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Abstract. The present contribution provides a comprehensive computational framework for
large deformational contact and phase-fracture analysis and is based on the recently appeared
publication [16]. A phase-�eld approach to fracture allows for the ef�cient numerical treatment
of complex fracture patterns for three dimensional problems. Recently, the fracture phase-�eld
approach has been extended to �nite deformations (see [18] for more details). In a nutshell,
the phase-�eld approach relies on a regularization of the sharp (fracture-) interface. Besides
a second-order Allen-Cahn phase-�eld model, a more accuratefourth-order Cahn-Hilliard
phase-�eld model is considered as regularization functional. For the former standard �nite
element analysis (FEA) is suf�cient. The latter requires global C1 continuity (see [3]), for
which we provide a suitable isogeometric analysis (IGA) framework. Furthermore, to account
for different local physical phenomena, like the contact zone, the fracture region or stress peak
areas, a newly developed hierarchical re�nement scheme is employed (see [19] for more de-
tails). For the numerical treatment of the contact boundaries we use the variational consistent
Mortar method. The Mortar method passes the patch-test and is known to be the most accurate
numerical contact method. It can be extended, in a straightforward manner, to transient phase-
�eld fracture problems. The performance of the proposed methods will be examined in several
representative numerical examples.
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1 INTRODUCTION

The underlying contribution deals with large deformational continuum bodies which are as-
sumed to contact each other and are each able to fracture within considered simulation time. For
the spatial discretization a modern isogeometric analysis(IGA) framework with local re�ne-
ment scheme and the variational consistent Mortar contact method are employed. A structure
preserving integrator is provided for dynamic problems. Note, the work is based on the recently
appeared publication [16].

The phase-�eld method has originally been used to model phase separation. In the last two
decades it furthermore has been used to regularize sharp cracks (see e.g. [26, 28, 24]). Besides
the displacements the phase-�eld parameters is introduced as primary unknown. This phase-
�eld parameter is driven by a suitable phase-�eld partial-differential equation (PDE), which
is used to regularize the sharp crack interface. In the literature different PDE's are discussed
(see e.g. [3, 34]). We use a second and a fourth order PDE. It isassumed, that the crack
initiates or growths by attainment of a local critical energy release rate (see e.g. [9, 5, 26]).
It is further possible to give a variational formulation forthe crack propagation problem (see
e.g. [23, 13, 12]). The phase-fracture method has been developed in the small strain regime
(see e.g. [26, 28]). Recently, the phase-fracture method hasbeen extended to the full nonlinear
regime (see [18]) by using a multiplicative split of the deformation gradient into compressive
and tensile parts (cf. [27]). It is important to remark, thatthe numerical treatment of phase-
�eld approaches to fracture is less sophisticated than other computational crack propagation
techniques for modeling sharp cracks.

In the last three decades, computational modeling of contact mechanics has been intensi�ed
(see [37, 25] for comprehensive overviews). Besides traditional nodal based contact methods,
e.g. like the node-to-surface method, the variational consistent Mortar method has been well-
established (see e.g. [31, 15, 30, 36]). In a recent publication (see [7]) we applied the Mortar
method for thermo-mechanical frictional contact problems. Therein we used an isogeometric
analysis framework, which allows for higher order approximations with arbitrary adjustable
continuity. Here and in our recent publication [16] we extend the isogeometric analysis frame-
work with the phase-�eld fracture approach. Note, for higher order phase-�eld equations stan-
dardC0 Lagrangian shape functions are not suf�cient anymore.

Concerning the spatial discretization both the contact zoneas well as the fracture zone de-
mand for re�ned meshes. Higher order spatial discretization methods are more accurate and
reduce the computational demand (see [6] for a comprehensive overview). Therefore we make
use of an IGA framework. To be speci�c we use non-uniform rational B-splines (NURBS),
for which the continuity is adjustable by construction of the shape functions. For local re�ne-
ment mainly T-splines and hierarchical re�nement schemes have been used. The application of
T-Splines have some drawbacks (see [1] for details), such that we employ an hierarchical re�ne-
ment scheme (see [8, 33, 4]). Hierarchical re�nement procedures replace B-spline and NURBS
basis functions on the re�ned level by a linear combination of scaled and copied versions of
themselves, maintaining the required continuity (see e.g.[22, 29]). In particular, we aim at an
hierarchical re�nement formulation which maintains the partition of unity and is suitable to be
adapted to traditional contact mechanical formulations.

An outline of the underlying contribution is as follows. Thecontinuum mechanical basis
with application to contact and fracture mechanics and the corresponding governing equations
are dealt with in Section 2. Standard FEA and IGA discretization of the weak form follows
in Section 3. Furthermore, a modern Mortar contact approachwill be given in Section 3. The
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Figure 1: Typical reference (left) and current (right) con�gurations of bodiesB( i ) with crack phase-�eld.

temporal discretization of the semi-discrete equations iscovered in Section 4. Representative
numerical examples are given in Section 5. Eventually, conclusions are drawn in Section 6.

2 Governing equations

The underlying contribution deals with continuum bodiesB(i ) 2 Rd, whered 2 f 1; 2; 3g.
For ease of exposition we restrict the consideration to a twobody problem, i.e.i = 1; 2, de-
picted in Figure 1. The bodies are assumed to contact each other within timet 2 I = [0; T],
whereT 2 R+ . The bodiesB(i ) are presented in its reference con�gurationB(i )

0 and its current
con�guration B(i )

t , accordingly �nite deformations are incorporated. The reference con�gura-
tion can be addressed with material coordinatesX (i ) 2 Rd and corresponding material basis
E A , whereA = 1; :::; d. Moreover, the current con�guration is given by the bijective mapping
' (i ) : B(i )

0 � I ! Rd and is subject to spatial basisea, wherea = 1; :::; d.
In order to model fracture the smooth phase-�eld parameters(i ) : B(i )

0 � I ! [0; 1] is
introduced. s can be regarded as damage variable and physically represents a homogenized
macroscopic crack of micro-cracks (see [28]).

The mechanical boundary� (i ) := @B(i ) 2 Rd� 1 (depicted in Figure 1) is decomposed into
a Dirichlet boundary� (i )

d � � (i ) , a Neumann boundary� (i )
n � � (i ) and a contact boundary

� (i )
co � � (i ) , accordingly

� (i ) = � (i )
n [ � (i )

d [ � (i )
co . (1)

The boundaries may not overlap each other, such that

� (i )
n \ � (i )

d = � (i )
n \ � (i )

co = � (i )
d \ � (i )

co = ; . (2)

This has to be valid for the spatial counterparts of the boundaries


 (i )
(� ) = ' (i )(� (i )

(� ) ; t) , (3)
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Figure 2: 1D sharp (left) and phase-�eld regularized (right) crack.

as well, where the abbreviation (� ) is used to refer to the different boundaries. In addition to
the mechanical boundaries a crack Dirichlet boundary� (i )

cr de�nes a new internal boundary of
corresponding body and can be initialized within the bodies. All other phase-�eld boundaries
can be regarded as Neumann boundaries. For the two-�eld problem the displacement as well as
the scalar-valued phase-�eld parameter are the primary unknowns

[' ; s] 2 Rd+1 . (4)

Phase-�eld contribution The aforementioned crack phase-�eld parameters has two bounds,
the unbroken state withs = 0 and the fully broken state withs = 1 (see [28, 18]). Herein,
we assume that crack initiates or continues only in tensile state by attainment of a critical local
fracture energy density, given byG(i )

c , which is related to the critical Grif�th-type fracture en-
ergy (see [11, 21, 28]). The sharp crack is ad � 1-dimensional manifold. To avoid the dif�cult
modeling of sharp cracks we regularize the crack zone with a suitable crack density functional

 (i )

cr;n , such that we are able to integrate over thed-dimensional domain

G(i )
c

Z

� ( i )
dA � G (i )

c

Z

B( i )
0


 (i )
cr;n dV = G(i )

c � (i )
cr;n =: V (i )

cr;n .

Thereinn denotes the order of the phase-�eld model (cf. [3]). In [28] asecond order and
in [3, 34] a fourth order differential equation have been proposed1 (see Figure 3 for the 1D
analytical solution). The former is given by

s(i ) � 4 (l (i ))2 � s(i ) = 0 , (5)

with the corresponding functional

F (i )
cr;2 =

1
2

Z

B( i )
0

((s(i ))2 + 4 ( l (i ))2 r s(i ) � r s(i )) dV , (6)

whereas the latter is given by

s(i ) � 2 (l (i ))2 � s(i ) + ( l (i ))4 �� s(i ) = 0 . (7)

The corresponding functional denotes

1It is important to remark, that it does not exist a natural PDEto model the crack density functional (for more
informations see [34])
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Figure 3: Analytical solution of 1D second order phase-�eld(5) s(x) = e
�j x j

2 l (left) and fourth order phase-�eld
(7) s(x) = e

�j x j
l (1 + j x j

l ) with different length scale parameters.

F (i )
cr;4 =

1
2

Z

B( i )
0

(
1
2

(s(i ))2 + ( l (i ))2 r s(i ) � r s(i ) +
(l (i ))4

2
� s(i ) � s(i )) dV . (8)

In the above equationsl (i ) denotes the length scale parameter, which determines the width of
the regularization zone (see Figure 2). The length scale parameter may be treated as material
parameter and should be chosen as

h(i ) <
l (i )

2
, (9)

whereh(i ) denotes the smallest �nite element size (for more details see [28]). Note, for the
fourth order approachl (i ) can be chosen even smaller as suggested by (9) (see e.g. [16])The
regularized crack surface topologies are then constructedby � (i )

cr;2=4 := 1
l ( i ) F (i )

cr;2=4 as proposed in
[28]. Accordingly, for (5) and (7), we obtain

� (i )
cr;2 =

1
2l (i )

Z

B( i )
0

((s(i ))2 + 4 ( l (i ))2 r s(i ) � r s(i )) dV , (10)

� (i )
cr;4 =

1
4l (i )

Z

B( i )
0

((s(i ))2 + 2 ( l (i ))2 r s(i ) � r s(i ) + ( l (i ))4 � s(i ) � s(i )) dV , (11)

respectively. As can be observed in Figure 3, the fourth order phase-�eld approach has two
advantages with respect to the second order phase-�eld approach. The fourth order phase-�eld
approach does not contain non-differentiable areas and further by using the same length scale
parameter the transition zone is smaller. Moreover, in the numerical treatment better accuracy
and convergence rates of the solution have been observed (see [3]). For the second order phase-
�eld model C0-continuity, whereas for the fourth order modelC1-continuity is required.

Bulk contribution The potential of the bulk is given by

V (i )
bulk =

Z

B( i )
0

	 (i ) dV , (12)
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where	 (i ) denotes the strain energy density function of bodyi . The corresponding balance of
linear momentum is given by

Div(P (i )) + �B (i ) = � (i )
0 •' (i ) , (13)

whereP (i ) : B(i )
0 � I ! Rd� d denotes the �rst Piola-Kirchhoff stress tensor,�B (i ) 2 Rd

denotes the prescribed body force density and� (i )
0 : B(i )

0 � I ! R denotes the mass density.
Additionally, an arbitrary hyperelastic material law can be incorporated with a suitable strain
tensor. The symmetric right Cauchy-Green strain tensor is introduced by

C (i ) = F (i ) F (i )T , (14)

using the deformation gradientF (i ) : B(i )
0 � I ! Rd� d. As already mentioned, we assume that

only local tension rather than local compression is responsible for crack growth. Accordingly,
we aim at an anisotropic description, such that we need to split the kinematic into tension and
compression2. Therefore we employ an eigendecomposition of the deformation gradient, which
yields

F (i ) =
dX

a=1

� (i )
a a (i )

a 
 A (i )
a , (15)

where the deformation gradient is represented in its principal stretches� (i )
a and spatial and mate-

rial directionsa (i )
a ; A (i )

a , respectively. As proposed by [18], an operator split of thedeformation
gradient is performed, such that

F (i ) = F (i );� F (i );+ =
dX

a=1

� (i );�
a � (i );+

a a (i )
a 
 A (i )

a . (16)

Therein the superscripted� denotes

� (i );�
a =

� (i )
a � j � (i )

a j
2

. (17)

Accordingly, the principal strains are decomposed into tensile and compressive components.
Furthermore, an anisotropic split of the principal stretches is accomplished, which yields

F (i ) =: F (i )
i F (i )

e , (18)

where the fracture sensitive and insensitive parts are introduced as follows

F (i )
i =

dX

a=1

(� (i );+
a )1� g(s( i ) ) aa 
 A a; F (i )

e =
dX

a=1

(� (i );+
a )g(s( i ) ) � (i );�

a aa 
 A a . (19)

Therein the degradation functiong(s(i )) = 1 � s(i ) has been introduced. Note, in the linear case
an additive split has been proposed by [26] and can be stated as

	 (i )(� (i )) ! ~	 (i )(� i ; s(i )) = ( g(s(i )) + k) 	 (i );+ (� (i )) + 	 i; � (� (i )); g(s(i )) = (1 � s(i ))2 .
(20)

2Note, a less realistic but more simple choice would be an isotropic description.
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Figure 4: Parametrization of contact surface
 (2)
co .

Note further, that a more sophisticated cubic degradation function

g(s(i )) = a(i ) ((1 � s(i ))3 � (1 � s(i ))2) � 2 (1 � s(i ))3 + 3 (1 � s(i ))2; a(i ) � 0, (21)

is discussed in [2] and can easily be incorporated. Fora(i ) = 2 the quadratic functional in
equation (20) is recovered. Using the above coupled kinematic, the Helmholtz free energy
depends besides the strain also on the phase-�eld, such that

	 (i )(C (i )) ! 	 (i )(C (i )
e ) = 	 (i )

e (C (i ) ; s(i )) =: 	 (i )
e . (22)

Accordingly, the elastic part of bulk potential (12) can be written as

V (i )
bulk;e =

Z

B( i )
0

	 (i )
e dV . (23)

Contact contribution The underlying contact description is based on the description given in
[10]. Note, as mentioned earlier, the phase-�eld and the contact boundaries do not depend on
each other. As can be observed in Figure 4 we introduce a localconvective coordinate system.
The closest point projection of' (1) (X (1) ; t) 2 
 (1)

co to opposing surface
 (2)
co yields

k' (1) (X (1) ; t) � �' (2) )k ! min . (24)

Therein �' (2) := ' (2) ( �X (2) (X (1) ; t) denotes the orthogonal projected point to' (1) (X (1) ; t).
The local convective coordinate system is parametrized with convective coordinates� � , � 2
f 1; 2g such that

�X (2) (X (1) ) := X (2) (�� ); �' (2) := ' (2) (�� ; t) . (25)

Therein�� = [ �� 1; �� 2] denotes the convective coordinates of the projected point and is computed
via equation (24) e.g. with Newton's method. The convected basis are calculated with

a � := ' (2)
;� (�� ; t) . (26)

7



M. Franke, C. Hesch and M. Dittmann

Note that the above basis are in general not orthonormal. Accordingly, it is important to give
the metric for the local coordinate system

m�� = a � � a � . (27)

The gap vector is given by (see Figure 4)

g = ' (1) � �' (2) . (28)

Furthermore, the unit outward normal to the surface
 (2)
co at point �' (2) is de�ned by

n :=
a1 � a2

ka1 � a2k
. (29)

With the above the scalar-valued gap function can be computed via

gN =
�
' (1) � �' (2)

�
� n . (30)

Considering the balance of linear momentum at the contact boundary, we obtain

t (1)
co (X (1) ; t) dA (1) = � t (2)

co ( �X (2) (X (1) ); t) dA (2) . (31)

Therein, the involved contact traction can be splitted intoa normal and a tangential part as
follows

t (1)
co (X (1) ; t) = t N + t T; t T � n = 0 . (32)

Moreover, the normal contact traction is given by

t N := t (1)
N = � tN n . (33)

Frictionless contact is incorporated by using the well-known Karush-Kuhn-Tucker conditions,
given by

gN � 0, (34)

tN � 0, (35)

tN gN = 0 . (36)

The Karush-Kuhn-Tucker conditions are comprised of the impenetrability condition (34), the
condition which only allows compressive tractions (35) andthe complementarity condition (36).
The Karush-Kuhn-Tucker conditions are shown in Figure 5 forboth the penalty method and
Lagrange multipliers. Note, the framework is readily expendable to incorporate any frictional
constitutive law (e.g. Coulomb friction), but is omitted herein for convenience, i.e.t T = 0.
Within the computational treatment of contact, we subsequently apply the active set strategy to
obtain an active contact boundary�� (i )

co from the potential contact boundary� (i )
co . In particular

the inequalities given in (34)-(36) are implemented using themax-operator (see [20] for more
informations) as follows

� N = � N � max(0; � N � c� N) = 0 . (37)
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gN

� N

admissible region

Figure 5: Karush-Kuhn-Tucker conditions for frictionlesscontact (solid line: exact enforcement, dotted line:
penalty regularization with penalty parameter� N).

Therein� N and� N denote the Lagrange multiplier and corresponding constraint, respectively.
Note � N := tN denotes the exact contact traction and� N := gN the gap function. Moreover,
within the active set strategyc 2 R+ is a constant parameter, which is suitable to in�uence the
convergence of Newton's method but does not in�uence the constraint enforcement. Eventually,
assuming active contact and using equation (31), we are ableto introduce the contact potential
employing only one integral expression, such that

2X

i =1

�V (i )
co =

Z

�� (1)
co

t (1)
co �

�
' (1) � ' (2)

�
dA (1) := �Vco . (38)

Initial boundary value problem In the following the contact boundaries are assumed to be
known. Collecting all introduced contributions, yields

V aug =
X

i

V (i )
bulk;e + V (i )

cr;2=4 + �Vco . (39)

Regarding transient problems the kinetic energy is de�ned by

T =
X

i

1
2

Z

B( i )
0

� _' (i ) � _' (i ) dV . (40)

With the Lagrange functionalL = T � V aug at hand, the above is used to employ Hamilton's
principal, given by

�S =
Z t2

t1

�L dt =
Z t2

t1

(�T � �V aug) dt != 0 . (41)
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Equation (41) leads to the Euler-Lagrange equations. Accordingly, the initial boundary value
problem (IBVP), for the coupled system with fourth order phase-�eld model, can be written as

Div(F (i )
e S (i )

e ) + �B (i ) � � (i )
0 •' (i ) = 0 in B(i )

0 8t 2 I , (42)

H (i ) +
G(i )

c

4l (i )
(s(i ) � 2 (l (i ))2 � s(i ) + ( l (i ))4 �� s(i )) = 0 in B(i )

0 8t 2 I , (43)

' (i ) = �' (i ) on � (i )
d 8t 2 I , (44)

P (i ) N (i ) = �T (i ) on � (i )
n 8t 2 I , (45)

gN � 0 on � co8t 2 I , (46)

tN � 0 on � co8t 2 I , (47)

tN gN = 0 on � co8t 2 I , (48)

s(i ) = 1 on � cr,d8t 2 I , (49)

� s(i ) = 0 on � (i )8t 2 I , (50)

r (( l (i ))4 � s(i ) � 2 (l (i ))2 s(i )) � N (i ) = 0 on � (i )8t 2 I , (51)

' (i )(t = 0) = ' (i )
0 in B(i )

0 , (52)

_' (i )(t = 0) = _' (i )
0 in B(i )

0 , (53)

s(i )(t = 0) = s(i )
0 in B(i )

0 . (54)

The above is supplemented by the constitutive equations

S (i )
e = 2 D 1	 (i )

e (C (i ) ; s(i )); H (i ) = D 2	 (i )
e (C (i ) ; s(i )) , (55)

which denote the second Piola-Kirchhoff stress tensor and the driving force of the phase-�eld.
Equations (44)-(45) are the prescribed mechanical Dirichlet and Neumann boundary conditions,
whereas equations (49)-(51) denote the phase-�eld Dirichlet and Neumann boundary condi-
tions. Furthermore equations (52)-(54) denote the initialconditions. Note, in order to obtain
the IBVP for the second order phase-�eld model, equation (43)needs to be exchanged by

H (i ) +
G(i )

c

2l (i )
(s(i ) � 4 (l (i ))2 � s(i )) = 0 in B(i )

0 . (56)

Furthermore, equations (49) and (50) need to be exchanged bycondition

r s(i ) = 0 on � (i )8t 2 I . (57)

Note that we do not enforce_s � 0. Accordingly, within our formulation, the phase-�eld may
be healed except the material is fully broken, i.e.s = 1, which will be enforced with a Dirichlet
type mechanism (see next paragraph for more informations).

Virtual work Analogously, we are able to collect the virtual work contributions, such that

G :=
X

i

G(i )
dyn + G(i )

int,ext + G(i )
cr;2=4 + �Gco . (58)

To this end the displacement solution space is de�ned by

V(i )
s = f ' (i ) : ' (i )(X (i ) ; t) 2 H 1(B(i )

0 )j' (i )(X (i ) ; t) = �' (i ) on � (i )
d g, (59)
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such that the solution function' (i ) is element of the Sobolev spaceH 1 which includes the space
of square-integrable functions and square-integrable �rst derivatives. Furthermore the solution
function is required to satisfy the Dirichlet boundary condition. The space of test functions with
the corresponding test function� ' (i ) is postulated as3

V(i )
t = f � ' (i ) : � ' (i )(X (i )) 2 H 1(B(i )

0 )j� ' (i )(X (i )) = 0 on � (i )
d g. (60)

Accordingly, the test-function vanishes at the Dirichlet boundary. Using standard techniques,
the contributions to the weak form are obtained as follows

G(i )
dyn :=

Z

B( i )
0

� ' (i ) � •' (i ) � (i )
0 dV , (61)

G(i )
int,ext :=

Z

B( i )
0

S (i )
e : F (i )T

e Grad(� ' (i )) dV �
Z

B( i )
0

� ' (i ) � �B (i ) dV �
Z

� ( i )
n

� ' (i ) � �T (i ) dV .

(62)

Using a suitable test space for the second order PDE in (5), e.g. given by

Vs;(i )
cr;2 = f s(i ) : s(i )(X (i ) ; t) 2 H 1(B(i )

0 )js(i ) = 1 on � (i )
cr g, (63)

Vt; ( i )
cr;2 = f � s(i ) : � s(i )(X (i )) 2 H 1(B(i )

0 )j� s(i ) = 0 on � (i )
cr g, (64)

where� (i )
cr denotes a sharp crack insideB(i )

0 and thus can be regarded as Dirichlet condition,
yields the weak form

G(i )
cr;2 :=

G(i )
c

2l (i )

Z

B ( i )
0

�
� s(i ) (s(i ) +

2l (i )

G(i )
c

H (i )) + 4 ( l (i ))2 Grad(� s(i )) � Grad(s(i ))
�

dV . (65)

For the fourth order PDE given in (7), a test space which provides higher continuity is needed,
such as

Vs;(i )
cr;4 = f s(i ) : s(i )(X (i ) ; t) 2 H 2(B(i )

0 )js(i ) = 1 on � (i )
cr g, (66)

Vt; ( i )
cr;4 = f � s(i ) : � s(i )(X (i )) 2 H 2(B(i )

0 )j� s(i ) = 0 on � (i )
cr g. (67)

Accordingly, the weak form is obtained by

G(i )
cr;4 :=

G(i )
c

4l (i )

Z

B( i )
0

(� s(i ) (s(i ) +
4l (i )

G(i )
c

H (i )) + 2 ( l (i ))2 Grad(� s(i )) � Grad(s(i ))

+ ( l (i ))4 � � s(i ) � � s(i )) dV . (68)

Using Lagrange multipliers for the incorporation of the contact conditions, the virtual work of
contact yields

�Gco = �G� N
co + �G'

co , (69)

3Note that the test function� ' ( i ) can also be interpreted as virtual displacement.
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where �G� N
co := � � N

�Vco and �G'
co := � '

�Vco have been introduced. Eventually, the governing
equations are obtained as follows4

X

i

G(i )
dyn + G(i )

int,ext + �G'
co = 0; 8� ' (i ) 2 V (i )

t , (70)

X

i

G(i )
cr;2=4 = 0; 8� s(i ) 2 V (i )

cr;2=4 , (71)

�G� N
co = 0; 8�� N 2 R . (72)

Note, the abbreviation 2/4 indicates that either the virtual work of the second order phase-�eld
equation (65) or the virtual work of the fourth order phase-�eld equation (68) can be taken into
account.

3 Spatial discretization

To perform the spatial discretization for the numerical solution of the variational formulation
each domain is subdivided into a �nite set of non-overlapping elements

B(i ) � B (i );h =
n ( i )

el[

e

B(i );h;e . (73)

For the second order phase-�eld model standard FEA withC0 continuous shape functions is
suf�cient, whereas for the fourth order phase-�eld model weneed to applyC1 continuous shape
functions which we accomplish using IGA.

Standard FEA – Allen-Cahn phase-�eld model For the second order phase-�eld model
we are able to use standard Lagrangian shape functions and isoparametric as well as Bubnov-
Galerkin FE interpolations. Accordingly, solution and test functions are approximated by

' (i );h = LA q(i )
A ; � ' (i );h = LA � q(i )

A ; X (i );h = LA X (i )
A , (74)

s(i );h = LA s(i )
A ; � s(i );h = LA � s(i )

A ; 8A 2 ! = f 1; : : : ; nnodeg. (75)

HereL (i )
A (X (i )) : B0 ! R denote Lagrangian shape functions. Inserting these approximations

into the weak forms given in (70)–(72) yields the semi-discrete virtual work
X

i

� q(i )
A � (M (i )

AB •q(i )
B + F (i );int

A � F (i );ext
A ) + �G' ;h

co = 0 , (76)

X

i

� s(i )
A

Z

B( i )
0

(L (i )
A H (i );h +

G(i )
c

l (i )
L (i )

A L (i )
B s(i )

B + 4 G(i )
c l (i )r L (i )

A � r L (i )
B s(i )

B ) dV = 0 , (77)

�G� N;h
co = 0 . (78)

Here,M (i )
AB =

R
B0

� 0L (i )
A L (i )

B dV are the coef�cients of the consistent mass matrix. Further-

more, F (i );int
A , F (i );ext

A denote the nodal internal and external force vectors. Note the semi-
discrete contact contributions�G' ;h

co and �G� N;h
co are dealt with in the very last paragraph of this

section.
4Strictly speaking, the underlying virtual work (38) is not an equality but an inequality equation, due to the

contact constraints (34)-(36) involved. As already mentioned, here and in what follows it is assumed that the
contact interface is known using e.g. an active set strategy, regularization techniques or others. Based on this
assumption the virtual work can be written as an equality (see e.g. [37, 35]).
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0 1 2 3 4
0

1

C � 1 C � 1C2 C1 C0

Figure 6: Continuity of cubic B-splines with knot vector� = [0 0 0 0 1 2 2 3 3 3 4 4 4 4].

IGA – Cahn-Hilliard phase-�eld model For the higher order Cahn-Hilliard phase-�eld model
we use an IGA approach to satisfy the demand forC1 continuity. For the approximation we use
a linear combination of suitable splines and correspondingsolution and test control variables

' (i );h = R(i )
A q(i )

A ; � ' (i );h = R(i )
A � q(i )

A ; s(i );h = R(i )
A s(i )

A ; � s(i );h = R(i )
A � s(i )

A ;

8A 2 ! = f 1; : : : ; nnodeg. (79)

HereR(i )
A (X (i )) : B0 ! R denote multivariate NURBS with tensor product structure

R(i )
A = R(i );i

p (� (i )) =
� d

l=1 N (i )
i l ;pl

(� (i );l ) w(i )
i lP

î � d
l=1 N (i )

î l ;pl
(� (i );l ) w(i )

î l

, (80)

Thereini = [ i 1; :::; id] denote the multi index of the B-splinesN (i )
i l ;pl

with multi index p =
[p1; :::; pd] for the respective order of each parametric direction. Moreover, wi denote the
NURBS weights. A comprehensive overview for IGA can be found in[6]. Note, for global
C1-continuity, which is required for the Cahn-Hilliard phase-�eld model, at least quadratic B-
splines need to be provided. B-splines are recursively de�ned. For orderpl = 0 we have

N (i )
i l ;pl =0 (� (i );l ) =

�
1 if � (i );l

i l
� � (i );l < � (i );l

i l +1

0 otherwise
, (81)

whereas for orderpl > 0 the corresponding B-spline can be computed with

N (i )
i l ;pl

(� (i );l ) =
� (i );l � � (i );l

i l

� (i );l
i l + pl

� � (i );l
i l

N (i )
i l ;p� 1(� (i );l ) +

� (i );l
i l + pl +1 � � (i );l

� (i );l
i l + pl +1 � � (i );l

i l +1

N (i )
i l +1 ;p� 1(� (i );l ) , (82)

where problem speci�c knot vectors need to be provided

� (i );l = [ � (i );l
1 ; : : : ; � (i );l

n l + pl +1 ] . (83)
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Figure 7: Hierarchical level 1 subdivision of 1D linear, cubic and quintic B-splines (black: original spline/parent,
colored: 're�ned' splines/children).

With the knot vectors both the �nite element mesh as well as the continuity is determined (see
Figure 6). B-splines and NURBS basis functions are local linearindependent

X

A

cA R(i )
A (� (i )) = 0 , cA = 0 . (84)

Furthermore the partition of unity is ful�lled
X

A

R(i )
A (� (i )) = 1 . (85)

Another property is that B-splines as well as NURBS only have minimal support. In general
B-splines and NURBS are non-interpolatory but can be constructed that they are. B-splines and
NURBS basis functions are always positive, i.e.

R(i )
A (� (i )) > 0. (86)

As re�nement techniques h-re�nement e.g. achieved via knotinsertion leads to expensive global
re�nement. For local re�nement techniques there mainly exists T-splines, which are the IGA
representation of hanging nodes and the concept of hierarchical re�nement which we want to
apply subsequently. For hierarchical B-splines the basis functions are subdivided instead of
the elements. In particular the B-spline to be re�ned (parent) is replaced by using a linear
combination of copied and scaled version of the original B-spline (children) via

B (i );A = B (i );i
p (� (i )) =

p+ 1X

j = 0

dY

l=1

2� pl

�
pl + 1

j l

�
N (i )

i l ;pl
(2� (i );l � j (i )

l h(i )
l � � (i );l

i l
) . (87)

Thereinhl refers to the coarse level element length in the parameter space. The re�nement
procedure for one level is shown for the one-dimensional case in Figure 7 and for the two-
dimensional case in Figure 8. Next we rewrite the hierarchical B-splines given in equation (87)
approach by using the subdivision matrixS (i ) , S(i )

i ;j which contains the scaling. A single B-
spline on levelk can then be replaced by its children, which correspond to B-splines on level
k + 1

B (i );i ;k
p (� (i )) =

p+ 1X

j = 0

S(i )
i ;j B (i );2i � 1+ j ;k+1

p (� (i )) . (88)
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Figure 8: Subdivision of a 2D quartic B-spline (left: parent, right: children).

This is only valid for uniform knot vectors (for non-uniformknot vectors, see Sabin [32]).
Afterwards, the control mesh needs to be extended by

q(i );k+1
A = S (i );T

A q(i );k
A ; s(i );k+1

A = S (i );T

A s(i );k
A , (89)

whereq(i );k+1
A represents a set of new coordinates. The extension of B-splines to NURBS is

given by

R(i );k
A = R(i );i ;k

p (� (i )) =

p+ 1P

j = 0
S(i )

i ;j B (i );2i � 1+ j ;k+1
p (� (i ))w(i );k+1

2i � 1+ j

P

i

p+ 1P

j = 0
Si ;j B (i );2i � 1+ j ;k+1

p (� (i ))w(i );k+1
2i � 1+ j

. (90)

The partition of unity as well as the continuity are still satis�ed. For further details see [29].
Insertion of the polynomial approximations into the virtual work of the coupled phase-�eld
system yields

X

i

� q(i )
A � ( ~M (i )

AB •q(i )
B + ~F

(i );int
A � ~F

(i );ext
A ) + G' ;h

co = 0 , (91)

X

i

� s(i )
A

Z

B( i )
0

(R(i )
A H (i );h +

G(i )
c

l (i )
R(i )

A R(i )
B s(i )

B + 4 G(i )
c l (i )r R(i )

A � r R(i )
B s(i )

B ) dV = 0 , (92)

�G� N;h
co = 0 . (93)

Here, ~M (i )
AB =

R
B0

� 0R(i )
A R(i )

B dV are the coef�cients of the consistent mass matrix. Further-

more, ~F
(i );int
A , ~F

(i );ext
A denote the nodal internal and external force vectors, approximated with

HNURBS. As constitutive relations the discrete second Piola-Kirchhoff stress tensor as well as
the driving force for the phase-�eld

S (i );h
e = 2 D 1	 (i )

e (C (i );h; s(i );h); H (i );h = D 2	 (i )
e (C (i );h; s(i );h) , (94)

need to be provided.
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Mortar contact element For the discretization of the contact interface we aim at a Mortar
approach. Herein, we restrict our consideration to the IGA case for the Lagrange discretized
case we refer to the Mortar method given in [15]. In order to simplify the approach without
violation of the requiredC1 continuity of the primal space we use linear approximation of the
dual space as has been proposed in [17, 7]. Accordingly, the contact traction is approximated
as follows

t (1) ;h
co =

X

A2 ~! (1)

LA � A ; � t (1) ;h
co =

X

A2 ~! (1)

LA � � A . (95)

Therein~! (1) = [ ~q1; : : : ; ~qnsurf
] denotesnsurf nodes on the physical contact boundary
 (1)

co . More-

over,LA : � (1)
co ! R are(d � 1)-dimensional shape functions associated with nodesA 2 ~! (1) .

It is important to remark, that the discrete Lagrange multiplier space for re�ned contact regions
can provide possible singularities (for more informationssee [16]). Eventually, we are able to
state the semi-discrete contact contribution

�G' ;h
co = � N;A n �

h
nAB � q(1)

B � nAC � q(2)
C

i
+ � N;A � n �

h
nAB q(1)

B � nAC q(2)
C

i
. (96)

Therein the nodal normal traction� N;A is employed. Furthermore, the Mortar integrals

nAB =
Z

�� (1) ;h
co

LA (� (1) )RB (� (1) ) dA; (97)

nAC =
Z

�� (1) ;h
co

LA (� (1) )RC (� (2) ) dA , (98)

are comprised of the above introduced linear shape functionsLA (� (1) ) for the dual and quadratic
shape functionsRB (� (1) ), RC (� (2) ) for the primal space. In order to be able to integrate the
contact contributions we provide an isoparametric transformation

� (i );h(� ) =
3X

K =1

MK (� )� (i )
K , (99)

where we make use of bilinear, triangular shape functionsMK . The segment-wise Mortar
integrals are then given by

n�� =
Z

4

L � (� (1) ;h(� ))R� (� (1) ;h(� ))Jseg d� , (100)

n�� =
Z

4

L � (� (1) ;h(� ))R� (� (2) ;h(� ))Jseg d� . (101)

ThereinJseg denotes the segment-wise Jacobian. Using the tangential vectors in the reference
con�gurationA � (� ) = RA ;� (� )qA the segment-wise Jacobian can be computed by

Jseg = kA 1(� (1) ;h(� )) � A 2(� (1) ;h(� ))kdet( D� (� )) . (102)

Eventually the segment-wise contact contributions needs to be assembled into the global system.
For a more detailed explanation of the Mortar method, especially the technically demanding
segmentation and the assembly see [14, 15, 17, 7].
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4 Temporal discretization

For the temporal discretization we subdivide the time interval I of interest intoN equidistant
increments� t = tn+1 � tn, as follows

I = [0; T] =
N � 1[

n=0

[tn ; tn+1 ] , (103)

where in the following the variablesqn
A , sn

A at timetn are assumed to be known, whereas the
variablesqn+1

A , sn+1
A at timetn+1 are searched. Then we employ a second order accurate one

step midpoint-type discretization. In particular the fully discrete equations

X

i

� q(i )
A � ( ~M (i )

AB
q(i );n+1

B � q(i );n
B

� t
+

Z

B( i )
0

r R(i )
A (X (i )) � S (i );n;n +1

e r R(i )
B (X (i )) dV q

(i );n+ 1
2

B

�
Z

B( i )
0

~F
(i );ext;n+ 1

2
A dV) + G' ;n;n +1

co = 0 , (104)

X

i

� s(i )
A

Z

B( i )
0

R(i )
A H (i );n+ 1

2 +
Gc

2l
R(i )

A R(i )
B s

(i );n+ 1
2

B + Gc l r R(i )
A � r R(i )

B s
(i );n+ 1

2
B

+
Gc l3

2
� R(i )

A � R(i )
B s

(i );n+ 1
2

B dV = 0 , (105)

G� N;n;n +1
co = 0 , (106)

are obtained. In order to obtain a structure preserving timeintegration scheme, an algorithmic
stress computation

S (i );n;n +1
e = 2

@	 (i );n+ 1
2

@C (i );h

+ 2
	 (i );n+1

e � 	 (i );n
e + G(i )

c (
 (i );n+1 � 
 (i );n ) � @	
( i ) ;n + 1

2
e

@C ( i ) ;h : � C (i );h

� C (i );h : � C (i );h
� C (i );h , (107)

using the concept of the discrete gradient is employed. Notethat the concept of the discrete
gradient exhibits superior stability and robustness properties even for large time steps. The
fully discrete contact contributions can be calculated by

G' ;n;n +1
co = � n;n +1

A n n+ 1
2 �

h
nn

AB � q(1)
B � nn

AC � q(2)
C

i
+ �� A � n n+ 1

2 �
h
nn

AB q(1)
B � nn

AC q(2)
C

i
,

G� N;n;n +1
co = �� A n n+ 1

2 �
h
nn

AB q(1)
B � nn

AC q(2)
C

i
.

5 Numerical examples

In order to show the enhanced properties of the proposed methods two representative numeri-
cal examples are examined. In particular the proposed hierarchical NURBS based discretization
with the Mortar contact method and the phase-�eld approach to fracture are investigated in the
examples, where local re�nements are prede�ned. Note, for the simple geometries employed,
all NURBS weights are chosen equal to one, such that the NURBS can be considered as B-
splines.
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Figure 9: Patch test with two level local re�nement of the upper body, where reference (left) and current con�gu-
ration (right) are shown.

Patch test As �rst example we investigate the local re�nement with the proposed IGA ap-
proach within a patch test (cf. [16]). The initial con�guration is depicted in Figure 9. As usual
for patch tests, the lower block is clamped, such that the body is able to expand in tangential
directions. Furthermore, we apply a Neumann boundary to theupper surface on the upper body
with constant pressure �eld of� = � 1:3e3.

We use quadratic B-splines and apply a two level re�nement forthe upper body and no local
re�nement for the lower body, such that we obtain non-conforming �nite element meshes in
contact. Large areas between coarse and fully re�ned elements can be observed which is due to
the support of the splines. The upper body consists of4� 4� 4 elements on level 0. In total the
upper body consists of 2192 elements with 10224 degrees of freedom (DOFs). The lower body
consists of5� 5� 5 elements on level 0. The lower body consists of 125 elements with in total
1029 DOFs.

A compressible neo-Hookean material model is employed withLamé parameters� (i ) =
1298:1 and� (i ) = 865:3846, which correspond to a Young's modulus ofE (i ) = 2250 and a
Poisson ratio of� (i ) = 0:3, respectively. The corresponding strain energy density function is
given by

	 (i )(C (i )) =
� (i )

2

�
tr( C (i )) � 3

�
+

� (i )

2

�
ln(J (i ))

� 2
� � (i ) ln(J (i )) , (108)

whereJ (i ) = det( F (i )). We are interested in a quasi-static solution, accordinglythe density is
neglected for both bodies.

We obtain a uniform stress distribution as can be observed inFigure 10. The corresponding
displacement solution is shown in Figure 9. Accordingly, the Mortar method with higher order
hierarchical NURBS approach and local re�nement passes the patch test (cf. [16]).
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Figure 10: Von Mises stress distribution.

Bending contact fracture problem The next example deals with the contact of an elastic
block with an elastic plate. Note, this example is taken from[16]. The initial con�guration is
depicted in Figure 11. As can be observed, the plate is clamped whereas the upper boundary of
the block is moved downwards with a constant increment size of � u = 5e-3e3 for the �rst 200
steps and� u = 2:5 � 10� 3 e3 for the remaining steps.

The plate is of size20 � 30 � 2 , whereas the block is of size4 � 4 � 4. The center point
of the plate is placed at

�
0 15 1

�
and the center point of the block is placed at

�
0 26 4:5

�
.

The block consists of4 � 4 � 4 elements and the plate of13 � 19 � 2 elements on level 0.
Additionally, we apply a prede�ned local hierarchical re�nement to account for the physical
events (contact and fracture). Therefore the contact zone of the block is locally re�ned with one
level. The plate is locally re�ned using one level re�nementin the area of the expected contact
boundary and two level re�ned at the clamping zone (see Figure 11). In total 12948 elements
with overall 72912 DOFs and minimal element size ofhmin = 0:0769are employed.

Both bodies are modeled using the compressible neo-Hookean material model given in (108).
The Laḿe parameters of the plate are chosen as� (1) = 1:1538e7 and� (1) = 7:6923e6, which

Figure 11: Reference con�guration of bending contact fracture problem.
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Figure 12: Final phase-�eld (left) and� 22 stress (right) result of bending contact fracture problem.

correspond to a Young's modulus ofE (1) = 2e7 and a Poisson ratio of� (1) = 0:3. The Laḿe
parameters of the block are chosen as� (2) = 2:8846e4 and� (2) = 1:9231e4, which correspond
to a Young's modulus ofE (2) = 5e4 and a Poisson ratio of� (2) = 0:3. Accordingly, we expect
no locking behavior and there is no need for an advanced �niteelement model. For the plate
the phase-�eld parameters are chosen asGc = 2:7 � e2 andl = 0:1538.

The �nal phase-�eld result as well as the �nal� 22 stress distribution are depicted in Figure
12. As can be observed the plate ripped out of the clamping zone, such that the plate becomes
statically undetermined. Accordingly, the problem can notbe solved anymore with the consid-
ered quasi-static setup. Note, a more detailed explanationand examination of this example is
given in [16].

6 CONCLUSIONS

The underlying contribution introduces a large deformation framework to describe both con-
tact and fracture. For the former the variational consistent Mortar method, whereas for the latter
the phase-�eld method is used. In particular an accurate andsmooth fourth order phase-�eld
model is employed which requires globalC1 continuity. Therefore an existing IGA framework
with a sophisticated Mortar method for the contact boundaries is combined. With the proposed
NURBS-IGA approach a wide range of curved geometries can be approximated exactly. More-
over, an hierarchical re�nement scheme is employed which does not violate the partition of
unity. This allows the local re�nement of the bodies in orderto account for different physical
events like e.g. contact or fracture.

In total an accurate and ef�cient higher order method is proposed for computational modeling
of large deformation Mortar contact and phase-�eld fracture problems.
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