVE

(

[C]iJsT [XXX]K [XXX]U + [D]iJsT U [XXX]K

+ [E]iJKsT [XXX]U + [G]iJKsT U

)

dV
[

∆F̄
]

sT U

+
1

V

∫

RVE

(

[C]iJsT [XXX]K + [E]iJKsT

) [

∆F̃FF
]

sT
dV

+
1

V

∫

RVE

(

[D]iJsT U [XXX]K + [G]iJKsT U

) [

∆F̃
]

sT U
dV ,

(28)

where the derivatives of the stresses are defined by:

C :=
∂PPP

∂FFF
, D :=

∂PPP

∂F
, E :=

∂P

∂FFF
and G :=

∂P

∂F
, (29)

see Appendix E for more details. It is obvious, that the linearizations of the macroscopic
stresses P̄PP and P̄ depend on the sensitivity of the mesoscopic fluctuations ∆F̃FF and
∆F̃, defined in (12). The correlation between these sensitivities and the change of
the corresponding macroscopic fields ∆F̄FF and ∆F̄ can be done in the discrete setting
by linearization of the virtual work of the mesoscopic boundary value problem in the
solution point, as shown next.

3.2 Linearization of mesoscopic boundary value problem

The relationship between these sensitivities and the macroscopic fields follows from the
mesoscopic boundary value problem. With regard to (14) and assuming that δw̃ww = 000
holds on the whole boundary, we obtain

G :=
∫

RVE

(

PPP : δF̃FF + P
... δF̃

)

dV . (30)

Solving the problem such that G = 0, it follows immediately that ∆G = 0. Hence, the
linearization in the equilibrium state reads

∆G :=
∫

RVE

(

δF̃FF :
[

C : ∆FFF + D
... ∆F

]

+ δF̃
...

[

E : ∆FFF + G
... ∆F

])

dV = 0 , (31)

where
∆FFF = ∆F̄FF + ∆F̄XXX + ∆F̃FF and ∆F = ∆F̄ + ∆F̃ . (32)

This can be evaluated in the discrete setting, as will be shown next.
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3.3 Mesoscopic finite element approximation

Next, we have to approximate the fluctuation field, the virtual and the incremental
fluctuation fields:

w̃wwh =
∑

A∈I
RA q̃qqA , δw̃wwh =

∑

A∈I
RA δq̃qqA and ∆w̃wwh =

∑

A∈I
RA ∆q̃qqA , (33)

where RA : RVE → R are B-Spline¶ based shape functions of order p with associated
control points A ∈ I = 1, . . . , m with the overall number of control points m. Further-
more,

[

q̃qqA, δq̃qqA, ∆q̃qqA
]

∈ R3. So, the deformation tensors lead to the approximation

F̃FF
h

=
∑

A∈I
q̃qqA ⊗ ∇RA and F̃h =

∑

A∈I
q̃qqA ⊗ ∇2RA , (34)

which are given analogously for the virtual (δF̃FF
h
, δF̃h) and the incremental (∆F̃FF

h
, ∆F̃h)

deformation tensors. Note that we can also discretize the displacement field ϕϕϕ(XXX) using
(11) as well.

For the boundary conditions we first introduce Dirichlet conditions as presented in
(20). For the implementation of a first-order mesoscale continuum is straightforward, as
we only have to deal with linear conditions in XXX. Using open knot vectors, which
are interpolatory at the boundaries, the control points of the spline has to be dis-
tributed linearly along the boundaries of the RVE . For higher-order problems, we obtain
quadratic (second-order formulations) and cubic (third-order formulations) boundaries
in XXX. Therefore, we make use of a least-square optimization for the ease of imple-
mentation. However, the problem itself can be solved exactly, i.e. quadratic or higher
order splines can reproduce a quadratic boundary, c.f. [15]. Introducing a set of evalu-
ation points q̂qqi along the boundary and a set of control points q̃qqj for the splines-based

discretization of the discrete boundary ∂RVE
h
, the least-square problem reads

{q̃qqj} = min
︸︷︷︸

q̃qqi∈∂RVEh

‖q̂qqi −
∑

j

Rj(ξξξi) q̃qqj‖. (35)

Note, that q̂qqi = F̄FF qqqi + 1
2
F̄ : (qqqi ⊗ qqqi) and ∇q̂qqi = F̄FF + F̄qqqi , with the position of the

evaluation point in the reference configuration qqqi. We refer to the textbook [15] and the
discussion therein on the enforcement of Dirichlet conditions for further information on
the evaluation of the least-square problem. For second-order boundaries, the least-square
problem is expanded by the constraint ∇w̃ww(XXX) = 000 on all surfaces to

{q̃qqj} = min
︸︷︷︸

q̃qqi∈∂RVEh

∥
∥
∥
∥
∥
∥
∥
∥
∥

q̂qqi −
∑

j
Rj(ξξξi) q̃qqj

∇q̂qqi −
∑

j
∇Rj(ξξξi) q̃qqj

∥
∥
∥
∥
∥
∥
∥
∥
∥

. (36)

¶B-Splines are used without loss of generality, NURBS can also be applied if necessary.
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For periodic boundary conditions, we have to ensure that (21), left, is valid. For general
higher-order domain decomposition problems using non-conforming meshes, we refer to
our previous developments in [19, 20], applied here on conforming meshes. For the ease
of implementation, we note that a least-square optimization using

{q̃qq−
j } = min

︸︷︷︸

q̃qq−

i
∈∂RVEh

∥
∥
∥
∥
∥
∥
∥
∥
∥

∑

k
Rk(ξξξ+

i ) q̃qqk −
∑

j
Rj(ξξξ−

i ) q̃qqj +
(

q̂qq+
i − q̂qq−

i

)

∑

k
∇Rk(ξξξ+

i ) q̃qqk −
∑

j
∇Rj(ξξξ−

i ) q̃qqj +
(

∇q̂qq+
i − ∇q̂qq−

i

)

∥
∥
∥
∥
∥
∥
∥
∥
∥

, (37)

can also be applied, leaving a nodal dependency in the form q̃qq−
j := q̃qq−

j (q̃qq+
j ) for the set of

opposing evaluation points {qqq+
i , qqq−

i }.

Next, we can establish a relationship between the mesoscopic sensitivities and the change
of corresponding macroscopic fields. For this, we discretize the last two sections in
reverse order and insert the approximations in a first step in the equilibrium state of the
mesoscopic boundary value problem (31)

∆Gh :=
∫

RVEh

δF̃FF
h

:
[

C
h :

(

∆F̄FF + ∆F̄XXXh + ∆F̃FF
h
)

+ D
h ...

(

∆F̄ + ∆F̃h
)]

dV

+
∫

RVEh

δF̃h ...
[

E
h :

(

∆F̄FF + ∆F̄XXXh + ∆F̃FF
h
)

+ G
h ...

(

∆F̄ + ∆F̃h
)]

dV = 0 ,
(38)

where the discrete derivatives of the stresses are defined by

C
h := C

(

FFF h, Fh
)

, D
h := D

(

FFF h, Fh
)

, E
h := E

(

FFF h, Fh
)

and G
h := G

(

FFF h, Fh
)

. (39)

After some calculations, see Appendix F for further information, we arrive at the dis-
crete correlation between the mesoscopic sensitivities and the change of corresponding
macroscopic fields:

[∆q̃qq]Bs = −
(

[KKK]AB

ls

)−1 (

[L]AlrT

[

∆F̄FF
]

rT
+ [M]AlrT U

[

∆F̄
]

rT U

)

. (40)

Here, KKK, L and M are the stiffness matrices of the mesoscopic boundary value problem.

In a second step, we discretize the macroscopic stresses (27) and (28), where we use the
correlation of the mesoscopic sensitivities to the macroscopic quantities (40) and end up
in:

[

∆P̄PP
]h

iJ
=

{
[

V
C

]h

iJrT
− [N ]BiJs

(

[KKK]AB

ls

)−1
[L]AlrT

}
[

∆F̄FF
]

rT

+

{
[

V
CD

]h

iJrT U
− [N]BiJs

(

[KKK]AB
ls

)−1
[M]AlrT U

}
[

∆F̄
]

rT U
,

(41)

for the linearization of the stresses and:
[

∆P̄
]h

iJK
=

{[

V
CE

]h

iJKrT
− [N]BiJKs

(

[KKK]AB
ls

)−1
[L]AlrT

} [

∆F̄FF
]

rT

+
{[

V
CDEG

]h

iJKrT U
− [N]BiJKs

(

[KKK]AB

ls

)−1
[M]AlrT U

} [

∆F̄
]

rT U
,

(42)
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for the linearization of the hyperstresses, see Appendix G for further information on the
volume averaged tensors VC, V

CD, V
CE and V

CDEG as well as N and N. This description of
the linearization of the macroscopic stresses and hyperstresses is free of the mesoscopic
fluctuations w̃ww and the discretized version q̃qqA, respectively.

4 Numerical experiments

In this section we investigate the performance and accuracy of the homogenization tech-
nique for different materials. We start with some benchmark tests for a Mooney-Rivlin
material and a second-gradient material for fiber-reinforced polymers for the RVE . Af-
terwards, we use this second-gradient material for investigations using the well-known
Cook’s membrane.

4.1 Benchmark test: Mooney-Rivlin material

As a first proof of concept, we investigate RVE using a homogeneous Mooney-Rivlin
material, see [47]. The edge length of the RVE cube is 0.1 mm and the coordinate
system is fixed in the center of the cube, see Figure 4. The first-order constitutive

∂RVE : w̃ww = 000 mm

XXXXXX

−

−

− +

+

+

pcs: w̃ww(XXX+) = w̃ww(XXX−)

cn: w̃ww = 000 mm

Figure 4. Mooney-Rivlin material. Left: RVE (edge length 0.1 mm) with Dirichlet boundaries
w̃ww = 000 mm on ∂RVE . Right: RVE with periodic boundary conditions w̃ww(XXX+) = w̃ww(XXX−)
for the periodically contiguous surfaces (pcs) top-bottom, right-left, front-back and eight
constrained corner nodes (cn) with w̃ww = 000 mm.

relation is given by

Ψ(J, I1, I2) = c (J − 1)2 − d ln(J) + c1 (I1 − 3) + c2 (I2 − 3) . (43)

Here, J = det(FFF ), I1 = tr(FFF T FFF ) = FFF : FFF and I2 = tr(cof(FFF T FFF )). Moreover, c =
1/3 (c1 + c2), d = 2 (c1 + 2 c2), c1 = 2000 MPa and c2 = 1000 MPa. To test the RVE , we
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define the macroscopic deformation tensor:

F̄FF :=










0.897 0.500 −0.400

−0.070 1.001 −0.100

0.082 0.020 0.997










, (44)

and assume the macroscopic second gradient to be F̄ := 0. With this information, we
solve the microscopic boundary value problem, where we apply in a first step Dirichlet
boundaries on ∂RVE and in a second step periodic boundaries, see Figure 4 for details.

In Figure 5, the von Mises stresses are plotted for the RVE with Dirichlet and periodic
boundary conditions. In particular, we increase the number of elements in each direction
of the cube from 4, 8 to 16 elements using B-splines of order p = 2. Since the Mooney-
Rivlin material is of first order with linear constraints on the boundary, we obtain a
homogeneous distribution of the stress field.

Elements 4 × 4 × 4 8 × 8 × 8 16 × 16 × 16

Boundary Dirichlet Periodic Dirichlet Periodic Dirichlet Periodic

Emax(Ψ̄) 6.18E−16 3.71E−16 1.00E−16 1.00E−16 8.29E−15 8.29E−15

Emax(P̄PP ) 3.38E−16 2.24E−16 1.43E−15 1.43E−15 7.65E−15 7.65E−15

Enorm(P̄PP ) 5.03E−16 3.49E−16 1.62E−15 1.62E−15 1.19E−14 1.20E−14

Emax(∂F̄FF P̄PP ) 2.23E−16 1.48E−16 4.45E−16 4.45E−16 4.68E−15 4.68E−15

Enorm(∂F̄FF P̄PP ) 4.36E−16 4.00E−16 1.27E−15 1.26E−15 1.27E−14 1.27E−14

Table 1: Mooney-Rivlin material. Relative maximum error of the energies Emax(Ψ̄) (1st row).
Relative maximum error Emax(•) and relative error in the norm Enorm(•) for the stresses and
tangent (2nd - 5th row). Here, for 4, 8 and 16 elements in each direction and the Dirichlet
and periodic boundaries, respectively.

Since we use an energetic criterion within the homogenization, we compare the maximum
error Emax(Ψ) of the (analytically evaluated) strain energy Ψana := Ψ(F̄FF ) with the
averaged strain energy Ψ̄RVE := 1

V

∫

RVE Ψ(FFF h) dV of the RVE , see Table 1. In particular,
we make use of the following error definitions for the relative maximal error Emax and
the relative error of the norm Enorm

Emax(•) =
max(abs((•)ana − (•)RVE))

||(•)ana||
, Enorm(•) =

||(•)ana − (•)RVE ||

||(•)ana||
. (45)

Moreover, we make use of the same error definition for the stresses ∂FFF Ψ(F̄FF ) and for the
tangent ∂2

FFF Ψ(F̄FF ). Note that the relative maximum errors Emax(•) and the relative errors
in the norm Enorm(•) for the energy, stresses and tangent are in the range of 1.48E−16
to 1.27E−14.
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6132.72515830 MPa 6132.72515830 MPa

Figure 5. Mooney-Rivlin material. Von Mises stresses - left to right: RVE with Dirichlet and
periodic boundaries, top to bottom: 4, 8 and 16 elements in each direction.
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4.2 Benchmark test: Second-gradient material

In this second example, we apply the proposed concept for second-order gradient mate-
rials. In [75] the whole deformation has been prescribed such that a constant curvature
generates a homogeneous hyperstress field. Here, we prescribe again the boundary of
the RVE and evaluate the balance equations to obtain the aimed hyperstress field. To
be precise, we make use of fiber-reinforced polymers (frp) as proposed in [18, 7] with a
composed stored energy function of the form

Ψfrp := ζ Ψmat +
1 − ζ

2
Ψfib , (46)

where ζ ∈ [0, 1] is the volume fraction of the matrix material. Ψmat denotes the stored
energy function of the matrix material and Ψfib denotes the stored energy function of
the fibers, both given as follows

Ψmat := Ψ(J, I1, I2) ,

Ψfib := aF tan2 ϕ +
1

2

∑

α

[

bF (λα − 1)2 + cF κκκα ·
(

FFF FFF Tκκκα
)]

,
(47)

where we make use of the Mooney-Rivlin material given in (43) for the matrix material
Ψmat. The stiffness parameter a, b and c are related to the shear, stretch and curvature
of the fiber material.

parameter of matrix material c1 2000 MPa

parameter of matrix material c2 1000 MPa

volume fraction of matrix material ζ 0.5 −

shear parameter of fiber material aF 15000 MPa

stretch parameter of fiber material bF 3000 MPa

curvature parameter of fiber material cF 1.25 N

orientation of fiber 1 LLL1 1√
4.25

[−1; −1; 1.5] −

orientation of fiber 2 LLL2 1√
4.25

[−1; −1; −1.5] −

initial angle of fibers β acos
(
LLL1 · LLL2

)
rad

Table 2: Second-gradient material. Material setting of the fiber-reinforced polymer.

Using bidirectional fibers with α = [1, 2], for the normalized fiber orientation LLLα in the
reference configuration and the initial angle β between both directions, the spatial field
of the fiber directions reads lllα = FFF LLLα. The stretch of the fibers λα can now be expressed
as

λα = ||lllα|| = ||FFF LLLα|| , (48)
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whereas the spatial angle reads

ϕ = acos
(

l̃ll
1

· l̃ll
2
)

− β . (49)

Hence, we can write for the deformed fiber configuration lllα = λα l̃ll
α
. The curvature

measure for the fiber initially aligned in LLLα-direction is introduced as follows

κκκα =
1

(λα)2

(

III − l̃ll
α

⊗ l̃ll
α

)

F : (LLLα ⊗ LLLα) , (50)

The macroscopic values of F̄FF and F̄ are again predefined

F̄FF :=










0.897 0.500 −0.400

−0.070 1.001 −0.100

0.082 0.020 0.997










, F̄(1, :) :=










−0.033 0.015 −0.020

0.015 0.013 0.043

−0.020 0.043 0.029










,

F̄(2, :) :=










0.015 −0.005 0.024

−0.005 0.028 0.028

0.024 0.028 0.014










, F̄(3, :) :=










0.023 0.005 −0.031

0.005 −0.042 −0.001

−0.031 −0.001 −0.012










.

(51)
In a first step, Dirichlet boundaries are applied on the boundary ∂RVE , see Figure
6, left. Therefore, the boundaries are deformed satisfying the quadratic configuration
provided in (20), constraining w̃ww = 000 and ∇w̃ww = 000.

In a second step, we have applied periodic boundaries on ∂RVE , requiring a higher-order
coupling of all opposing surfaces. Moreover, the predefined macroscopic deformation due
to F̄FF and F̄ has to be satisfied on all eight corner nodes, see Figure 6. The edge length
of the RVE cube is l = 0.1 mm and the coordinate system is placed in the center of the
cube, see Figure 6.

In Figure 7, the von Mises stress and the norm of the second-order stress P are plotted
for 16 elements in every direction. Again, we compare the solution of the constitutive
relation at the mesoscale as defined in (47) with the analytical solution of (47) applied
on the macroscale, see Table 3 for additional details. It can be seen, that the two shown
ways of the enforcement of the energetic criterion result in different stress distributions,
especially regarding the second-order contributions.

In addition, to demonstrate the accuracy of the formulation, we aim at a pure second-
gradient material. Since this anisotropic second-gradient contribution is not well defined
(it is singular without first-gradient contributions), we have to stabilize the formulation
using small first-gradient contributions. To be specific, we reduced the constitutive
parameters successively up to a factor of 1E−08. In each direction 16 elements using
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∂RVE : w̃ww = 000 mm, ∇w̃ww = 000 mm

XXX XXX

−

−

−

+

+

+LLL1 LLL2

pcs:
w̃ww(XXX+) = w̃ww(XXX−),

∇w̃ww(XXX+) = ∇w̃ww(XXX−)

cn:
w̃ww = 000 mm,

∇w̃ww = 000 mm

Figure 6. Homogeneous second-gradient material. Left: RVE in the reference configuration with
edge length 0.1 mm and Dirichlet boundaries on ∂RVE . Middle: schematic representation
of the long fibers in the polymer with direction LLLα. Right: RVE with periodic boundary
conditions, for the periodically contiguous surfaces (pcs) top-bottom, right-left, front-back
and constrained corner nodes (cn).

quadratic B-splines (p = 2) for the analysis have been applied with Dirichlet boundaries,
see (20). The maximum absolute error of the averaged values of FFF h, Fh and Ph for a
second-gradient material is shown with regard to the (analytically evaluated) values on
the macroscale. The remaining error Emax(Ph) depends directly on the remaining first-
gradient stiffness contributions. Thus, the second-gradient contributions converge to
the correct analytical value as expected for a second-gradient material for a constant Fh

deformation, as shown in Table 3.

Scaling 1E−0 1E−2 1E−4 1E−6 1E−8

Emax(FFF h) 1.58E−14 1.57E−14 1.59E−14 1.59E−14 1.56E−14

Emax(Fh) 4.59E−13 4.59E−13 4.60E−13 4.60E−13 4.59E−13

Emax(Ph) 1.74E+01 1.81E−01 1.80E−03 2.58E−05 1.84E−05

‖P̄PPP ‖/‖P̄‖ 100% 21.6% 0.23% 0.00367% 0.00217%

Table 3: Homogeneous second-gradient material. Relative absolute maximum error of FFF h, Fh

and Ph along with the norm of P̄PPP in relation to the total norm of P̄ for a second-gradient
material with minimal first-gradient contributions, scaled by the parameter as given in the
row ”Scaling”.

4.3 Second-gradient material with inclusions

Next, the previously introduced second-gradient material is applied on a geometrically
inhomogeneous RVE with a 3D cross inclusion in the center. These types of inhomo-
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37555 MPa 38128 MPa

0.038 MPa mm−1 0.115 MPa mm−1

Figure 7. Homogeneous second-gradient material. Stresses for RVE with 16 elements in each
direction - left to right: Dirichlet and periodic boundaries, top to bottom: von Mises stress
and ||P||.

geneities are used e.g. to reduce weight in 3D printed materials. In this example, we
consider the inclusions as a void by setting the material parameters to approximately
zero‖. Again, Dirichlet and periodic boundary conditions are applied, see Figure 8. The
edge length of the RVE cube is again l = 0.1 mm with the coordinate system placed in
the center. The 3D cross consists of two different edge lengths. The short edges are of
the length l/6 and the long edges are of the length l/4, see Figure 8 for details.

In Figure 9, the von Mises stresses of the matrix and the fibers are plotted, cutting the

‖Setting the parameters strictly to zero may lead to numerical instabilities.
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∂RVE : w̃ww = 000 mm, ∇w̃ww = 000 mm

XXX XXX

−

−

−

+

+

+LLL1 LLL2

pcs:
w̃ww(XXX+) = w̃ww(XXX−),

∇w̃ww(XXX+) = ∇w̃ww(XXX−)

cn:
w̃ww = 000 mm,

∇w̃ww = 000 mm

Figure 8. Second-gradient material with a void. Left: RVE (edge length 0.1 mm) with a 3D
cross void and Dirichlet boundaries on ∂RVE , see (20), middle: schematic representation
of the long fibers in the polymer with direction LLLα, right: RVE with a 3D cross void and
periodic boundary conditions, see (21), for the periodically contiguous surfaces (pcs) top-
bottom, right-left, front-back except the eight corner nodes (cn), where Dirichlet boundaries
are used, see (20).

RVE in half. Here, 24 quadratic B-splines elements in each direction of the RVE are
used. Note that we observe the expected anisotropic stress distribution.

4.4 Cook’s membrane

In a last example, we examine a Cook’s membrane as macroscopic system, see Figure
10 left, using again the second-gradient model for the microscopic system inheriting a
void as described in Section 4.3. All other parameters are given in Table 2. For the
macroscopic system, the Cook’s membrane is clamped on the left side, i.e. ϕ̄ϕϕ = 000 mm
on Γ̄ϕ. On the right hand side of the Cook’s membrane, a constant traction force
T̄TT ext = [0; 100; 0] N is applied. We use quadratic B-splines on both scales with 27 Gauss
points per element and set up two mesoscopic systems with 12×12×12 and 24×24×24
elements with in total 2744 and 17576 control points, respectively. Since solving the
RVE for all Gauss points of the macroscopic system in every load increment and Newton
iteration requires a high computational effort, we applied a Multigrid-Solution scheme.

Remark 2. Multigrid-Solution: For a fast and efficient solution, we construct a series
of nested meshes on the macro- and mesoscale. Nested meshes are characterized by a
linear dependency of the coarse shape functions from those of the fine scale. This can be
easily constructed in the context of B-splines and NURBS, if the fine scale is constructed
by a knot insertion technique (see e.g. [41, 68]). This technique provides all necessary
topological information for the prolongation matrix Tpro. Hence, a first simple algorithm
for a fast solution as shown in Box 1 can be applied.
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6341 MPa 116516 MPa

0.000 MPa mm−1 141.727 MPa mm−1

Figure 9. Second-gradient material with a void. Von Mises stresses for a half RVE with 24
elements in each direction - left to right: Dirichlet and periodic boundaries, top to bottom:
von Mises stress and ||P||. Note, that elements within the void are excluded from the plot.

Construct a coarse scale mesh MF0

for i = 1 : n, n := number of elements do

Refine the mesh using a knot-insertion to obtain the fine mesh MFi
.

Construct prolongation matrix T
pro
i,i+1.

end

for i = 1 : n do

Solve the multi-scale problem on MFi
.

Prolongate the solution MFi+1
= T

pro
i,i+1 ◦ MFi

.

end

Box 1: Algorithm for fast solution using nested meshes
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40 mm
480 mm

160 mm

440 mm

Γ̄ϕ

Γ̄σ
∂RVE : (20)

XXX

Figure 10. Cook’s membrane. Left: Cook’s membrane with Dirichlet boundaries Γ̄ϕ on the left side
and Neumann boundaries Γ̄σ on the right side, right: RVE of the Cook’s membrane with a
second-gradient material for fiber-reinforced polymers with Dirichlet boundary conditions
for the surfaces.

Note, that a further decrease of the computational effort can be obtained by using a series
of nested meshes MRVE

Fj
on the mesoscale as well for each macroscale MFi

. Alternatively,

the prolongation on the mesoscale can be circumvented by solving MFi
with MRVE

Fj
and

prolongate to MFi
itself but resolved with MRVE

Fj+1. For the problem at hand we solved
{

MF1
|MRVE

F1

} T
pro

1,2
◦

−−−→
{

MF2
|MRVE

F1

} T
pro

2,2
◦

−−−→
{

MF2
|MRVE

F2

} T
pro

2,3
◦

−−−→
{

MF3
|MRVE

F2

}

.

In Figure 11 we plotted the von Mises stress of selected levels of the Multigrid-Solution
and additionally the norm of the second-order stress for the finest resolution of the
macroscopic system with a scaled displacement. The second-order stress peaks in the
area of clamped left side of the Cook’s membrane and matches the expected behaviour.
Furthermore, Table 4 displays the convergence of the macroscopic system in each level
of the Multigrid-Solution, indicating the accuracy of the linearization as proposed in
Section 3.2. and demonstrating the computational effort.

5 Conclusions

In this work, we could demonstrate a generalization for the numerical homogenization
of higher-order strain gradient materials. This approach allows to homogenize first-
and second-gradient materials on the mesoscale, containing representative quantities of
the microstructure, towards second- and third-gradient materials on the macroscale.
Suitable Dirichlet and periodic boundary conditions have been applied on the mesoscale
to ensure an energetic consistent formulation, analogously to the Hill-Mandel criterion
for first-gradient materials.
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−22 MPa 765 MPa 0.001 MPa mm−1 0.119 MPa mm−1

Figure 11. Cook’s membrane. Stresses at different resolutions with a scaled displacement to the
factor 5. Top to bottom: Level one, three and four according to Table 4. Left to right:
von Mises stress and ‖P‖.

On both scales, the IGA concept using NURBS based shape functions has proven to
be very well suited for these kind of formulations. Hence, we could implement an
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Level 1 2 3 4
Macro res. 4×4×1 12×12×3 12×12×3 24×24×6
Micro res. 12×12×12 12×12×12 24×24×24 24×24×24

Step 1/10 . . . 10/10 1/1 1/1 1/1
NR-Iterations 1.64E+04

1.94E+04
4.12E+00
7.59E−03
7.30E−06

1.63E+04
2.37E+04
1.17E+00
1.66E−04
8.93E−07

3.30E+05
2.28E+03
8.95E−01
7.47E−04
8.90E−07

3.96E+02
5.54E−01
2.03E−04
4.66E−07

1.03E+05
3.95E+02
2.47E−01
2.55E−04
6.73E−07

∑
RVE 21600 58320 46656 466560

Table 4: Cook’s membrane: computational effort and convergence. Newton-Raphson (NR)
convergence utilizing the multigrid solution scheme on the macroscale and total number of
solved RVE per multigrid level. Note, that we conducted an incremental stepping on level
one with 10 steps, whereas the load at higher levels was applied in a single step.

IGA2-method and demonstrate the accuracy even for highly anisotropic strain gradient
materials on the mesoscale. Eventually, we could derive a generalized framework for a
consistent linearization of the macroscale values. The Newton-Raphson iteration for this
highly nonlinear problem could be improved by calculating nested meshes on the micro-
and the macroscale. With this framework at hand, novel computational investigations
and predictions of the constitutive relations of materials with specific microstructures
as now widely used in additive manufacturing are feasible.
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Appendix

The paper summarizes all necessary equations for a second-gradient micro- and macro-
continuum. In Remark 1, we discuss the combination of a second-gradient microcontin-
uum and a third-gradient macrocontinuum. Therefore, we write the Appendix B to D
for the latter one. Omitting the fourth-order tensor F̄ = ∇̄3ϕ̄ϕϕ and the triple stress ten-
sor P̄, we end up in the equations for the second-gradient micro- and macrocontinuum
mainly used in the paper.
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A Notation

In the following, we briefly summarize the notation mainly used. The scalar product of
two vectors aaa, bbb, two second-order tensors AAA,BBB, two third-order tensors A,B and two
fourth-order tensors A,B is given by∗∗

[aaa · bbb] = ai bi , [AAA : BBB] = Aij Bij , [A
...B] = Aijk Bijk , [A :: B] = Aijkl Bijkl (52)

Other multiplications of two tensors of different order are given in the following way,
here for example, for a fourth-order tensor A with a third-order tensor B, second-order
tensor BBB and vector bbb, respectively

[Abbb]ijk = Aijkl bl , [A : BBB]ij = Aijkl Bkl , [A
...B]i = Aijkl Bjkl . (53)

All other combinations follow analogously. The dyadic product ⊗ increases the order of
the tensor. For example, a dyadic product of two vectors aaa,bbb is given by AAA = aaa ⊗ bbb with
Aij = ai bj . Next, we define the macroscopic gradient with respect to the macroscopic
reference configuration ∇̄(•) of a vector field āaa and of a second-order tensor field ĀAA as

[∇̄āaa]iJ =
∂[āaa]i

∂[X̄XX ]J
and [∇̄ĀAA]iJK =

∂[ĀAA]iJ

∂[X̄XX ]K
. (54)

For the macroscopic divergence operator it follows

[∇̄ · ĀAA]i =
∂[ĀAA]iJ

∂[X̄XX ]J
and [∇̄∇∇ · Ā]iJ =

∂[Ā]iJK

∂[X̄XX ]K
. (55)

The microscopic gradient ∇aaa and ∇AAA as well as the divergence operators ∇ · AAA and
∇ ·A are given analogously to (54) and (55) omitting the overlined symbol "̄ ". Further-
more, the transpose Ti with number i = 1, 2, 3 denotes the number of shifted reference
magnitudes

[AAA]iJ = [[AAA]Ji]
T1 = [[AAA]Ji]

T , [A]iJK = [[A]KiJ ]T1 , [A]iJK = [[A]JKi]
T2 ,

[A]iJKL , = [[A]KLiJ ]T2 , [A]iJKL = [[A]JKLi]
T3 .

(56)

Furthermore, we have to interchange some reference indices with Cij , where i, j denote
the indices which will be interchanged

[A]JKi = [[A]KJi]
C12 , [A]KLiJ = [[A]LKiJ ]C12 ,

[A]JKLi = [[A]LKJi]
C13 , [A]JKLi = [[A]JLKi]

C23 .
(57)

∗∗Latin indices range in the set {1, 2, 3}. We will make use of the Einstein summation convention on
repeated indices.
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B Macroscopic kinematic

The microscopic kinematic for the third-gradient macroscopic continuum is given by

ϕϕϕ(XXX) = F̄FF XXX +
1

2
F̄ : (XXX ⊗ XXX) +

1

6
F̄

... (XXX ⊗ XXX ⊗ XXX) + w̃ww . (58)

The connections between the macroscopic deformations and the averaged microscopic
deformations are given by

1

V

∫

RVE

FFF dV =
1

V

∫

RVE

(

F̄FF + F̄XXX +
1

2
F̄ : (XXX ⊗ XXX) + F̃FF

)

dV

= F̄FF + F̄ :
1

V

∫

RVE

1

2
(XXX ⊗ XXX) dV

(59)

and
1

V

∫

RVE

F dV =
1

V

∫

RVE

(

F̄ + F̄XXX + F̃
)

dV = F̄ (60)

using
∫

RVE
XXX dV = 000, which is valid if the coordinate system is in the center of the RVE .

Furthermore, F̃FF = ∇w̃ww and F̃ = ∇2w̃ww are the first and second gradients of the fluctuation
field. Since the macroscopic values are exactly the volume averages of the microscopic
values and not dependent on the fluctuations, we can write

1

V

∫

RVE

∇w̃ww dV = 000 and
1

V

∫

RVE

∇2w̃ww dV = 0 . (61)

Using Gauss’s theorem, we can rewrite the volume integrals of (61) to surface integrals:

1

V

∫

∂RVE

w̃ww ⊗ NNN dA = 000 and
1

V

∫

∂RVE

∇w̃ww ⊗ NNN dA = 0 . (62)

using the divergence theorem for a unit tensor III and a vector aaa
∫

∂RVE

aaa · (III NNN) dA =
∫

RVE

∇ · (IIIT aaa) dV ,

III :
∫

∂RVE

aaa ⊗ NNN dA =
∫

RVE

(∇ · III)
︸ ︷︷ ︸

000

·aaa dV + III :
∫

RVE

∇aaa dV ,
(63)

or for a tensor AAA and the unit tensor III
∫

∂RVE

(AAAIII) NNN dA =
∫

RVE

∇ · (AAAIII) dV ,

∫

∂RVE

AAA ⊗ NNN dA : III =
∫

RVE

∇AAA dV : III +
∫

RVE

AAA (∇ · III)
︸ ︷︷ ︸

000

dV ,
(64)

respectively.
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C Macroscopic stresses

For the derivation of the macroscopic stresses we use the partial integration and the
Gaussian integral theorem for the integral of the left side of the energetic criterion (22):

∫

RVE

(

PPP : ∇δϕϕϕ + P
... ∇2δϕϕϕ

)

dV

=
∫

RVE

∇ ·
(

[PPP − ∇ · P]T δϕϕϕ + PT1 : ∇δϕϕϕ
)

dV −
∫

RVE

(∇ · [PPP − ∇ · P])
︸ ︷︷ ︸

=000

·δϕϕϕ dV

=
∫

∂RVE

(

[(PPP − ∇ · P) NNN ] · δϕϕϕ + [PNNN ] : ∇δϕϕϕ
)

dA .

(65)

The macroscopic stresses are defined in terms of surface integrals since macroscopic
values defined by volume integrals could lead to nonphysical results, see Schröder &
Keip [72]. Inserting the variations of the material points ϕϕϕ:

δϕϕϕ = δF̄FF XXX +
1

2
δF̄ : (XXX ⊗ XXX) +

1

6
δF̄

... (XXX ⊗ XXX ⊗ XXX) + δw̃ww (66)

and

∇δϕϕϕ = δF̄FF + δF̄XXX +
1

2
δF̄ : (XXX ⊗ XXX) + δF̃FF (67)

in the last equation, we can split the integral into three parts depending on the variation
of the macroscopic deformation gradient F̄FF , the second gradient F̄ and the third gradient
F̄:

∫

RVE

(

PPP : ∇δϕϕϕ + P
... ∇2δϕϕϕ

)

dV

=
∫

∂RVE

(PNNN + [PPP − ∇ · P] NNN ⊗ XXX) dA : δF̄FF

+
∫

∂RVE

(

PNNN ⊗ XXX +
1

2
[PPP − ∇ · P] NNN ⊗ XXX ⊗ XXX

)

dA
... δF̄

+
∫

∂RVE

(
1

2
PNNN ⊗ XXX ⊗ XXX +

1

6
[PPP − ∇ · P] NNN ⊗ XXX ⊗ XXX ⊗ XXX

)

dA :: δF̄

(68)

with the restrictions on the boundary, since the macroscopic stresses are not dependent
on the fluctuations:

∫

∂RVE

(PNNN) : ∇δw̃ww dA = 0 and
∫

∂RVE

[(PPP − ∇ · P) NNN ] · δw̃ww dA = 0 . (69)
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The transformation back to volume integrals leads to:

∫

RVE

(

PPP : ∇δϕϕϕ + P
... ∇2δϕϕϕ

)

dV

=
∫

RVE

(

∇ · P + [∇ · (XXX ⊗ [PPP − ∇ · P])]T
)

dV : δF̄FF

+
∫

RVE

(

[∇ · (XXX ⊗ P)]T1 +
1

2
[∇ · (XXX ⊗ XXX ⊗ [PPP − ∇ · P])]T2

)

dV
... δF̄

+
∫

RVE

(
1

2
[∇ · (XXX ⊗ XXX ⊗ P)]T2 +

1

6
[∇ · (XXX ⊗ XXX ⊗ XXX ⊗ [PPP − ∇ · P])]T3

)

dV :: δF̄

=
∫

RVE

PPP dV : δF̄FF +
∫

RVE

(

P + ∇ · P ⊗ XXX + [PPP − ∇ · P] ⊗ XXX
)

dV
... δF̄

+
∫

RVE

(

P ⊗ XXX +
1

2
∇ · P ⊗ XXX ⊗ XXX +

1

2
[PPP − ∇ · P] ⊗ XXX ⊗ XXX

)

dV :: δF̄

=
∫

RVE

PPP dV : δF̄FF +
∫

RVE

(

P + PPP ⊗ XXX
)

dV
... δF̄

+
∫

RVE

(

P ⊗ XXX +
1

2
PPP ⊗ XXX ⊗ XXX

)

dV :: δF̄ ,

(70)
where we used the following equalities for the divergence of third-, fourth- and fifth-order
tensors:

∇ · (XXX ⊗ AAA) = AAAT + XXX ⊗ ∇ · AAA ,

∇ · (XXX ⊗ A) = AT1 + XXX ⊗ ∇ · A ,

∇ · (XXX ⊗ XXX ⊗ AAA) =
(

XXX ⊗ AAAT
)C12

+ XXX ⊗ AAAT + XXX ⊗ XXX ⊗ ∇ · AAA ,

∇ · (XXX ⊗ XXX ⊗ A) =
(

XXX ⊗ AT1
)C12

+ XXX ⊗ AT1 + XXX ⊗ XXX ⊗ ∇ · A ,

∇ · (XXX ⊗ XXX ⊗ XXX ⊗ AAA) =
(

XXX ⊗ XXX ⊗ AAAT
)C13

+
(

XXX ⊗ XXX ⊗ AAAT
)C23

+ XXX ⊗ XXX ⊗ AAAT

+ XXX ⊗ XXX ⊗ XXX ⊗ ∇ · AAA ,

(71)

as well as the strong form of the second-gradient microscopic continuum (14), the sym-

metry of
[

F̄
]

iJK
in J, K and the symmetry of

[

F̄

]

iJKL
in J, K, L.
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D Mesoscopic boundary conditions

For the third-gradient macroscopic continuum, we can rewrite the energetic criterion
(22) as

1

V

∫

RVE

[

P̄PP − PPP
]

:
[

δF̄FF + δF̄XXX +
1

2
δF̄ : (XXX ⊗ XXX) − δFFF

]

dV

+
1

V

∫

RVE

[

P̄P − P
] ...

[

δF̄ + δF̄XXX − δF
]

dV = 0 ,
(72)

to obtain more information about the boundary conditions. Obviously, the simplest
assumption for all points of the microscopic scale, that fulfills the last equation is given
by postulating the constraints P̄PP := PPP or δF̄FF + δF̄XXX + 1

2
δF̄ : (XXX ⊗ XXX) = δFFF and

additionally P̄P := P or δF̄ + δF̄XXX = δF, compare Schröder [71].

D.1 Proof of further representation of energetic criterion

For the derivation of the boundary condition, we have to show, that the energetic crite-
rion (22) is equal to (72). The first term of (72) leads to

1

V

∫

RVE

[

P̄PP − PPP
]

:
[

δF̄FF + δF̄XXX +
1

2
δF̄ : (XXX ⊗ XXX) − δFFF

]

dV

= − P̄PP : δF̄FF − P̄PPP ... δF̄ − P̄
PPP :: δF̄ +

1

V

∫

RVE

PPP : δFFF dV ,
(73)

taking advantage of the fact that the macroscopic quantities are constant over the volume
of the RVE and 1

V

∫

RVE
XXX dV = 000, if the coordinate system is in the center of the RVE .

Furthermore, the correlations between the microscopic and macroscopic quantities (59)
and (24) are used. For the second term of (72) we use additionally (60), which leads
to

1

V

∫

RVE

[

P̄P − P
] ...

[

δF̄ + δF̄XXX − δF
]

dV = −P̄P ... δF̄ − P̄
P :: δF̄ +

1

V

∫

RVE

P
... δF dV .

(74)

So, we can write for (18) by adding the last two equations

1

V

∫

RVE

PPP : δFFF dV +
1

V

∫

RVE

P
... δF dV = P̄PP : δF̄FF +

(

P̄P + P̄PPP
) ... δF̄ +

(

P̄
P + P̄

PPP
)

:: δF̄ ,

(75)
which reflects the energetic criterion (22).
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D.2 Boundary integral of energetic criterion

Here, the transfer of the volume integrals of (72) to boundary integrals of the energetic
criterion is explained. Using the partial integration for the first and second term of (72),
we get for the first term

1

V

∫

RVE

[

P̄PP − PPP
]

:
[

δF̄FF + δF̄XXX +
1

2
δF̄ : (XXX ⊗ XXX) − δFFF

]

dV

=
1

V

∫

RVE

∇ ·
([

P̄PP − PPP
]T

[

δF̄FF XXX +
1

2
δF̄ : (XXX ⊗ XXX) +

1

6
δF̄

... (XXX ⊗ XXX ⊗ XXX) − δϕϕϕ
])

dV

+
1

V

∫

RVE

∇ · PPP ·
[

δF̄FF XXX +
1

2
δF̄ : (XXX ⊗ XXX) +

1

6
δF̄

... (XXX ⊗ XXX ⊗ XXX) − δϕϕϕ
]

dV ,

(76)
with ∇ · P̄PP = 000 and analogously for the second term

1

V

∫

RVE

[

P̄P − P
] ...

[

δF̄ + δF̄XXX − δF
]

dV

=
1

V

∫

RVE

∇ ·
([

P̄P − P
]T1

:
[

δF̄XXX +
1

2
δF̄ : (XXX ⊗ XXX) − δFFF

])

dV

+
1

V

∫

RVE

∇ · P :
[

δF̄XXX +
1

2
δF̄ : (XXX ⊗ XXX) − δFFF

]

dV ,

(77)

with ∇ · P̄ = 000. Now, adding the following zero term

1

V

∫

RVE

(

∇ ·
([

P̄P − P
]T1

: δF̄FF
)

+ ∇ · P : δF̄FF
)

dV = 0 , (78)

to the right-hand side of (77) leads only to a change of (77) in the form
[

δF̄XXX +
1

2
δF̄ : (XXX ⊗ XXX) − δFFF

]

→
[

δF̄FF + δF̄XXX +
1

2
δF̄ : (XXX ⊗ XXX) − δFFF

]

. (79)

Using once again a partial integration, the second term of (72) is given by

1

V

∫

RVE

[

P̄P − P
] ...

[

δF̄ + δF̄XXX − δF
]

dV

=
1

V

∫

RVE

∇ ·
([

P̄P − P
]T1

:
[

δF̄FF + δF̄XXX +
1

2
δF̄ : (XXX ⊗ XXX) − δFFF

])

dV

+
1

V

∫

RVE

∇ ·
(

[∇ · P]T
[

δF̄FF XXX +
1

2
δF̄ : (XXX ⊗ XXX) +

1

6
δF̄

... (XXX ⊗ XXX ⊗ XXX) − δϕϕϕ
])

dV

−
1

V

∫

RVE

∇ · ∇ · P ·
[

δF̄FF XXX +
1

2
δF̄ : (XXX ⊗ XXX) +

1

6
δF̄

... (XXX ⊗ XXX ⊗ XXX) − δϕϕϕ
]

dV .

(80)
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The introduction of the zero term leads to an easy summation of (76) and (80)

1

V

∫

RVE

[

P̄PP − PPP
]

:
[

δF̄FF + δF̄XXX +
1

2
δF̄ : (XXX ⊗ XXX) − δFFF

]

dV

+
1

V

∫

RVE

[

P̄P − P
] ...

[

δF̄ + δF̄XXX − δF
]

dV

=
1

V

∫

∂RVE

([

P̄PP − (PPP − ∇ · P)
]

NNN
)

·
[

δF̄FF XXX +
1

2
δF̄ : (XXX ⊗ XXX)

+
1

6
δF̄

... (XXX ⊗ XXX ⊗ XXX) − δϕϕϕ
]

dA

+
1

V

∫

∂RVE

([

P̄P − P
]

NNN
)

:
[

δF̄FF + δF̄XXX +
1

2
δF̄ : (XXX ⊗ XXX) − δFFF

]

dA

+
1

V

∫

RVE

∇ · (PPP − ∇ · P)
︸ ︷︷ ︸

=000

·
[

δF̄FF XXX +
1

2
δF̄ : (XXX ⊗ XXX) +

1

6
δF̄

... (XXX ⊗ XXX ⊗ XXX) − δϕϕϕ
]

dV ,

(81)
where we make use of the Gaussian integral theorem and the strong form of the micro-
scopic continuum.

E Linearization of macroscopic stresses and

hyperstresses

The consistent linearization starts with the incremental macroscopic stresses and hyper-
stresses given by the correlated microscopic stresses and hyperstresses, see (17), which
are inserted in the latter equation

∆P̄PP =
1

V

∫

RVE

∆PPP dV and ∆P̄ =
1

V

∫

RVE

∆ (PPP ⊗ XXX + P) dV . (82)

Since the microscopic stresses and hyperstresses depend on FFF and F, the chain rule is
used

[

∆P̄PP
]

iJ
=

1

V

∫

RVE

([C]iJsT ∆ [FFF ]sT + [D]iJsT U ∆ [F]sT U) dV ,

[

∆P̄
]

iJK
=

1

V

∫

RVE

(

[C]iJsT [XXX]K + [E]iJKsT

)

∆ [FFF ]sT dV

+
1

V

∫

RVE

(

[D]iJsT U [XXX]K + [G]iJKsT U

)

∆ [F]sT U dV .

(83)
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The derivatives of the stresses with respect to the deformation tensors (C, D, E, G) are
defined in (29). The incremental microscopic deformation measures, see (12), are

∆ [FFF ]sT = ∆
[

F̄FF
]

sT
+ ∆

[

F̄
]

sT U
[XXX]U + ∆

[

F̃FF
]

sT
,

∆ [F]sT U = ∆
[

F̄
]

sT U
+ ∆

[

F̃
]

sT U
,

(84)

c.f. (27) and (28).

F Approximation of microscopic boundary value problem

The domain of the representative volume element RVE is approximated by finite ele-

ments RVE ≈ RVEh =
n⋃

e=1
Re with the number of elements n. For the approximation of

the microscopic boundary value problem (31) with the incremental deformation tensors
of (32), we insert the approximations of (33) and (34)

∆G =
n∑

e=1

[δq̃qq]eA

i







∫

Re

[∇R]AJ [C]eh
iJsT dV

︸ ︷︷ ︸

[L1]eA
isT

[

∆F̄FF
]e

sT
+

∫

Re

[∇R]AJ [C]eh
iJsT [XXX]eh

U dV

︸ ︷︷ ︸

[M1]eA
isT U

[

∆F̄
]e

sT U

+
∫

Re

[∇R]AJ [C]eh
iJsT [∇R]BT dV

︸ ︷︷ ︸

[KKK1]eAB
is

[∆q̃qq]eB
s +

∫

Re

[∇R]AJ [D]eh
iJsT U dV

︸ ︷︷ ︸

[M2]eA
isT U

[

∆F̄
]e

sT U

+
∫

Re

[∇R]AJ [D]eh
iJsT U

[

∇2R
]B

T U
dV

︸ ︷︷ ︸

[KKK2]eAB
is

[∆q̃qq]eB

s +
∫

Re

[

∇2R
]A

JK
[E]eh

iJKsT dV

︸ ︷︷ ︸

[L2]eA
isT

[

∆F̄FF
]e

sT

+
∫

Re

[

∇2R
]A

JK
[E]eh

iJKsT [XXX]eh
U dV

︸ ︷︷ ︸

[M3]eA
isT U

[

∆F̄
]e

sT U
+

∫

Re

[

∇2R
]A

JK
[E]eh

iJKsT [∇R]BT dV

︸ ︷︷ ︸

[KKK3]eAB
is

[∆q̃qq]eB

s

+
∫

Re

[

∇2R
]A

JK
[G]eh

iJKsT U dV

︸ ︷︷ ︸

[M4]eA
isT U

[

∆F̄
]e

sT U
+

∫

Re

[

∇2R
]A

JK
[G]eh

iJKsT U

[

∇2R
]B

T U
dV

︸ ︷︷ ︸

[KKK4]eAB
is

[∆q̃qq]eB

s






.
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In the end we can write

∆G =
n∑

e=1

[δq̃qq]eA

i

{

[KKK]eAB

is [∆q̃qq]eB

s + [L]eA

isT

[

∆F̄FF
]e

sT
+ [M]eA

isT U

[

∆F̄
]e

sT U

}

(86)
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with
[KKK]eAB

is = [KKK1]eAB
is + [KKK2]

eAB
is + [KKK3]eAB

is + [KKK4]
eAB
is ,

[L]eA

isT = [L1]eA

isT + [L2]
eA

isT ,

[M]eA

isT U = [M1]eA

isT U + [M2]eA

isT U + [M3]eA

isT U + [M4]eA

isT U .

(87)

After assembling over all elements with (•) =
n

A
e=1

(•)e, we get in the equilibrium state

∆G = [δq̃qq]Ai

{

[KKK]AB
is [∆q̃qq]Bs + [L]AisT

[

∆F̄FF
]

sT
+ [M]AisT U

[

∆F̄
]

sT U

}

. (88)

Thus, using ∆G = 0, the correlation between the sensitivities and the change of corre-
sponding macroscopic fields is given in the discrete setting as follows

[∆q̃qq]Bs = −
(

[KKK]AB
ls

)−1 (

[L]AlrT

[

∆F̄FF
]

rT
+ [M]AlrT U

[

∆F̄
]

rT U

)

. (89)

G Approximation of macroscopic stresses

In this section, we derive the discretized macroscopic stresses. We start with the dis-
cretization of the linearization of P̄PP :

[

∆P̄PP
]h

iJ
=

[

V
C

]h

iJsT

[

∆F̄FF
]

sT
+

[

V
CD

]h

iJsT U

[

∆F̄
]

sT U
+ [N]BiJs [∆q̃qq]Bs , (90)

with the volume-averaged tensors

[

V
C

]h

iJsT
=

1

V

∫

RVEh

[C]hiJsT dV ,

[

V
CD

]h

iJsT U
=

1

V

∫

RVEh

(

[C]hiJsT [XXX]hU + [D]hiJsT U

)

dV ,

[N]BiJs =
1

V

∫

RVEh

(

[C]hiJsT [∇R]BT + [D]hiJsT U

[

∇2R
]B

T U

)

dV .

(91)

Inserting the discrete sensitivities (89) yields

[

∆P̄PP
]h

iJ
=

{
[

V
C

]h

iJrT
− [N ]BiJs

(

[KKK]AB

ls

)−1
[L]AlrT

}
[

∆F̄FF
]

rT

+

{
[

V
CD

]h

iJrT U
− [N]BiJs

(

[KKK]AB

ls

)−1
[M]AlrT U

}
[

∆F̄
]

rT U
.

(92)

Furthermore, we discretize the linearization of the hyperstresses P̄

[

∆P̄
]h

iJK
=

[

V
CE

]h

iJKsT

[

∆F̄FF
]

sT
+

[

V
CDEG

]h

iJKsT U

[

∆F̄
]

sT U
+ [N]BiJKs [∆q̃qq]Bs , (93)
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with the volume-averaged tensors

[

V
CE

]h

iJKsT
=

1

V

∫

RVEh

(

[C]hiJsT [XXX]hK + [E]hiJKsT

)

dV ,

[

V
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]h

iJKsT U
=

1

V

∫
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(

[C]hiJsT [XXX]hK [XXX]hU + [D]hiJsT U [XXX]hK

+ [E]hiJKsT [XXX]hU + [G]hiJKsT U

)

dV ,
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1

V

∫
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(
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)

[∇R]BT dV

+
1

V

∫

RVEh

(

[D]hiJsT U [XXX]hK + [G]hiJKsT U

) [

∇2R
]B

T U

}

dV .

(94)

Insertion once again of the discrete sensitivities (89) yields

[

∆P̄
]h

iJK
=

{
[

V
CE

]h

iJKrT
− [N]BiJKs

(

[KKK]AB

ls

)−1
[L]AlrT

}
[

∆F̄FF
]

rT

+

{
[

V
CDEG

]h

iJKrT U
− [N]BiJKs

(

[KKK]AB
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)−1
[M]AlrT U

}
[

∆F̄
]

rT U
.

(95)
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