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Introduction

Crosspoint modifications for general Cn continuous mortar coupling condi-

tions arise in multi-patch geometries. This modification is constructed in such

a way, that we decouple the Lagrange multipliers at the crosspoint to avoid a

global coupling condition across all interfaces. In contrast to standard mor-

tar techniques where the Lagrange multiplier space is often defined as a re-

stricted trace space of the primal variable at the interface between the patches,

the definition of a suitable Lagrange multiplier space for higher continuity also

involves basis functions having a zero trace at the interface. Moreover, we

recast the underlying B-Splines such that they preserve the higher order best

approximation property across the interface and the crosspoint.

Extended mortar method

Concerning a general multi-patch situation with non-conformingly discretized

subdomains i ∈ {1, . . . , N}, the Cn coupling conditions is given by
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h represent the isoparametric geometry representation of

the interface. A classical mortar approach for the implementation of C0 con-

tinuity, the mortar constraint for node A = 1, . . . , n̄(i) at the interface ∂B
(i,j)
h

reads as
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with the mesh size parameter hA. The extension of the mortar constraint to

preserve C1 continuity can be written as
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To guarantee C2 continuity weakly, we require for each node A
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Crosspoint modification

From a best approximation point of view we want that our reduced Lagrange

multiplier space can still reproduce polynomials of order p− 1.

Figure: Evaluation of quadratic B-spline basis functions. and derivation in normal direction.

Modified functions and derivatives at the crosspoint are colored in red. The dashed curves

denote derivatives associated with the interior of the slave patch.

In case of a weak C l−1, 1 ≤ l ≤ p coupling this means that we have to re-

move the first l basis functions on the interface but also functions associated

with the interior of the subdomain. Now we want to modify the following next

p such that the new reduced basis functions are given as
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with coefficients matrixCCC ∈ R
p×l, [CCC]ij = cij.

Phase separation in binary alloys

The Cahn-Hilliard equation describes the microstructural evolution of an alloy

consisting of two species a and b. Therefore, a parameter c : B × I → R

is introduced as c := cb = 1 − ca, where ca and cb are the mole fractions of

the respective species. The evolution of c can be described by the balance

equation

ċ = ∇ · (M ∇µ), ∀(XXX, t) ∈ B × I,

where µ denotes the effective chemical potential of b. The variational form

follows in the usual straight-forward manner.

Figure: Solution of multi-patch simulation at different times t = [103, 104, 105] s.

Grain growth in crystalline materials

The crystal growth equation is defined in terms of an order-parameter ψ :

B×I → R which describes a local deviation from a reference mass density.

Therefore, we introduce a Swift-Hohenberg energy function as
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where the parameter r represents an undercooling of the system. To be spe-

cific, the crystal model is derived as a Wasserstein gradient flow of the Swift-

Hohenberg energy

ψ̇ = ∇ ·

(

ψ+∇
δF
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)

, ∀ (XXX, t) ∈ B × I,

The variational form follows in the usual straight-forward manner.

Figure: Solution of multi-patch simulation at different times t = [50, 65, 100].
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