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1 INTRODUCTION

In the present work we investigate stable integrators sordient large deformation contact
problems within the framework of the well known node-to1®emt (NTS)-method. For this
kind of problem, standard time integrators fail to conseheetotal energy of the system. To
remedy this drawback, we combine a mixed method with the einof a discrete gradient
applied to the aforementioned NTS-method. The advantagfgecdnergy-momentum scheme
is that besides the algorithmic consistency of the angulamentum the total energy of the
system is conserved, leading to a remarkably stable tinegiation.

In the context of nonlinear elastodynamics various integsafor ordinary differential equa-
tions have been extensively developed and investigatedgltire last three decades (for more
details see Ref. [3, 4]). For contact problems, energy stersi integrators have been developed
for the NTS-method (see for example Ref.|[14,]1, 5]). The ephof the discrete gradient in the
sense of Gonzalez (see Réf. [6]) has been applied for therNgt8od (see Refl. [8/2] 9, 10]).
The purpose of the present work is to extend the algorithmm fRef. [10] to frictional three-
dimensional contact problems.

To investigate the numerical stability and robustness oapproach, a representative numer-
ical example will be dealt with. To be specific, we considelrapact of a three-dimensional
hollow ball with a plate, which stays at rest.

2 Continuum and contact mechanics

To describe large deformation contact problems, we définediesB®”) c R3,i € [1, ..., k].
As illustrated in Fig.[(IL) we restrict our considerationsatwo body problem € [1,2] and
exclude selfcontact without prejudice to the generalitiie Burfaces of both bodigd3) are

B(Q) (P(Q)
T
r®
rf @ (B%)
x® e © ( X(z)) A2
BH X @ (X <1>>
(1) 1
r b )
(1)
)
\/
€3 (P (B(l))
eV
S
€1

Figure 1: Configurations of two body contads’( bodies in the reference configuratian3?): bodies in the
current configuration)

subdivided into the Dirichlet boundaﬂff), the Neumann boundaﬂfj) and the contact surface
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I'"”. We assume that the boundaries of each hedysatisfy:
oBY =TOur®ur® and TONTY =TONTH =7O AT =g (1)

A point of the current configuration within the consideredediintervalt € 7 := [0, T can be
described byp (X, ¢). The virtual work of the system reads:

—.G(),dyn —.q).int
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A list of parameters is given in tablé 1. The first term in equrai{d) on the right hand side

, T 50 dA — , TO . 500 dA | =0 ()
Ty e

/ \\ J/

p : reference mass density

PO first Piola-Kirchhoff stress tensor

BY . body force per unit volume

7 forces per unit area acting on the Neumann boundary
T® Piola contact traction

Table 1: List of parameters introduced in equat(dn (2).

contains the inertia forces, whesedenotes the second derivative with respect to time. The
second term contains the internal forces. The third andHderm represents the virtual work
associated with the body force and surface force, resggtiihe last term of equationl(2)
denotes the contact contribution of the virtual work. In swuany, we obtain:
2 2

ZG(Z) (SO’ 590) _ Z (G(i),dyn + G(i),int + G(i),ea}t + G(z),c) =0 (3)

=1 =1
For later developments we focus here on the contact virtogkwraking the balance of linear
momentum into account, we receive (see Ref. [13]):

G =— / Lt (6™ — 5p®) dA (4)
Ve

Heret denotes the contact traction anf = ga(Fﬁi), t) is the contact surface in the current
configuration (see also Fid.|(1)).

3 Spatial discretization

The bodies are discretized using displacement-based élgteents. Therefore the bodies
B are subdivided into a finite number of elements

Nel
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We further use the following approximations:

Nnode Nnode
SO(Z)”‘ _ Z N, m(ll)’ 5¢(z),h _ Z N, &BS@) (6)
I=1 J=1

Here N;, N; denote the shape functions for an eight-node tri-linearkbelement. The semi-
discrete virtual work for both bodies can now be written dbfes:

:M](? ::f(i),int
2 - % N ) 7\ -
§ : /B(i)hpNI Ny dV féf;) @ L /B<'>h (VNI(X(Z')) : S) .VNJ(X(Z))deS@) 5
i=1 ’ i),
_ N;pB dV - 62 — N, T dA- 6z | + G =0 @
BG),h sk

J

-~
_ pli).eat
—Jr

whereS denotes the second Piola-Kirchhoff stress tensor. Theadeswirtual contact work in
the current configuration reads:

Gt = — / - th (6" — ) dA (8)
Ye

In summary, we can write:
2
G (w,0m) = ow |M) & + FP 4 pP 4 et =0 9)
i=1

WhereM}f,) denotes the nodal mass contribution.

3.1 NTSdement

For the description of the virtual contact work we use thel webwn NTS-method (see
for example the textbooks Ref. [15,/13]), which uses a shaaster concept (see Ref. [7]).
Here we define bod™) as slave body an#® as master body. The discrete gap function
gns denotes the closest point projection from the slave peiftto the corresponding master
surface represented y® (€) = 3% _, Nk (€) 'Y (see Fig.[[2)). Consistent with the eight-
node brick elements used for the isoparametric discratizaif the bodies, the shape functions
Ny are bi-linear and restricted to the contact domain. For #efgnction we have to compute
the convected coordinatés Therefore we make use of an additional Newton method splvin
the following nonlinear problem with respectgo

z) — 2 () -2 (¢)
[Em(n PG (6)3 m(%)(g)] =0 (10)

which provides the necessary closest pgiffor more details see the textbook Réf.|[15]). Then
the gap function can be calculated as follows:

Ins = (:cg” ~ 3" Nk(§) w&?) -n(€) (11)
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Figure 2: Three-dimensional five node NTS-element.

wheres = 1, ..., n. denotes theth contact element. The normal&) (see Fig.[(R)) is defined
as:

_ 2P x5 (€
§) = 52 5 & =
M) = eTE < 0@

The NTS-method restrict the gap function such that it resigieater or equal zero. Further-
more the normal tractions are lower or equal zero, hence:

(12)

9Ns Z 07 th S 07 th gNs = 0 (13)

To enforce the above Kuhn-Tucker conditions, there exf&mint methods. We focus here on
the penalty method and on the Lagrange multiplier methodhigiconnection we divide the
contact tractions in equationl (4) into a normal and tangép#rt. Accordingly:

Goh = / (t0(8) donal@) + b, - 66) A (14)

c

wheretr, represents the frictional traction in tangential direstioThe contact pressure in
normal directiont y, for example can be replaced By, using the Lagrange multiplier and
by ex gns USINg the penalty method, whetg > 0 is a given penalty parameter. For both
methods we have to fulfill the Kuhn-Tucker complementarydittons from equation(13) and
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one obtains together with the Coulomb friction law:

gns =0 (15)
tns <0 (16)
tnsgns = 0 (7)
U, = |trs|| — ptns <0 (18)
oh, =4 L (19)

S 12|
520 (20)
AW, =0 (21)

wherev},., is the covariant tangential velocity ands the plastic parameter. For the frictionless
case we only need to satisfy the conditidng (15)-(17). Tsfyathe Kuhn-Tucker complemen-
tary conditions we make use of an active-set strategy, wéeglarates the set of constraints in
an active and an inactive set (see Refl [12] and the refesaheeein for more details).

3.2 Equation of motion

For the frictionless case we make use of the Lagrange mieltipiethod. The contact con-
tribution then reads:

Ne 4
GEHT =% An(E) - <6w§” = Nk(@) 5w§?’> (22)
s=1 K=1

(23)

where )\, is the corresponding Lagrange multiplier. To enforce thp fyaction we use the
constraint:

o2 5 (®) = gns (24)
The Lagrangian for the constraint system is:

Ly = %m M3 —V(x)— i: oS () N, (25)
s=1

Using equation(25) we obtain the following semi-discreigeix-3 differential algebraic equa-
tions:

M+ VV(z)+ Y Gl(x)r, =0 (26)
s=1
A
| =0 (27)
NTS

Ne

HereG, is the gradient of the NTS-constraint function with resgedhe configuration:

)
GT = (V¢NS(x))" = |-Nym ; (28)
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For the frictional case we make use of the penalty method.coh&act contribution reads:

Ne

GC?PM = Z (th( _) 5gNs( ) + tTozs 5504) (29)

s=1

Note that Einstein summation convention is used. After salgebra the variation of the gap
reads:

dgns = n(€) (ol — 52 (E)) (30)
The variation of the convected coordinates finally leads to:
067 = [Aap] " ([02) — 62(&)] 23 (&) — gnsm(€) 5217 (€)) (31)

whereA,; depends on the curvature of the surfaaég) - wg)ﬂ):

Aag = mas + gnsn(€) - 22 (32)
and on the covariant metric:
Mag = m(i) . m(é) (33)
Finally we can write the contact contribution to the residua
R, =tns N+ tp1s Dis + tpos Do (34)

where the matrices can be calculated as follows:

Dﬂs = Aaﬂ (Toz — gNs Noz) (35)
(&) 2.3 (€) 0
—Nin(€) —N 53(02)(_) —Nion(§)
N,=|-Nn(f)|, To=|-NzP(&)|. Nuo=|-Noan(€) (36)
—N;n(§) Ny z2(€) —N3on(§)
—Nyn(€) _N, 22 (&) —Nyon(€)

The contravariant contributiod®” in equation [(3b) can be calculated by the inverse of the
covariant version o, 5. Due to equatiori (34) we obtain the second order ordinafgréiftial
equations:

M &+ VV(x)+ i Re(z) =0 (37)

3.2.1 Mixed approach

For the frictionless contact we apply an energy-momentunerse proposed in Ref. [10].
We introduce additional coordinates € R* and the vectorf, € R? which corresponds to
the normaln and to the convective coordinatésespectively. To determine the augmented
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coordinates we introduce augmented constraints to linkiélve coordinates to the actual con-
figuration. Together with the NTS-constraint we obtain:

_ asffﬂ _ d, -z (f,)
gs(wsydsu fs) - |:¢tswg % (ds ds _ 1) (38)

For more details about the fundamental properties of thisifbation we refer to Ref! [10].
With regard to Cauchy'’s representation theorem, equdfhcan be reparametrized by using
at most quadratic invariants. One obtains an augmented Lagrangian of the considerezhsyst

Ly= %:ﬁM:i:—V(:r;) —igs(w(:cs,ds,fs))~)\s (39)
s=1

To rewrite the modified NTS constraint in terms of invariantsreformulate them as follows:

d)iVTS = (wgl) - w(z)(fs)) ' ds - f33
_ ( _ ( £ Nl - zw)) - h

4
= (&) -2} d, = 3N (2 — ) - d, - i, (40)

1=2
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wheref;; is the the third entry of the vectgf,. In order to reformulate the constraints we define
the following appropriate invariants:

o) — ZE(12) - ds
:cg) — :cf) - d,
EsH :ci(f) — :cf) - d,
T2 @ _ @Y.
T x, —x d,
7T4 fls
s ;23
6 3s
d,-d
7 S s
s 2 — ). (2 — 2P
m(@odo, fo) = | To | =1 (G0 5@ (50 _ 5@ (41)
10
11 134(12) - $(12) : mgl) - 5352)
T 2 2 2 2
Wiz wg)—wg) . wg)—wg)
T4 o — ). (2 — 2P
T 2 2 2 2
ﬂ-iz wé)—w(l) . :134(1)—:1:5)
2 2 2 2
)| (2 2®) - (o2~ o
w:(f) B $(12) _ :Eff) B w§2)
wgf) B $(12) _ mf) B ng)

The constraints as a function of the currently defined iards reads:

™ = 24?:2 Ni(s, Tg) - T — 77
22:2 Ni,7r5(7T577T6) T
ZZ‘ZQ Nz'JrG (7T57 7T6) T

g, (7 (s, ds, f)) =
gs( ( f >) \ %4(7'{'81].)
Ez’:Q Niﬂfs (7T57 7T6) Ti+6 — Ez’:Q Ej:Q Niﬂr5 (7T57 7T6) Nj (7T57 7T6) WLM
| > i N (75, 76) Mo — Yoimy 205 Nimg (5, 76) N (75, m6) M |
(42)
wherer™M corresponds ta,-my; according to the assignment @” — =) - (z\” — z{”)

in equation[(4l). The semi-discrete equations of motionbeaabtained by the Lagrangian and
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we finally arrive at:

M#+VV(z)+ i (Dy7(as, dy, £.))" Vaga(m) - Ay = 0 (43)
S Dy (s, ds, £,)) Vada(m) - Ay = 0 (44)
S (D (@, dy, £.))" V() - Ay = 0 (45)

s=1
g1 (m(x1,dy, f1))
: =0 (46)
gnc (Tr<wnc7 d”c’ -fnc))
Again we refer to Ref.[[10] for the derivation of the fundartedrproperties of the constraints
and for the verification of the conservation of the angulanmantum

J =3, M ®; x &, as well as of the total energy(x, &) = ;& - M & + V(x) of the
semi-discrete system.

4 Timediscretization

For the time discretization we divide the time inter@al= [0, 7] = U\ [tn, tn1a] into
equidistant increments = ¢,,, — t,, to apply an one step time integration scheme. In the
following the time discretization according to frictioskeand frictional contact will be stated.

4.1 Frictionless contact with Lagrange multipliers

For later comparison we apply a standard midpoint rule anévayndeveloped energy-
momentum scheme (firstly presented in Refl [10]) in ordentestigate the numerical proper-
ties of the latter.

Midpoint rule For the midpoint rule the configuration, velocity and accaien are evaluated
in the midpoint:

1

mn+% = 5 (mn-i—l + wn) (47)
1

/UnJr% = % (wnJrl - wn) (48)
2 2

a, 1= 73 (Tpy1 — ) — 5 v, (49)

By applying the midpoint rule along with the equatioas] (26§ d27) we finally obtain the
completely discrete equations:

Tni1— Tn —hv, 1 =0 (50)
M (UnJrl - vn) + h <vv(wn+é> + Z G3<wn+%> )‘S,nJrl =0 (51)
s=1
NTS 7]
1,n+1
NTS
Ne,n+1 |

10
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Note that we use Newton’s method to solve the problem and we twecalculate the tangent.

Energy-momentum scheme - mixed formulation We aim at the time discretization for the
mixed formulation (see Section 3.2.1), where the NTS cairs are reformulated in appropri-
ate invariants. Further we introduce a discrete gradietitersense of Gonzalez (see REef. [6]).
This creates an energy-momentum scheme which besidesgiwgtlainic consistency of both
momentum maps is able to conserve the total energy of theraygtinally we can write the
completely discrete system within the concept of the disageadient as follows:

Tpi1 — Ty — hvn% =0 (53)
M (vn—i—l - vn) + hva? V(mnv wn-i-l) (54)
Ne T—
+h Z (D1 (X pids Bt Fonit )) Vi §o(Tn, Tns1) - As g1 = 0 (55)
s=1
Ne T—
Z (D2 ﬂ-(ws,nJr ) Ys n+ 7fs n+ ) v g; ﬂ-nu 7Tn+1) >‘S,n+1 =0 (56)
s=1
Ne T—
Z (D3 W(w57n+ ) g n+ ; fs n+ > vﬂ' gs T, 7Tn+1) As,n—}—l =0 (57)

s=1
(71'(:131 n+1, dl n+1; .fl n—l—l))
=0 (58)

gnc< ( nc,nJr%’ dnc,nJr%? fnc,nJr%))

Here the discrete gradieAl, V(x,, z,.:) applied to the internal energy is used (for more
details see Ref [3]). In addition, the discrete gradépg(m,,, 7,.,1) is defined as follows:

v‘“’ gs(ﬂ-nv 7Tn+1) = Vr gs (ﬂ-n—ké)

§(mi1) = §(m0) + Ve G (Mg ) (s =)

+
H7Ts,n+1 - 7Ts,n”2

<7Ts,n+1 - ﬂ-s,n) (59)

The verification of the conservation of the angular momenrdmoh the total energy of the com-
pletely discrete system can be found in Réef./[10]. To this emdhave to remark that the
consistency condition is violated in general by an inactiwastraint, which gets active within
a specific time step.

4.2 Frictional contact with penalty method

For frictional contact we apply the penalty method. Themfee have to distinguish whether
stick ( < 0) or slip (F > 0) occurs. To this end usually a return mapping scheme (foemor
details see Ref[ [13] and Ref. |15]) is implemented that wak follows. One first assumes
stick and computes therefore a trial state during the inergm

téfé{“ilﬂ = tran + €1 Map (£n+1 £5> (60)
Wil = |5 | = it (61)

11
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=

Figure 3: Initial configuration of the hollow ball and plate.

Here 11 is the Coulomb coefficient of friction. On the basis of thepstondition U7 the
frictional tractionstr,, ,,+1 Will be computed:

et if wirial <0 (stick)
trane1 =3 WL i . (62)
/’L tN,n—f—l ”t%:riaJlrlll If \Ijn-i-l > 0 (Sllp)

Then equation(37) can be evaluated in the midpoint due tateams [(47){(4P). Finally one
obtains the following completely discrete equations ofiomat

L1 — Xy — hvm% =0 (63)

M (41— v,) +h (vw%;) iy Ri(wn+;>> =0 (64)

s=1
5 Numerical examples

As numerical example we consider the impact of a hollow bathwa plate. The initial
configuration is displayed in Fig] 3. At the start the velpaf the hollow ball isv, = 0,
v, = 1, v, = —1 where the plate stays at rest. Both bodies are modeled with &eBant-
Kirchhoff material and with a Poisson’s ratio of= 0.4. The Young’s modulus of both bodies
is E = 10°. The hollow ball is discretized with 432 and the plate witl0Jght-node brick
elements.

For the frictionless contact of the example shown in Elg. 3cempare the midpoint rule
with the proposed energy-momentum scheme. We use a timesigeefh = 0.01 during

Figure 4: Snapshots for the midpoint rule at time 0.0 (left), ¢t = 0.5 (middle) andt = 1.0 (right).

12
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Figure 5: Energy plot (left), total linear momentum (tophtijgand angular momentum (bottom right) correspond-
ing to the midpoint rule.

Figure 6: Snapshots for the energy-momentum scheme at tim@0 (left), t = 0.5 (middle) andt = 1.0 (right).

the intervalZ = [0, 1] for both simulations. No external forces and momenta ara@an
the bodies, so we consider the system as a conservativersystéch means that the basic
properties of the bodies, namely the total energy, the @n@d well as the linear momentum,
have to be conserved. In FId. 5 and Fig. 7 the basic propetibsth bodies are displayed for
the midpoint rule and the energy-momentum scheme, respictiThree snapshots at times
t =0.0,t = 0.5 andt = 1.0 for both simulations are displayed in Fig. 4 and Eig. 6. Itdraes
obvious that the energy-momentum scheme (seelFFig. 7) a@mssal quantities whereas the
midpoint rule (see Fid.l5) fails to conserve the energy.

6 CONCLUSIONS

e As anew approach a mixed method together with an energy-mimescheme has been
applied to three-dimensional contact problems descrilyatiddNTS-method.

e For the mixed method augmented coordinates and additionati@ints were introduced.
Then the constraints were reparametrized by appropriesgiants.

e Further the concept of the discrete gradient has been dppti¢he internal energy and
on the contact constraints.

¢ As shown the method can be extended to frictional contadilpnas as well.

13
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Figure 7: Energy plot (left), total linear momentum (tophtijgand angular momentum (bottom right) correspond-
ing to the energy-momentum scheme.

e The properties of the energy-momentum scheme has been igattyeinvestigated in

comparison to the midpoint rule.

¢ In summary, the newly developed method results in a higlalglstintegration scheme.
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