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1 Introduction

In the present work large deformation contact problems of elastic bodies are addressed within
a nonlinear finite element framework. That is, the underlying continuum formulation of flexible
bodies relies on nonlinear strain measures and provides the possibility to incorporate arbitrary
phenomenological constitutive models. We refer to the books by Laursen and Wriggers
for a survey of previous developments in this field.

We choose to use hyperelastic material behavior so that the resulting semi-discrete, finite-
dimensional system can be classified as Hamiltonian system with symmetry. The momentum
maps (i.e. linear and angular momenta) associated with specific symmetries are known to be
conserved quantities. Under the assumption of frictionless contact the total energy is a con-
served quantity too.

Energy-momentum conserving schemes (and energy decaying variants thereof) have previously
been developed in the framework of nonlinear elastodynamics in order to meet the numerical
stability requirements of finite-deformation problems, see, for example, Simo & Tarnow [23]],
Gonzalez & Simo [[12], Bauchau & Bottasso [3]], Betsch & Steinmann [6]] and the references
cited therein.

Finite deformation contact problems put even higher demands on the numerical stability prop-
erties of time-stepping schemes. It is thus not surprising that recently published works aim at
the extension of energy-momentum schemes to the realm of contact/impact problems. To this
end Laursen & Chawla enforce the discrete gap rate rather than the constraint of impene-
trability. Similarly, Armero & Petocz [2] modify the contact constraint to achieve the desired
conservation properties. Consequently, in both works the impenetrability condition is violated
in general. Alternatively, Laursen & Love [16] enforce the constraint of impenetrability and
achieve algorithmic energy conservation by introducing a so-called discrete contact velocity.
However, this approach requires the solution of quadratic equations which turn out to be un-
solvable in some events.

It is important to note that the previous developments of energy-momentum schemes have been
made exclusively in the context of the node-to-segment (NTS) formulation of the contact prob-
lem. Alternatively, recent approaches resolve the spatial contact problem in the framework of
the mortar method, see, for example, Hiieber & Wohlmuth [13]], Puso & Laursen [20] and Yang
et al. [28]]. Originally, mortar methods have been developed for domain decomposition prob-
lems, see Wohlmuth [26]]. Unlike the popular NTS method, the mortar-based approach typically
passes the patch test and is characterized by enhanced robustness.

In the present work we aim at the design of energy-momentum schemes for contact prob-
lems in the framework of the mortar formulation. From the outset we regard the semi-discrete
contact problem as finite-dimensional Hamiltonian system subject to (holonomic) contact con-
straints. Accordingly, the equations of motion assume the form of differential-algebraic equa-
tions (DAEs). Energy-momentum schemes emanating from the direct discretization of the
DAEs have been recently developed, see Gonzalez and Betsch & Steinmann [7]. Based
on these developments our approach to the design of energy-momentum schemes makes use
of the invariance properties of the discrete contact constraints by exploiting the representation
theorem due to Cauchy.

An outline of the rest of the paper is as follows. Section [2 deals with the Hamiltonian for-
mulation of semi-discrete elastodynamics. In this connection, the incorporation of algebraic
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Figure 1: Planar (ng;,, = 2) sketch of a free semi-discrete body.

constraints is treated and the relevant conservation properties are outlined. In Section [3] the
energy-momentum conserving discretization of the underlying DAEs is dealt with. In particu-
lar, the notion of a discrete gradient is introduced in conjunction with Cauchy’s representation
theorem. In Section Ml the present approach is particularized to the mortar formulation of the
contact problem. After the treatment of a representative numerical example in Section [3 con-
clusions are drawn in Section [0l

2 Hamiltonian formulation of semi-discrete elastodynamics

We start with the space finite element discretization of nonlinear elastodynamics. In partic-
ular, we aim at the Hamiltonian formulation of the resulting semi-discrete problem. Further
details of the present discretization approach may be found in Simo [21, CHAPTER IV] and
the works cited therein.

2.1 The free semi-discrete elastic body

We first focus on the space discretization of the free elastic body (i.e. pure Neumann bound-
ary conditions). Let BB be a regular region in ng;,-dimensional Euclidean space (ng4, < 3)
occupied by the reference configuration of the elastic body. Furthermore, let I = [0, 7] denote
the time interval of interest. From a kinematic point of view the standard displacement-based
finite element approach employs an approximation of the deformation field ¢ : B x [ — R"dim
of the form

Nnode

(X, 1) =Y Na(X)qu(t) (1)

Within the material (or Lagrangian) description of motion ¢ (X, ) describes the position of
material point X of body B at time ¢. Moreover, N4 : B — R are global shape functions
associated with the nodes A = 1,...,n,4 and q, : [ — R™m denotes the position vector
at time ¢ € T of the nodal point A (Fig. ). Accordingly, possible configurations of the semi-
discrete dynamical system at hand are characterized by

a=(dy,.. qnmde) € R"dos (2)
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where 140 = Ngim - Mnode- The material velocity is defined by v = 0¢ /0t = ¢ such that the
finite element approximation implies

Nnode

V(X 1) = D Na(X)va(t) 3)
A=l

with v4 = q,. Moreover, the finite element approximation (1) gives rise to the discrete defor-
mation gradient

Nnode

=Y a1 ®VN4(X) (4)
A=1

_op

F—
oX

Then the discrete version of the deformation tensor (or right Cauchy-Green tensor) C = FF
can be written as

Mnode

C= > q4-qzVN4® VN 5)
A,B=1

Hyperelastic material behavior is modeled by means of a scalar-valued strain energy density
function W (C) such that the second Piola-Kirchhoff stress tensor can be calculated via

S = 2DW(C) (6)

where DWW (C) = 0W/0OC. Then the discrete strain energy function is given by

Vint(q) = / W(C)dv )

For simplicity we assume that the external forces acting on the body can be derived from a
potential function

Ve””t:—/gRb-cpdV—/ t-pdA (8)
B 0B,

where o : B — R, denotes the reference mass density, b : B x I — R™4im is the applied body
force and t is the prescribed traction boundary condition on 9B, x I. In view of (I)) one obtains

Nnode

Vellq) == Y qu - FY )
A=1
with prescribed external nodal forces
Fert = / NaorbdV + Nt dA (10)
B 0B,

The kinetic energy of the body at time ¢ is given by

1
T:—/QRV'VdV (1D
2Js

such that substitution from (3]) into (I1)) leads to

1 Nnode 1
T(V):§ Z MABVA-VBZEV-MV (12)
A,B=1
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where
MAB:/QRNANBdV (13)
B

are the coefficients of the consistent mass matrix. Note that M consists of diagonal sub-matrices
Myp = Magl,,,, with A, B =1, ..., N4 The Lagrangian of the finite-dimensional dynami-
cal system under consideration is given by L(q,v) = T(v) — (V™™ (q) + V**(q)). To perform
the transition to the Hamiltonian formulation we introduce the conjugate momenta

OL

p=—=Myv (14)

ov
Then the Hamiltonian function follows from the Legendre transformation of L(q, v) with re-
spectto v as H(q,p) = p-v — L(q, v), with the velocities v being replaced by the momenta
in (I4). Accordingly, the Hamiltonian of the free semi-discrete elastic body can be written in
the form

1 - n ex
H(q,p) = 5p-M"'p+ V" (q) + V" (q) (15)
Consequently, the equations of motion can be written in canonical Hamiltonian form
) oH _
a= 55 =Mbp
5h o (16)
N — Fevt _ pin
P 9 (a)

In this connection, the internal forces are given by

A more compact description of the equations of motion can be achieved by introducing the
vector of phase space coordinates

z = (q,p) € R¥"%s (18)

Then the equations of motion pertaining to the semi-discrete free elastic body can alternatively
be written as

2= JVH (z) (19)
In the last equation J € R?mdosr*2ndof ig the canonical symplectic matrix
0 I
J= {_I 0] (20)
where I and 0 are the ng,; X ng,; identity and zero matrices. Note that J7 = J~! = —J and
J? = —1I, where I denotes the (2n4,7 X 2n4,s) identity matrix.

2.2 Constrained semi-discrete elastic bodies

We next focus on specific boundary conditions which restrict the motion of the semi-discrete
elastic body. These restrictions can be characterized by geometric constraints acting on the
boundary nodes of the discrete system at hand. In particular, we distinguish between Dirichlet-
type boundary conditions and constraints due to contact. For the present purposes it suffices to
consider the planar two-body contact problem (Fig. 2)).

5
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N ST

Figure 2: The planar two-body contact problem.

Assume that n,,,4. denotes the total number of nodes due to the space discretization of the
two elastic bodies, so that n = {1,..., 04} is the set of node numbers associated with the
discrete two-body system. Further let 77 C 7 be the set of node numbers lying on the boundaries
of the two-body system. The relevant boundary conditions can be characterized by algebraic
constraints of the form

®(q) =0 (2D
In the case of Dirichlet-type boundary conditions we have
ai(t) = 3(Xa,t), forAem, (22)

where @, is prescribed and 7j, C 7] is the set of node numbers belonging to the Dirichlet
boundary. Similarly, if the two bodies are in contact and provided that ‘active’ nodes A € 7, C
7 — 7, lying on the contact surface have been detected, additional constraints of the form D
arise (see SectionMfor further details). Due to the presence of the constraints (21)), the equations
of motion can now be written in the form

. oH

1T 5

. OH T (23)
0 = @(q)

where ®(q) € R™ are the relevant constraint functions, D®(q) is the corresponding constraint
Jacobian and A € R™ are Lagrange multipliers which determine the size of the constraint
forces in (23)),. Similar to (I9)), the set of differential-algebraic equations (DAEs) in (23)) can be
rewritten in compact form by introducing the augmented Hamiltonian

1
Hi(z) = P M 'p+V\(q) (24)

where '
Wi(q) = V™(q) + V" (q) + X - @(q) (25)

6
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is an augmented potential function. Now the differential part of the DAEs can be written as
z = JVH,\(z) (26)

which, of course, has to be supplemented with the algebraic constraints (23])s.

2.3 Conservation properties of the semi-discrete system

We next focus on the conservation properties relevant for the constrained finite-dimensional
mechanical system under consideration. Our goal is the subsequent design of time-stepping
schemes which inherit these conservation properties from the semi-discrete system. Since al-
gorithmic conservation of total linear momentum is rather trivial we focus on the conservation
properties associated with the total angular momentum and the total energy.

2.3.1 Conservation of the total angular momentum

In this section we elaborate on the connection between specific symmetry properties of the
augmented Hamiltonian (24)) and associated momentum maps (see Marsden & Ratiu for
more background information on these issues). In particular, we focus on the rotational invari-
ance of the augmented Hamiltonian which implies conservation of the total angular momentum.
Accordingly, assume that the augmented Hamiltonian is invariant under rotations such that

H)\(Q o Z) = HA(QqD sy QqN7 Qp17 ceey QpN) = H)\(Z) (27)

for all proper orthogonal matrices Q € SO(3), where SO(3) denotes the rotation group. A
one-parameter group of rotation matrices can be written in the form Q_ = exp(€) € SO(3)
where é € so0(3) is a skew-symmetric matrix. In the present case a closed-form expression of
exp(eé) is given by the Rodrigues formula (see, for example, Marsden & Ratiu Chapter
9]). The invariance property (27) implies

d . d .
0= d_ H,\(exp(éﬁ) oz) = VH(z) - d_a exp(éﬁ) oz =VH\(z) &p(z)  (28)
where &€ ,(z) denotes the infinitesimal generator. The assomated momentum map is defined by
p(2) = IV Je(2) (29)
with
Je(z) = J(z) - € (30)

Here, £ € R3 is the axial vector of € (i.e. £éa = € x aforall a € R¥) and J € R3 is the total
angular momentum given by

Npode

J(z)= > a4 %Py (31)
A=1

Now a straightforward calculation yields

W - v T
AR 62)
= et e

=0

Thus rotational invariance of the augmented Hamiltonian implies conservation of the total an-
gular momentum.
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2.3.2 Conservation of the total energy

Due to the skew-symmetry of .J one obtains
VH(z) -z=VHy(z) IJVH\(z) =0 (33)
With regard to (24) and (I3), the augmented Hamiltonian can be written as
Hi(z) = H(z) + X - ®(q) 34)
Accordingly, (33)) can be written in the form
VH(z) 24+ AX-D®(q)q = 0

d d

(35)

As a consequence of the geometric constraints (23)3, the consistency condition d®(q)/dt = 0
has to be satisfied. Thus (33) yields dH (z)/dt = 0, which implies conservation of the total
energy.

3 Energy-momentum scheme

We next outline the design of a time-stepping scheme which is able to reproduce for any
step-size the crucial conservation properties summarized above.

Concerning the time discretization of the DAEs (23)), we apply the Galerkin-based approach
developed by Betsch & Steinmann [7]. To this end, we consider a characteristic time-step
At = t, .1 — t, and restrict our attention to linear approximations (the so-called mG(1) method
in [[7]) of the form

z"(a) = (1 — )z, + oz, for acl0,1] (36)

In this connection all quantities at ¢,,, such as z,,, can be regarded as being given. Note that (36)
leads to a globally continuous approximation of the phase space coordinates. In contrast to that,
the Lagrange multipliers are assumed to be piecewise constant in each time-step, i.e.

A= X (37)

The mG(1) method yields
1
Tl — Zp = AtJT/ VH (2" do (38)
0

It is shown in that the application of a specific quadrature formula for the evaluation of
the time integral in (38)) has a strong impact on the conservation properties of the resulting
time-stepping scheme. In the present work we choose

1
/ VHu(2") da ~ THa,,, (20, Zos1) (39)
0

where VH) (2, 2n41) is a discrete gradient (or derivative) in the sense of Gonzalez [9]]. It is
shown in [9] that the discrete gradient can be designed such that the desired conservation prop-
erties are satisfied and specific consistency and accuracy requirements are met. To achieve this
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goal we aim at a reparametrization of the augmented Hamiltonian which incorporates the invari-
ance properties in a natural way. For example, assume that the rotational invariance property
(27) holds and that the augmented Hamiltonian depends only on S(z), where

S(z) =S(z1,...,28) ={ya-¥5,1 <A< B <npoge . ¥4 € {d4,Pa}} (40)

is the set of (quadratic) invariants of z € R?%s, It is worth mentioning that this approach is
in accordance with Cauchy’s representation theorem (see, for example, Truesdell & Noll
Sect. 11.]). Accordingly, the augmented Hamiltonian can now be written in the form

Ha(z) = Ha(m(2)) (41)
where the vector of relevant invariants
m1(2)
(z) = : (42)
7Td(Z)

has been introduced. Note that the components 7;(z) depend only on S(z). In the following
we make use of Gonzalez’ [9] definition of the discrete gradient. Accordingly, in the present
context, the discrete gradient of the augmented Hamiltonian assumes the form

VHA(Zn, Zns1) = D7e(2,,,1) VHA (7(20), 7 (2011)) (43)

with

VHA (o, Tns1) = VHA(T,,1)

Ha(mns1) — Halmn) — VHA(®, 1) - (T — 70) (44)
2 (7Tn+1 - 7Tn)

| ng1 — 0y ||2

and )
Zpnyl = §(Zn+zn+1)

Tl = %(Wn+77n+1)

(45)

To summarize, the mG(1) method with quadrature formula (39) yields the following time-
stepping scheme:

Let the initial values per time step z,, and the step-size At be given. Find z,,,; and

A1 as the solution of the algebraic system of equations
(H) = Zni1 = Zn+ AIVHL,,, (Zn, Zni1)
(46)
0 = ®(g,41)
In essence, the scheme (46) is equivalent to the method proposed by Gonzalez [10]. We
further remark that in addition to the constraints on configuration level (@), the constraints on
momentum level, i.e. d®(q)/dt = D®(q)M 'p = 0 can be enforced at the end of the time
step by adjusting the GGL-type [8] technique to the present conserving framework, see [7] for
further details. However, numerical tests revealed no significant improvement of the numerical

performance which would justify the additional computational effort.

It is further worth noting that if a function f(z) is merely quadratic it may be written as f(z) =

9
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f(ﬂ'(z)) = a - m(z), with constant a € R?. It can be easily verified that the corresponding
discrete gradient is given by

VI (Zn,Zpi1) = Dw(zn+%)Ta = Vf(szr%) (47)

Accordingly, in this case the discrete gradient coincides with the standard gradient evaluated in

Zn+%.

3.1 Algorithmic conservation properties

Similar to the continuous case dealt with before, we next verify that the scheme (46)) indeed
satisfies the relevant conservation laws.

3.1.1 Algorithmic conservation of the total angular momentum

The fundamental theorem of calculus gives

Jeltyin) = Jemn) = [ VIl (@) - (@) do

= / €P (zh(a)) dOé . J(Zn-l-l - Zn)
0
Ep(7es)  Dlonis — ) @)
€r(2,.1) - PATHy ., (700
—At??jxnﬂ(zm Znt1) - &p (Zn+%)
_At?H)\nH (Tr(zn), 7T(Zn+1)) : DTr(Zn-i-%)gP (Zn-i-%)
0

where, similar to (28]), use has been made of the property

d

0= —
de|._,

m(exp(e€) o z) = Drr(2)ép(2) (49)

which holds due to the rotational invariance of the vector-valued function 7r(z). Equation (48)
corroborates algorithmic conservation of the total angular momentum.

3.1.2 Algorithmic conservation of the total energy

Similar to (33), in the discrete setting we get

1 - _ _
A_tVH)‘n+1<Zn7 Znt1) - (Zny1 — 2Zn) = VHy, ., - JVH,,,, =0 (50)

On the other hand, with regard to the discrete gradient (43]), we obtain

VHx 0 (Zn, Znt1) '(Zgﬂv_ Zn)
- Y’)_Nb\nﬂ (Tr(zn)a 7"'(Zn-i-l)) : DW(Zn-i-%) (Zp41 — 2Zn)
= G (W(20), 7 11)) - (7 s) — ()
= Hoor (7(2011)) = Ho, (7(20)) (51)
— HAnH (Zn-i-l) - H>\n+1 (ZN)

= H(Zn+1) - H(Zn) + An—',—l ’ ((I)(qn—l—l) o (I)(qTL))
= H(Zn—l—l) — H(Zn)

10
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where use has been made of (34)), @4), [ @6) and the fact that the invariants 7r(z) are quadratic
functions. Comparison of (30) and (&) yields

H(2n11) = H(z) (52)
which confirms algorithmic conservation of the total energy.

3.2 Final form of the energy-momentum scheme

We next exploit the specific (separable) form of the augmented Hamiltonian (24)) to recast
the energy-momentum scheme (46)) in an alternative form which is especially well-suited for
the computer implementation. With regard to (I2)), the kinetic energy in (24) can be written as

1 Nnode

> Mippa-ps (53)
A,B=1

T(p) = 5

and is thus merely a quadratic function of the nodal momenta. In this connection, the in-

verse of the mass matrix is composed of diagonal sub-matrices M, = M 5L, (A, B =
1,..., Npode). The discrete gradient of the augmented Hamiltonian (43]) can be written in sim-
plified form
3 V(s o) | _ [VaVa(dos Qi)
VHNZn, Zni1) = | & At = S 54
)\( +1) |:VPT(pn7 pn+1) M 1pn+% ( )

Accordingly, application of the discrete gradient is confined to the augmented potential function
@3). That is, (43)) boils down to

VoVa(@n: Aost) = D7(a,1) VA (7(q,), 7(d,0) (55)

Now the energy-momentum scheme {6)) gives rise to the following algorithmic problem:

( Let the initial values per time step (q,,, Vv, ) and the step-size At be given. Find
(Qpi1s Vig1) and A, 41 as the solution of the algebraic system of equations

At
(L) = ¢ 41— A = T(V"n + Vn+1)

M(Vn—i-l - Vn) = _At?qv(qnv qn—',—l) — At

NE

(Al)n_,_l?qq)l (qn7 qn—l—l)

~

1

In (36), the potential energy function is given by V(q) = V™ (q) + V***(q). We refer to
for details of the implementation of the energy-momentum scheme (36).

3.3 Application to planar problems

The application of the scheme (36) essentially depends on specific parametrizations of the
discrete strain energy function V***(q) and the constraint functions ®;(q) in terms of appropri-
ate invariants. We shall illustrate this procedure by considering planar problems, i.e. ng;, = 2
and g, € R? (4 € ).

11
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As before, we focus on the case of rotational invariance. If a scalar-valued function
y(4y,.-.,4q,, . ) is invariant under the proper orthogonal group, then Cauchy’s representation
theorem (Truesdell & Noll Sect. 11.] or Antman [[I, Chapter 8]) implies that v(q) depends
only on the set of quadratic invariants I(q) = S(q) |J T(q), where

S<q> = {qA 'qB71 < A < B < nnodes}

T(q) = {det([a,ap)),1 <A< B < npoges} (57)

We first deal with the discrete strain energy function. Thereafter, we focus on the constraint
functions emanating from the mortar contact formulation.
3.4 Treatment of the discrete strain energy function

Applying numerical integration to the evaluation of the discrete strain energy function (7))
yields

ngp
with -
Chy (OI)
7(q) = | C5”(a) (59)
1y (a)
and the components of the discrete deformation tensor (3))
Nnode
Ci@) = > ay-ap(e;- VNA(X™)) (e - VN5(X™)) (60)
A,B=1
In this connection, index m refers to specific quadrature points (m € {1, ..., ngp}) with associ-

ated coordinates X™ and ‘weights’ w(™. It is obvious from (60), that the components of the
discrete deformation tensor depend only on S(q) and thus qualify as invariants. With regard to
(33, the discrete gradient of V™*(q) can now be written as

Ngp

V Vlnt qn7 qn+1 Z Dﬂ-(m qn+ vVV(T‘-(WL) (qn)7 Tr(m) (qn—‘,-l))w(m) (61)

It is worth noting that VW can be linked to the algorithmic constitutive relation proposed by
Simo & Gonzalez Section 4], see also Gonzalez [11]].

4 Mortar method

In contrast to the collocation-type formulation of the contact constraints in the NTS ap-
proach, the mortar concept relies on the weak enforcement of the contact constraints. With
regard to the semi-discrete formulation dealt with in Section the discrete constraint func-
tions ®(q) corresponding to the mortar approach result from

A-®(q) = /()\I/)h : (x(l)h - X(Q)h) dy (62)

Ye

12
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B — 5(2)
)2 2 2 @)

E\X: —Ga mb Xi/§§

e 5(1)

Figure 3: Representative mortar segment

To perform the integration along the contact curve ., the notion of a contact segment can be
employed. Originally, contact segments have been introduced by Simo et al. to take into
account the kinematics of the contact between two discretized bodies. Similar segmentation
procedures have been devised by Papadopoulos & Taylor [19], McDevitt & Laursen and
Yang et al. [28]].

In the following we consider a representative mortar segment depicted in Fig. [3l The relevant
nodal position vectors lying on the boundaries of the two opposing elements may be collected
in the vector

Gy = () ) ) < 0 =
To each mortar segment there correspond four coordinates 551), fél), 2 and 552), where ¢
and £ are local coordinates belonging to the opposing elements. For each segment a linear
mapping [—1, 1] 3 7 — &) of the form

1 1 a
60 = S(L=mE + S+ g (64)

is introduced. This mapping can be used to parametrize the space finite element approxima-
tions of the Lagrange multipliers (Av)" (1) = A"(n)v 4,4, which characterize the normal contact
forces. In this connection, v, is the unit outward normal to the segment which, in the present
case, is constant. Specifically,

M) =Y Na(€D () Aa (65)

The shape functions N (£(V) are inherited from the associated space finite element discretiza-
tion. Similarly, the boundaries of the two opposing elements is given by

xV" () = §N3<s<l><n>)x§>

X(2)h(n) _ ZNc(ﬁ(Q)(n))Xg) (66)
C

Substituting from (63) and (66) into (62) yields the discrete constraint functions pertaining to
the mortar contact formulation:

Oa(q) = 2" () (67)

seg

13
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with the segment contributions

D (Ayeg) = Viseg - {Z nffg xB Z g @) } 68)

and associated mortar integrals

Wi = [ NOE )N () by

seq,(2) h (1) (2) (69)
nhe” = /NA (V)N (€D () dy

seg

Ve

4.1 Mortar constraints in terms of invariants

We next aim at the parametrization of the mortar constraint functions (67)) in terms of appro-
priate invariants. To this end it suffices to consider the segment contributions (68)). Accordingly,
we seek for reparametrizations of the form

D% (ey) = O (0 (Aueq)) (70)

We illustrate our approach by considering the representative mortar segment depicted in Fig. Bl
Accordingly, A, B, C' € {1, 2} and the shape functions in (63)), (66) and (69) are given by

M) = e

(1+¢9)

(71)
Ny (¢6)

N~ —
—

for « = 1,2. As indicated in Fig. 3] the filled circles correspond to nodal points, whereas the
hollow circles are associated with orthogonal projections. Accordingly,

1 1 2 1
M _ 2(x§>—x§))-(x§>—x§))_1 o _ 4
“ Hx(l) X(1)||2 b
RN A RS (72)
o _ (e -x ox ) (el -x) e
b o 2 2 1 1 a
(7 = x7) - (7 —x1)
Upon introduction of the three quadratic invariants
) = (0= 20) () o
S S
7r3(qseg) = (Xz - X )'(Xz — X )
the quantities in (Z2)) may be recast in the form
N 2 ~
& = 2 W=
m
X2)  2mM — W3 — Mo X2 (74)
o= TR e o
T3 — T2
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Accordingly, (64) can be alternatively written as

1 -
“(1+ e (75)

fo) Lo
5 - (1 n)ga +2

Now, for A = 1, the segment contribution (68)) is given by
057 = vy {5 O 4 O (i O i) e

Making use of (69) together with (ZI)) and (73), the last equation yields
se 1 1 1 2 2
01 (ay) = e {6 ) - x - x) [
e

(o ex ) [0
ot

seg
c

- <ng> ) [0

C

- X2 / 5
- (%) —x") / G dv} (77

Since, in the present case, the tangent vector

dxD"
dn

1
= 105" = x") (6" - &) (78)

does not depend on 7, the unit normal vector v, can be written as

1 1 1 1
Vg = —A(x) = x17) /[|xf" — x| (79)
with the constant matrix
0 1
A= {_1 0} (80)

Note that AT = A~' = —A and A? = —I,. Let two additional quadratic invariants be defined
by

7T4(qseg) = (Xgl) - Xgi)) A( _22X§1) —;X?) + X§2)) (81)
mo(dhey) = () =) - A — )

Employing the invariants (Z3) and (81)), and taking into account the skew-symmetry of A as
well as the relationship

1 - -
dy =l = xVI(E" - &) (82)

which is consistent with (Z8)), a straightforward calculation shows that constraint function (77)
can be recast as

% seq 1 5(1) e IO
55 () = 15 (6~ €0 {mi [ @ =y [ @ -0 an} ] e
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Note that, with regard to (Z3) and (Z4)), the evaluation of the integrals in (83)) can be easily
accomplished.

For A = 2, the segment contribution (68)) can be calculated along the same lines as before for
A =1 and yields

et _ L _am " 4 g '
2! (m(dueg)) = 75 (& — &) 7r5/_1(£ +¢¢ )dn—m/_l(ﬁ +1)dn | 84

It is easy to see that the invariants in (Z3) depend on S. Moreover, since a - Ab = det([a, b])
for any a, b € R?, the invariants in (81)) depend on T.

It is important to realize that in addition to being rotationally invariant, the quadratic invariants
in (Z3) and (8T)) are as well invariant under translations. It can be easily verified that

uv (Xgl) +c, Xél) +c, X§2) +c, xf) + c) =T (xﬁ” ,Xgl) ,X§2) ,X§2)) (85)
fori = 1,...,5 and any ¢ € R2. Translational invariance of the augmented Hamiltonian is

associated with conservation of the total linear momentum.

We finally remark that the above reparametrization of the contact constraints in conjunction with
the (discrete) gradient also turned out to be beneficial to the computer implementation. Similar
observations have been made in the framework of the NTS method, see Betsch & Hesch [3]].

S Numerical example

The numerical example consists of the planar model of a bearing depicted in Fig. 4 The
bearing consists of two rings (Youngs’s modulus £ = 10°, Poissons’s ratio » = 0.1 and mass
density o = 0.001), which are discretized by 4-node isoparametric displacement-based plain
strain elements. The discretization of the outer ring relies on 10x48 elements, for the inner ring
10x40 have been used.

The motion of the inner ring is restricted by the condition of persistent contact with the outer
ring. Pure Dirichlet-type conditions are applied to fix the outer boundary of the outer ring.
To get a pre-stressed initial configuration of the whole bearing, a static equilibrium problem is
solved first. To this end the initial outer diameter of the inner rin (d; = 80.1) exceeds the
initial inner diameter of the outer rinéa d, = 80.0. Accordingly, the static equilibrium problem
consists of enforcing (frictionless) contact between inner and outer ring. The static equilibrium
problem is solved in one load increment.

After the solution of the equilibrium problem the transient calculation proceeds with At = 0.01.
For t € [0,0.5], a torque acts on the inner ring in form of a hat function over time. Then, for
t € (0.5, 2], no external loads are acting on the bearing anymore. Fig. [Sshows that for t > 0.5
the present scheme does indeed conserve the total energy for the frictionless contact problem
under consideration. In addition to that, Fig. [6l corroborates algorithmic conservation of angular
momentum.

Ithe inner diameter is 50
2the outer diameter is 100
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Figure 4: Discretized bearing
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Figure 6: Total angular momentum versus time

6 Conclusions

The main new contribution of the present work lies in the design of the algorithmic con-
tact forces within the framework of the mortar formulation. In particular, the newly-proposed
parametrization of the mortar contact constraints in terms of appropriate invariants along with
the use of the notion of a discrete gradient are the main features which facilitate the design of an
energy-momentum scheme. Interestingly, the reparametrization of the contact constraints also
greatly simplifies the computer implementation of the mortar formulation.
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