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Abstract. The present work aims at the consistent integration of frictionless as well as fric-
tional flexible multibody contact problems. Therefore a mixed method will be applied on the
widely used node-to-segment method. The numerical properties of the energy-momentum time
integration scheme based on the concept of a so-called discrete gradient in comparison to the
standard midpoint rule will be investigated during a characteristical example.
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1 INTRODUCTION

In the present work we investigate stable integrators for transient large deformation contact
problems within the framework of the well known node-to-segment (NTS)-method. For this
kind of problem, standard time integrators fail to conservethe total energy of the system. To
remedy this drawback, we combine a mixed method with the concept of a discrete gradient
applied to the aforementioned NTS-method. The advantage ofthe energy-momentum scheme
is that besides the algorithmic consistency of the angular-momentum the total energy of the
system is conserved, leading to a remarkably stable time integration.

In the context of nonlinear elastodynamics various integrators for ordinary differential equa-
tions have been extensively developed and investigated during the last three decades (for more
details see Ref. [3, 4]). For contact problems, energy consistent integrators have been developed
for the NTS-method (see for example Ref. [14, 1, 5]). The concept of the discrete gradient in the
sense of Gonzalez (see Ref. [6]) has been applied for the NTS-method (see Ref. [8, 2, 9, 10]).
The purpose of the present work is to extend the algorithm from Ref. [10] to frictional three-
dimensional contact problems.

To investigate the numerical stability and robustness of our approach, a representative numer-
ical example will be dealt with. To be specific, we consider animpact of a three-dimensional
hollow ball with a plate, which stays at rest.

2 Continuum and contact mechanics

To describe large deformation contact problems, we definek bodiesB(i) ⊂ R
3, i ∈ [1, ..., k].

As illustrated in Fig. (1) we restrict our considerations ona two body problemi ∈ [1, 2] and
exclude selfcontact without prejudice to the generality. The surfaces of both bodies∂B(i) are
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Figure 1: Configurations of two body contact (Bi: bodies in the reference configuration,ϕ(Bi): bodies in the
current configuration)

subdivided into the Dirichlet boundaryΓ(i)
u , the Neumann boundaryΓ(i)

σ and the contact surface
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Γ
(i)
c . We assume that the boundaries of each bodyB(i) satisfy:

∂B(i) = Γ(i)
σ ∪ Γ(i)

c ∪ Γ(i)
u and Γ(i)

σ ∩ Γ(i)
c = Γ(i)

σ ∩ Γ(i)
u = Γ(i)

c ∩ Γ(i)
u = ∅ (1)

A point of the current configuration within the considered time intervalt ∈ I := [0, T ] can be
described byϕ(X(i), t). The virtual work of the system reads:

2∑

i=1








=:G(i),dyn

︷ ︸︸ ︷∫

B(i)

ρ(i) ϕ̈(i) · δϕ(i) dV +

=:G(i),int

︷ ︸︸ ︷∫

B(i)

P (i) : ∇(i)
X (δϕ(i)) dV

−

∫

B(i)

ρ(i) B̄
(i)

· δϕ(i) dV −

∫

Γ
(i)
σ

T̄
(i)

· δϕ(i) dA

︸ ︷︷ ︸

=:G(i),ext

−

∫

Γ
(i)
c

T (i) · δϕ(i) dA

︸ ︷︷ ︸

=:G(i),c








= 0 (2)

A list of parameters is given in table 1. The first term in equation (2) on the right hand side

ρ(i) : reference mass density
P (i) : first Piola-Kirchhoff stress tensor

B̄
(i)

: body force per unit volume

T̄
(i)

: forces per unit area acting on the Neumann boundary
T (i) : Piola contact traction

Table 1: List of parameters introduced in equation (2).

contains the inertia forces, wherë• denotes the second derivative with respect to time. The
second term contains the internal forces. The third and fourth term represents the virtual work
associated with the body force and surface force, respectively. The last term of equation (2)
denotes the contact contribution of the virtual work. In summary, we obtain:

2∑

i=1

G(i) (ϕ, δϕ) =
2∑

i=1

(
G(i),dyn +G(i),int +G(i),ext +G(i),c

)
= 0 (3)

For later developments we focus here on the contact virtual work. Taking the balance of linear
momentum into account, we receive (see Ref. [13]):

Gc = −

∫

γ
(1)
c

t ·
(
δϕ(1) − δϕ(2)

)
dA (4)

Heret denotes the contact traction andγ(i)
c = ϕ(Γ

(i)
c , t) is the contact surface in the current

configuration (see also Fig. (1)).

3 Spatial discretization

The bodies are discretized using displacement-based finiteelements. Therefore the bodies
B(i) are subdivided into a finite number of elementsnel:

B(i) ≈ B(i),h =

nel⋃

e

B(i),h
e (5)
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We further use the following approximations:

ϕ(i),h =

nnode∑

I=1

NI x
(i)
I , δϕ(i),h =

nnode∑

J=1

NJ δx
(i)
J (6)

HereNI , NJ denote the shape functions for an eight-node tri-linear brick element. The semi-
discrete virtual work for both bodies can now be written as follows:

2∑

i=1








=:M
(i)
IJ

︷ ︸︸ ︷∫

B(i),h

ρNI NJ dV ẍ
(i)
J · δx(i) +

=:f(i),int

︷ ︸︸ ︷∫

B(i),h

(

∇NI(X
(i)) · S

)

· ∇NJ(X
(i)) dV x

(i)
J ·δx(i)

−

∫

B(i),h

NI ρ B̄ dV · δx(i) −

∫

Γ
(i),h
σ

NI T̄ dA · δx(i)

︸ ︷︷ ︸

=:f
(i),ext
I









+Gc,h = 0 (7)

whereS denotes the second Piola-Kirchhoff stress tensor. The discrete virtual contact work in
the current configuration reads:

Gc,h = −

∫

γ
(1),h
c

th ·
(
δϕ(1),h

s − δϕ(2),h
)
dA (8)

In summary, we can write:

Gh(x, δx) =

2∑

i=1

δx
(i)
I

[

M
(i)
IJ ẍ

(i)
J + f

(i),int
I + f

(i),ext
I

]

+Gc,h = 0 (9)

whereM (i)
IJ denotes the nodal mass contribution.

3.1 NTS element

For the description of the virtual contact work we use the well known NTS-method (see
for example the textbooks Ref. [15, 13]), which uses a slave-master concept (see Ref. [7]).
Here we define bodyB(1) as slave body andB(2) as master body. The discrete gap function
gNs denotes the closest point projection from the slave pointx(1) to the corresponding master
surface represented byx(2)(ξ̄) =

∑4
K=1 N̂K(ξ̄)x

(2)
K (see Fig. (2)). Consistent with the eight-

node brick elements used for the isoparametric discretization of the bodies, the shape functions
N̂K are bi-linear and restricted to the contact domain. For the gap function we have to compute
the convected coordinates̄ξ. Therefore we make use of an additional Newton method solving
the following nonlinear problem with respect toξ

[(
x(1) − x(2)(ξ)

)
· x

(2)
,ξ (ξ)

(
x(1) − x(2)(ξ)

)
· x

(2)
,η (ξ)

]

= 0 (10)

which provides the necessary closest pointξ̄ (for more details see the textbook Ref. [15]). Then
the gap function can be calculated as follows:

gNs =

(

x(1)
s −

4∑

K=1

N̂K(ξ̄)x
(2)
K

)

· n(ξ̄) (11)
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Figure 2: Three-dimensional five node NTS-element.

wheres = 1, ..., nc denotes thesth contact element. The normaln(ξ̄) (see Fig. (2)) is defined
as:

n(ξ̄) =
x
(2)
,ξ (ξ̄)× x

(2)
,η (ξ̄)

‖x(2)
,ξ (ξ̄)× x

(2)
,η (ξ̄)‖

(12)

The NTS-method restrict the gap function such that it remains greater or equal zero. Further-
more the normal tractions are lower or equal zero, hence:

gNs ≥ 0, tNs ≤ 0, tNs gNs = 0 (13)

To enforce the above Kuhn-Tucker conditions, there exist different methods. We focus here on
the penalty method and on the Lagrange multiplier method. Inthis connection we divide the
contact tractions in equation (4) into a normal and tangential part. Accordingly:

Gc,h =

∫

γh
c

(
tNs(ξ̄) δgNs(ξ̄) + tTs · δξ̄

)
dA (14)

wheretTs represents the frictional traction in tangential direction. The contact pressure in
normal directiontNs for example can be replaced byλNs using the Lagrange multiplier and
by εN gNs using the penalty method, whereεN > 0 is a given penalty parameter. For both
methods we have to fulfill the Kuhn-Tucker complementary conditions from equation (13) and
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one obtains together with the Coulomb friction law:

gNs ≥ 0 (15)

tNs ≤ 0 (16)

tNs gNs = 0 (17)

Ψs := ‖tTs‖ − µ tNs ≤ 0 (18)

vb
Ts = γ̇

tTs

‖tTs‖
(19)

γ̇ ≥ 0 (20)

γ̇Ψs = 0 (21)

wherevb
Ts is the covariant tangential velocity andγ̇ is the plastic parameter. For the frictionless

case we only need to satisfy the conditions (15)-(17). To satisfy the Kuhn-Tucker complemen-
tary conditions we make use of an active-set strategy, whichseparates the set of constraints in
an active and an inactive set (see Ref. [12] and the references therein for more details).

3.2 Equation of motion

For the frictionless case we make use of the Lagrange multiplier method. The contact con-
tribution then reads:

Gc,LM =
nc∑

s=1

λsn(ξ̄) ·

(

δx(1)
s −

4∑

K=1

N̂K(ξ̄) δx
(2)
K

)

(22)

(23)

whereλs is the corresponding Lagrange multiplier. To enforce the gap function we use the
constraint:

φNTS
s (x) = gNs (24)

The Lagrangian for the constraint system is:

Lλ =
1

2
ẋ ·M ẋ− V (x)−

nc∑

s=1

φNTS
s (x) λs (25)

Using equation (25) we obtain the following semi-discrete index-3 differential algebraic equa-
tions:

M ẍ+∇V (x) +

nc∑

s=1

GT
s (x) λs = 0 (26)






φNTS
1
...

φNTS
nc




 = 0 (27)

HereGs is the gradient of the NTS-constraint function with respectto the configuration:

GT
s =

(
∇φNTS

s (x)
)T

=









n(ξ̄)
−N1 n(ξ̄)
−N2 n(ξ̄)
−N3 n(ξ̄)
−N4 n(ξ̄)









(28)
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For the frictional case we make use of the penalty method. Thecontact contribution reads:

Gc,PM =
nc∑

s=1

(
tNs(ξ̄) δgNs(ξ̄) + tTαs δξ̄

α
)

(29)

Note that Einstein summation convention is used. After somealgebra the variation of the gap
reads:

δgNs = n(ξ̄)
(
δx(1)

s − δx(2)(ξ̄)
)

(30)

The variation of the convected coordinates finally leads to:

δξ̄β = [Aαβ ]
−1 ([

δx(1)
s − δx(2)(ξ̄)

]
x(2)
,α (ξ̄)− gNsn(ξ̄) δx

(2)
,α (ξ̄)

)
(31)

whereAαβ depends on the curvature of the surface (n(ξ̄) · x
(2)
,αβ):

Aαβ = mαβ + gNs n(ξ̄) · x
(2)
,αβ (32)

and on the covariant metric:

mαβ = x(2)
,α · x

(2)
,β (33)

Finally we can write the contact contribution to the residual:

Rc
s = tNsN s + tT1s D1s + tT2s D2s (34)

where the matrices can be calculated as follows:

Dβs = Aαβ (T α − gNsNα) (35)

N s =









n(ξ̄)
−N1 n(ξ̄)
−N2 n(ξ̄)
−N3 n(ξ̄)
−N4 n(ξ̄)









, T α =










x
(2)
,α (ξ̄)

−N1 x
(2)
,α (ξ̄)

−N2 x
(2)
,α (ξ̄)

−N3 x
(2)
,α (ξ̄)

−N4 x
(2)
,α (ξ̄)










, Nα =









0

−N1,α n(ξ̄)
−N2,α n(ξ̄)
−N3,α n(ξ̄)
−N4,α n(ξ̄)









(36)

The contravariant contributionAαβ in equation (35) can be calculated by the inverse of the
covariant version ofAαβ. Due to equation (34) we obtain the second order ordinary differential
equations:

M ẍ+∇V (x) +
nc∑

s=1

Rc
s(x) = 0 (37)

3.2.1 Mixed approach

For the frictionless contact we apply an energy-momentum scheme proposed in Ref. [10].
We introduce additional coordinatesds ∈ R

3 and the vectorf s ∈ R
3 which corresponds to

the normaln and to the convective coordinatesξ respectively. To determine the augmented
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coordinates we introduce augmented constraints to link thenew coordinates to the actual con-
figuration. Together with the NTS-constraint we obtain:

gs(xs,ds, f s) =

[
φNTS
s

φaug
s

]

=














(

x
(1)
s − x(2)(f s)

)

· ds

ds · x
(2)
,ξ (f s)

ds · x
(2)
,η (f s)

1
2
(ds · ds − 1)

(

x
(1)
s − x(2)(f s)

)

· x
(2)
,ξ (f s)

(

x
(1)
s − x(2)(f s)

)

· x
(2)
,η (f s)














(38)

For more details about the fundamental properties of this formulation we refer to Ref. [10].
With regard to Cauchy’s representation theorem, equation (25) can be reparametrized by using
at most quadratic invariantsπ. One obtains an augmented Lagrangian of the considered system:

L̃λ =
1

2
ẋ ·M ẋ− V (x)−

nc∑

s=1

g̃s(π(xs,ds, f s)) · λs (39)

To rewrite the modified NTS constraint in terms of invariantswe reformulate them as follows:

φNTS
s =

(
x(1)
s − x(2)(f s)

)
· ds − f3s

=

(

x(1)
s −

(

x
(2)
1 +

∑

i

Ni x
(2)
i −

∑

i

Ni x
(2)
1

))

· ds − f3s

=
(

x(1)
s − x

(2)
1

)

· ds −
4∑

i=2

Ni

(

x
(2)
i − x

(2)
1

)

· ds − f3s (40)
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wheref3s is the the third entry of the vectorf s. In order to reformulate the constraints we define
the following appropriate invariants:

π(xs,ds, f s) =

































π1

π2

π3

π4

π5

π6

π7

π8

π9

π10

π11

π12

π13

π14

π15

π16

π17

































=














































(

x
(1)
s − x

(2)
1

)

· ds
(

x
(2)
2 − x

(2)
1

)

· ds
(

x
(2)
3 − x

(2)
1

)

· ds
(

x
(2)
4 − x

(2)
1

)

· ds

f1s
f2s
f3s

ds · ds(

x
(2)
2 − x

(2)
1

)

·
(

x
(1)
s − x

(2)
1

)

(

x
(2)
3 − x

(2)
1

)

·
(

x
(1)
s − x

(2)
1

)

(

x
(2)
4 − x

(2)
1

)

·
(

x
(1)
s − x

(2)
1

)

(

x
(2)
2 − x

(2)
1

)

·
(

x
(2)
2 − x

(2)
1

)

(

x
(2)
2 − x

(2)
1

)

·
(

x
(2)
3 − x

(2)
1

)

(

x
(2)
2 − x

(2)
1

)

·
(

x
(2)
4 − x

(2)
1

)

(

x
(2)
3 − x

(2)
1

)

·
(

x
(2)
3 − x

(2)
1

)

(

x
(2)
3 − x

(2)
1

)

·
(

x
(2)
4 − x

(2)
1

)

(

x
(2)
4 − x

(2)
1

)

·
(

x
(2)
4 − x

(2)
1

)














































(41)

The constraints as a function of the currently defined invariants reads:

g̃s (π (xs,ds, f s)) =












π1 −
∑4

i=2Ni(π5, π6) · πi − π7
∑4

i=2Ni,π5(π5, π6) πi
∑4

i=2Ni,π6(π5, π6) πi
1
2
(π8 − 1)

∑4
i=2Ni,π5(π5, π6) πi+6 −

∑4
i=2

∑4
j=2Ni,π5(π5, π6)Nj(π5, π6) π

LM

∑4
i=2Ni,π6(π5, π6) πi+6 −

∑4
i=2

∑4
j=2Ni,π6(π5, π6)Nj(π5, π6) π

LM












(42)

whereπLM corresponds toπ12-π17 according to the assignment of(x
(2)
i − x

(2)
1 ) · (x

(2)
j − x

(2)
1 )

in equation (41). The semi-discrete equations of motion canbe obtained by the Lagrangian and

9
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we finally arrive at:

M ẍ+∇V (x) +
nc∑

s=1

(D1π(xs,ds, f s))
T ∇πg̃s(π) · λs = 0 (43)

nc∑

s=1

(D2π(xs,ds, f s))
T ∇πg̃s(π) · λs = 0 (44)

nc∑

s=1

(D3π(xs,ds, f s))
T ∇πg̃s(π) · λs = 0 (45)






g̃1(π(x1,d1, f1))
...

g̃nc
(π(xnc

,dnc
, fnc

))




 = 0 (46)

Again we refer to Ref. [10] for the derivation of the fundamental properties of the constraints
and for the verification of the conservation of the angular momentum
J =

∑

I,J MI,J xI × ẋJ as well as of the total energyE(x, ẋ) = 1
2
ẋ · M ẋ + V (x) of the

semi-discrete system.

4 Time discretization

For the time discretization we divide the time intervalI = [0, T ] =
⋃N−1

n=0 [tn, tn+1] into
equidistant incrementsh = tn+1 − tn to apply an one step time integration scheme. In the
following the time discretization according to frictionless and frictional contact will be stated.

4.1 Frictionless contact with Lagrange multipliers

For later comparison we apply a standard midpoint rule and a newly developed energy-
momentum scheme (firstly presented in Ref. [10]) in order to investigate the numerical proper-
ties of the latter.

Midpoint rule For the midpoint rule the configuration, velocity and acceleration are evaluated
in the midpoint:

xn+ 1
2
=

1

2
(xn+1 + xn) (47)

vn+ 1
2
=

1

h
(xn+1 − xn) (48)

an+ 1
2
=

2

h2
(xn+1 − xn)−

2

h
vn (49)

By applying the midpoint rule along with the equations (26) and (27) we finally obtain the
completely discrete equations:

xn+1 − xn − hvn+ 1
2
= 0 (50)

M (vn+1 − vn) + h

(

∇V (xn+ 1
2
) +

nc∑

s=1

GT
s (xn+ 1

2
) λs,n+1

)

= 0 (51)






φNTS
1,n+1
...

φNTS
nc,n+1




 = 0 (52)

10
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Note that we use Newton’s method to solve the problem and we have to calculate the tangent.

Energy-momentum scheme - mixed formulation We aim at the time discretization for the
mixed formulation (see Section 3.2.1), where the NTS constraints are reformulated in appropri-
ate invariants. Further we introduce a discrete gradient inthe sense of Gonzalez (see Ref. [6]).
This creates an energy-momentum scheme which besides the algorithmic consistency of both
momentum maps is able to conserve the total energy of the system. Finally we can write the
completely discrete system within the concept of the discrete gradient as follows:

xn+1 − xn − hvn+ 1
2
= 0 (53)

M (vn+1 − vn) + h∇x V (xn,xn+1) (54)

+h

nc∑

s=1

(

D1 π(xs,n+ 1
2
,ds,n+ 1

2
, f s,n+ 1

2
)
)T

∇π g̃s(πn,πn+1) · λs,n+1 = 0 (55)

nc∑

s=1

(

D2 π(xs,n+ 1
2
,ds,n+ 1

2
, f s,n+ 1

2
)
)T

∇π g̃s(πn,πn+1) · λs,n+1 = 0 (56)

nc∑

s=1

(

D3 π(xs,n+ 1
2
,ds,n+ 1

2
, f s,n+ 1

2
)
)T

∇π g̃s(πn,πn+1) · λs,n+1 = 0 (57)






g̃1(π(x1,n+1,d1,n+1, f1,n+1))
...

g̃nc
(π(xnc,n+

1
2
,dnc,n+

1
2
, fnc,n+

1
2
))




 = 0 (58)

Here the discrete gradient∇x V (xn,xn+1) applied to the internal energy is used (for more

details see Ref. [3]). In addition, the discrete gradient∇π g̃(πn,πn+1) is defined as follows:

∇π g̃s(πn,πn+1) = ∇π g̃s

(

πn+ 1
2

)

+
g̃s(πn+1)− g̃s(πn) +∇π g̃s

(

πn+ 1
2

)

(πs,n+1 − πs,n)

‖πs,n+1 − πs,n‖2
(πs,n+1 − πs,n) (59)

The verification of the conservation of the angular momentumand the total energy of the com-
pletely discrete system can be found in Ref. [10]. To this endwe have to remark that the
consistency condition is violated in general by an inactiveconstraint, which gets active within
a specific time step.

4.2 Frictional contact with penalty method

For frictional contact we apply the penalty method. Therefore we have to distinguish whether
stick (Ψ ≤ 0) or slip (Ψ > 0) occurs. To this end usually a return mapping scheme (for more
details see Ref. [13] and Ref. [15]) is implemented that works as follows. One first assumes
stick and computes therefore a trial state during the increment:

ttrialTα,n+1 = tTα,n + εT mαβ

(

ξ̄
β
n+1 − ξ̄βn

)

(60)

Ψtrial
n+1 = ‖ttrialT,n+1‖ − µ tN,n+1 (61)

11
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x

y

z

Figure 3: Initial configuration of the hollow ball and plate.

Hereµ is the Coulomb coefficient of friction. On the basis of the slip conditionΨtrial
n+1 the

frictional tractionstTα,n+1 will be computed:

tTα,n+1 =







ttrialTα,n+1 if Ψtrial
n+1 ≤ 0 (stick)

µ tN,n+1
ttrialTα,n+1

‖ttrial
T,n+1‖

if Ψtrial
n+1 > 0 (slip)

(62)

Then equation (37) can be evaluated in the midpoint due to equations (47)-(49). Finally one
obtains the following completely discrete equations of motion:

xn+1 − xn − hvn+ 1
2
= 0 (63)

M (vn+1 − vn) + h

(

∇V (xn+ 1
2
) +

nc∑

s=1

Rc
s(xn+ 1

2
)

)

= 0 (64)

5 Numerical examples

As numerical example we consider the impact of a hollow ball with a plate. The initial
configuration is displayed in Fig. 3. At the start the velocity of the hollow ball isvx = 0,
vy = 1, vz = −1 where the plate stays at rest. Both bodies are modeled with a St. Venant-
Kirchhoff material and with a Poisson’s ratio ofν = 0.4. The Young’s modulus of both bodies
is E = 105. The hollow ball is discretized with 432 and the plate with 100 eight-node brick
elements.

For the frictionless contact of the example shown in Fig. 3 wecompare the midpoint rule
with the proposed energy-momentum scheme. We use a time stepsize ofh = 0.01 during

Figure 4: Snapshots for the midpoint rule at timet = 0.0 (left), t = 0.5 (middle) andt = 1.0 (right).
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Figure 5: Energy plot (left), total linear momentum (top right) and angular momentum (bottom right) correspond-
ing to the midpoint rule.

Figure 6: Snapshots for the energy-momentum scheme at timet = 0.0 (left), t = 0.5 (middle) andt = 1.0 (right).

the intervalI = [0, 1] for both simulations. No external forces and momenta are acting on
the bodies, so we consider the system as a conservative system, which means that the basic
properties of the bodies, namely the total energy, the angular as well as the linear momentum,
have to be conserved. In Fig. 5 and Fig. 7 the basic propertiesof both bodies are displayed for
the midpoint rule and the energy-momentum scheme, respectively. Three snapshots at times
t = 0.0, t = 0.5 andt = 1.0 for both simulations are displayed in Fig. 4 and Fig. 6. It becomes
obvious that the energy-momentum scheme (see Fig. 7) conserves all quantities whereas the
midpoint rule (see Fig. 5) fails to conserve the energy.

6 CONCLUSIONS

• As a new approach a mixed method together with an energy-momentum scheme has been
applied to three-dimensional contact problems described by the NTS-method.

• For the mixed method augmented coordinates and additional constraints were introduced.
Then the constraints were reparametrized by appropriate invariants.

• Further the concept of the discrete gradient has been applied on the internal energy and
on the contact constraints.

• As shown the method can be extended to frictional contact problems as well.
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Figure 7: Energy plot (left), total linear momentum (top right) and angular momentum (bottom right) correspond-
ing to the energy-momentum scheme.

• The properties of the energy-momentum scheme has been numerically investigated in
comparison to the midpoint rule.

• In summary, the newly developed method results in a highly stable integration scheme.
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