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Abstract. The present contribution provides a comprehensive contipatd framework for
large deformational contact and phase-fracture analysid & based on the recently appeared
publication [16]. A phase- eld approach to fracture allowarfthe ef cient numerical treatment
of complex fracture patterns for three dimensional proldeRecently, the fracture phase- eld
approach has been extended to nite deformations (seke [@8jrfore details). In a nutshell,
the phase- eld approach relies on a regularization of theugh(fracture-) interface. Besides
a second-order Allen-Cahn phase- eld model, a more accufateth-order Cahn-Hilliard
phase- eld model is considered as regularization funcéilonFor the former standard nite
element analysis (FEA) is suf cient. The latter requireslggl C* continuity (see(]B]), for
which we provide a suitable isogeometric analysis (IGA) fraori. Furthermore, to account
for different local physical phenomena, like the contactezahe fracture region or stress peak
areas, a newly developed hierarchical re nement scheme @@rad (see [19] for more de-
tails). For the numerical treatment of the contact boundanve use the variational consistent
Mortar method. The Mortar method passes the patch-test@kdawn to be the most accurate
numerical contact method. It can be extended, in a stragivdrd manner, to transient phase-
eld fracture problems. The performance of the proposedio@s will be examined in several
representative numerical examples.
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1 INTRODUCTION

The underlying contribution deals with large deformatior@ntinuum bodies which are as-
sumed to contact each other and are each able to fracturie wathsidered simulation time. For
the spatial discretization a modern isogeometric analy&ig) framework with local re ne-
ment scheme and the variational consistent Mortar contathad are employed. A structure
preserving integrator is provided for dynamic problemste\ithe work is based on the recently
appeared publication [16].

The phase- eld method has originally been used to modelg@kaparation. In the last two
decades it furthermore has been used to regularize sharsqisee e.gl [26, 28, 24]). Besides
the displacements the phase- eld parametées introduced as primary unknown. This phase-
eld parameter is driven by a suitable phase- eld parti#faetential equation (PDE), which
is used to regularize the sharp crack interface. In thealitee different PDE's are discussed
(see e.q.l[3,_34]). We use a second and a fourth order PDE.a$gamed, that the crack
initiates or growths by attainment of a local critical energlease rate (see e.al [9,[5, 26]).
It is further possible to give a variational formulation fine crack propagation problem (see
e.g. [23,13/12]). The phase-fracture method has beenamelin the small strain regime
(see e.qg.[26, 28]). Recently, the phase-fracture methothéers extended to the full nonlinear
regime (see [18]) by using a multiplicative split of the def@tion gradient into compressive
and tensile parts (cfl_[27]). It is important to remark, tkiaé numerical treatment of phase-
eld approaches to fracture is less sophisticated thanratbenputational crack propagation
techniques for modeling sharp cracks.

In the last three decades, computational modeling of comiachanics has been intensi ed
(see[[37] 25] for comprehensive overviews). Besides ti@ualinodal based contact methods,
e.g. like the node-to-surface method, the variational istest Mortar method has been well-
established (see e.g. [31,/15] 30/ 36]). In a recent pulitgsee([7]) we applied the Mortar
method for thermo-mechanical frictional contact problefberein we used an isogeometric
analysis framework, which allows for higher order appraaiions with arbitrary adjustable
continuity. Here and in our recent publication [16] we extéine isogeometric analysis frame-
work with the phase- eld fracture approach. Note, for higheder phase- eld equations stan-
dardC° Lagrangian shape functions are not suf cient anymore.

Concerning the spatial discretization both the contact zeneell as the fracture zone de-
mand for re ned meshes. Higher order spatial discretizatitethods are more accurate and
reduce the computational demand (see [6] for a comprelepserview). Therefore we make
use of an IGA framework. To be speci c we use non-uniformaaél B-splines (NURBS),
for which the continuity is adjustable by construction o# ghape functions. For local re ne-
ment mainly T-splines and hierarchical re nement schens&lbeen used. The application of
T-Splines have some drawbacks (see [1] for details), swatiwtb employ an hierarchical re ne-
ment scheme (see![8,133, 4]). Hierarchical re nement pracesireplace B-spline and NURBS
basis functions on the re ned level by a linear combinatidrscaled and copied versions of
themselves, maintaining the required continuity (see[B2)/29]). In particular, we aim at an
hierarchical re nement formulation which maintains thetgeon of unity and is suitable to be
adapted to traditional contact mechanical formulations.

An outline of the underlying contribution is as follows. Thentinuum mechanical basis
with application to contact and fracture mechanics and tneesponding governing equations
are dealt with in Sectiohl2. Standard FEA and IGA discretirabf the weak form follows
in SectiorB. Furthermore, a modern Mortar contact apprealtioe given in Section 3. The
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Figure 1: Typical reference (left) and current (right) cgarations of bodieB(") with crack phase- eld.

temporal discretization of the semi-discrete equatioreoigred in Sectionl4. Representative
numerical examples are given in Section 5. Eventually, kmiens are drawn in Sectigh 6.

2 Governing equations

The underlying contribution deals with continuum bodB8 2 RY, whered 2 f 1;2; 3g.
For ease of exposition we restrict the consideration to aldady problem, i.ei = 1;2, de-
picted in Figurd L. The bodies are assumed to contact eaeh wtthin timet 2 1 =[0; T],
whereT 2 R*. The bodieB(") are presented in its reference con guratiagu) and its current
con guration Bt(i), accordingly nite deformations are incorporated. Theerehce con gura-
tion can be addressed with material coordinaéd 2 RY and corresponding material basis
E A, whereA = 1;:::;d. Moreover, the current con guration is given by the bijgetmapping
* M :B{) 11 RY%and is subject to spatial basig, wherea = 1;:::; d.

In order to model fracture the smooth phase- eld paramsfer: Bg) [ ! [0;1] is
introduced. s can be regarded as damage variable and physically repsesdrdmogenized
macroscopic crack of micro-cracks (seel[28]).

The mechanical boundary® := @) 2 R * (depicted in Figuréll) is decomposed into
a Dirichlet boundary {’ ®, a Neumann boundary{’ () and a contact boundary

& O accordingly

0= O O O (1)
The boundaries may not overlap each other, such that

D= Q= 9 Q= (2)
This has to be valid for the spatial counterparts of the batied

0= 00, ®



M. Franke, C. Hesch and M. Dittmann

1is(X) . fs(X)

x /// \\\ x
—_— — Z iy —
I I

Figure 2: 1D sharp (left) and phase- eld regularized (rjgivack.

as well, where the abbreviation)(is used to refer to the different boundaries. In addition to
the mechanical boundaries a crack Dirichlet boundé\%/de nes a new internal boundary of
corresponding body and can be initialized within the bodisls other phase- eld boundaries
can be regarded as Neumann boundaries. For the two- eldgrothe displacement as well as
the scalar-valued phase- eld parameter are the primaryonwks

[ ;s]2 R¥Y . (4)

Phase- eld contribution The aforementioned crack phase- eld paramstkas two bounds,

the unbroken state wite = 0 and the fully broken state with = 1 (see [28] 18]). Herein,

we assume that crack initiates or continues only in tenglie y attainment of a critical local
fracture energy density, given lﬁé'), which is related to the critical Grif th-type fracture en-
ergy (seel[11, 21, 28]). The sharp crack ¢ a 1-dimensional manifold. To avoid the dif cult

modeling of sharp cracks we regularize the crack zone withitalsle crack density functional

8., such that we are able to integrate overdhgimensional domain
z Z
G A GD Gav=d) G,

Thereinn denotes the order of the phase- eld model (ci. [3]5 In![28%econd order and
in [3|, [34] a fourth order differential equation have beenpmsed (see Figuré 3 for the 1D
analytical solution). The former is given by

s 4002 =0, (5)
with the corresponding functional
Z
. 1 _ . . ,
F&h = 5 (2 +a(10)2r s v s0)av, (6)
By

whereas the latter is given by
s 2(|(i))2 s 4+ ( |(i))4 s =po. (7)

The corresponding functional denotes

1t is important to remark, that it does not exist a natural RBEodel the crack density functional (for more
informations see [34])
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Figure 3: Analytical solution of 1D second order phase- @) s(x) = e (left) and fourth order phase- eld
@s(x)= e (1L+ 1) with different length scale parameters.

Z
Fo -1

1 (1)y2 (Y2 &) (1) (l(i))4 (i) (i)
e = 5 )(é(s)+(l )’rs’ rs +T st s)ydv. (8)

B

In the above equationl$’ denotes the length scale parameter, which determines thte i
the regularization zone (see Figlide 2). The length scalenpater may be treated as material
parameter and should be chosen as

(i) 1©
h <7, (9)

whereh() denotes the smallest nite element size (for more detaits[8€]). Note, for the
fourth order approacH) can be chosen even smaller as suggested]by (9) (seé €.gTHES])
regularized crack surface topologies are then constrlhI;te(Sr?2=4 = o F é;;)2=4 as proposed in
[28]. Accordingly, for [5) andL{[7), we obtain

Z

. 1 _ . . .

o= 5, (D?2+a(10)?r sO ¢ Dy av, (10)
z%

Ga= gy, (02421021 s SO e 10y O ydv, (1)
BI

0

respectively. As can be observed in Figlte 3, the fourthropth@se- eld approach has two
advantages with respect to the second order phase- eldappr The fourth order phase- eld
approach does not contain non-differentiable areas anleiuby using the same length scale
parameter the transition zone is smaller. Moreover, in tiraarical treatment better accuracy
and convergence rates of the solution have been obsene|B{keFor the second order phase-
eld model C°-continuity, whereas for the fourth order mod®!-continuity is required.

Bulk contribution  The potential of the bulk is given by
Z

Vi = M dv, (12)

0]
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where () denotes the strain energy density function of bodyhe corresponding balance of
linear momentum is given by

Div(P )+ BY = {1+, (13)
whereP @ : By’ 11 RY ¢ denotes the rst Piola-Kirchhoff stress tens@,’ 2 R
denotes the prescribed body force density aﬁd: B(()') | ! R denotes the mass density.

Additionally, an arbitrary hyperelastic material law cam incorporated with a suitable strain
tensor. The symmetric right Cauchy-Green strain tensotisdnced by

chOh=fFOpOT (14)

using the deformation gradieft®” : B’ 11  RY 9. As already mentioned, we assume that
only local tension rather than local compression is resipts$or crack growth. Accordingly,
we aim at an anisotropic description, such that we need tbteplkinematic into tension and
compressidﬁ Therefore we employ an eigendecomposition of the defoamatradient, which
yields

X .
FO = Dal Al (15)
a=1
where the deformation gradient is represented in its mmtretchesg) and spatial and mate-
rial directionsa$’; A 0 respectively. As proposed by [18], an operator split ofdaformation
gradient is performed, such that
xd
FO = g0 g

g); g);+ ag) Ag)_ (16)

a=1
Therein the superscripted denotes

SRy
= . (17)

Accordingly, the principal strains are decomposed intsiterand compressive components.
Furthermore, an anisotropic split of the principal stretcis accomplished, which yields

(i);
a

FO=FOFD (18)
= :
where the fracture sensitive and insensitive parts aredntred as follows

O _ % eyt g 0 e i
FiV= (D" a8, Ay FP = (D7) Dha, A (19)

a=1 a=1

Therein the degradation functiggs®)) =1 sV has been introduced. Note, in the linear case
an additive split has been proposed byi [26] and can be stated a

OOy ~Oct-sy=(gsP)y+ k) D¢ Oy+ & 0y gsy=@ D)2,
(20)

°Note, a less realistic but more simple choice would be amdpat description.

6
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Figure 4: Parametrization of contact surfaé@ .

Note further, that a more sophisticated cubic degradationtfon
gs™=al @@ s @ s 2@ s)*+3@ s a0, (21

is discussed in[[2] and can easily be incorporated. &or= 2 the quadratic functional in
equation [(2D) is recovered. Using the above coupled kinemite Helmholtz free energy
depends besides the strain also on the phase- eld, such that

Mechyr  Orehy= OrEhshy= O (22)
Accordingly, the elastic part of bulk potential {12) can betien as
Z

Vike= . Dadv. (23)
By
Contact contribution  The underlying contact description is based on the desmnigiven in

[10]. Note, as mentioned earlier, the phase- eld and theaxrboundaries do not depend on
each other. As can be observed in Fidure 4 we introduce adocekctive coordinate system.

The closest point projection 6f® (X ®;t) 2 &) to opposing surface? vields
k DX Dty * @)kl min . (24)
Therein' @ = ' @ (X @ (X ®:t) denotes the orthogonal projected point t (X ©:t).

The local convective coordinate system is parametrized wonvective coordinates, 2
f 1, 2g such that

XOXOy:=x@(), ' @.=' @y, (25)

Therein =[ 1; 2] denotes the convective coordinates of the projected paohtsacomputed
via equation[(24) e.g. with Newton's method. The conveciasidare calculated with

a ="'9@(;. (26)
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Note that the above basis are in general not orthonormaloawgly, it is important to give
the metric for the local coordinate system

m =a a. 27)
The gap vector is given by (see Figlte 4)
g=" o @ (28)

Furthermore, the unit outward normal to the surfa& at point'’ @ is de ned by

a; az
= 29
: kal azk ( )

With the above the scalar-valued gap function can be cordpide
="' '@ n. (30)
Considering the balance of linear momentum at the contactdany, we obtain
tOX @ty dA® = t@(X D (X D);t) dA@ . (31)

Therein, the involved contact traction can be splitted atoormal and a tangential part as
follows

tOX ity = ty+tr; tr n=0. (32)
Moreover, the normal contact traction is given by
ty =t = tyn. (33)

Frictionless contact is incorporated by using the wellsknd<arush-Kuhn-Tucker conditions,
given by

gN 01 (34)
ty O, (35)
tngv=0. (36)

The Karush-Kuhn-Tucker conditions are comprised of theengtrability condition[(34), the
condition which only allows compressive tractions|(35) #relcomplementarity condition (B6).
The Karush-Kuhn-Tucker conditions are shown in Fidure Shioth the penalty method and
Lagrange multipliers. Note, the framework is readily exgevie to incorporate any frictional
constitutive law (e.g. Coulomb friction), but is omitted &ir for convenience, i.ér = 0.
Within the computational treatment of contact, we subsetiy@pply the active set strategy to
obtain an active contact boundar)Qo) from the potential contact boundar)&ig. In particular
the inequalities given ir_(34)-(86) are implemented usherbax-operator (see [20] for more
informations) as follows

N= N maX(O; N C N) =0. (37)
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admissible region

On

Figure 5: Karush-Kuhn-Tucker conditions for frictionlesgntact (solid line: exact enforcement, dotted line:
penalty regularization with penalty parametg}.

Therein \ and y denote the Lagrange multiplier and corresponding comdireespectively.
Note \ := ty denotes the exact contact traction ang := gy the gap function. Moreover,
within the active set strategy2 R* is a constant parameter, which is suitable to in uence the
convergence of Newton's method but does not in uence thetamt enforcement. Eventually,
assuming active contact and using equation (31), we are¢@bi¢roduce the contact potential
employing only one integral expression, such that

z
vii= (@ @ @ daA® =y, (38)

i=1 o
co

Initial boundary value problem In the following the contact boundaries are assumed to be
known. Collecting all introduced contributions, yields

aug X (i) (i)
v = Vbulk;e+ Vcr;2:4 + Voo (39)

Regarding transient problems the kinetic energy is de ned by

Xlz

- 0 0 gy (40)

2 B()

With the Lagrange functiondl = T  V29at hand, the above is used to employ Hamilton's
principal, given by

Z,,

S = Ldi= (T Va9 dt=0. (41)

t1 t1
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Equation [(411) leads to the Euler-Lagrange equations. Aliegly, the initial boundary value
problem (IBVP), for the coupled system with fourth order mhasdd model, can be written as

Div(FOsM+B®  Oe® =0 inBYst2r, (42)
HO + %(sﬁ 2(0M2 O 41y My=0 inBY8t21, (43)
'0=+0 on Psr21, (44

PON®D =T on Ogt21, (45)

on 0 on 8t21, (46)

tn 0 on 8t21 , 47)

tnovn =0 on 8t21 , (48)

s=1 on 4g8t21, (49)

sV=0 on Mgt21, (50)

r™M* s 200280y NO=0 on Mgt21, (51)
'O=0="7 inBY, (52)

' O=0="_1 inBf, (53)

s(t=0)= s inBY. (54)

The above is supplemented by the constitutive equations
s =2D; V(C®;sM); HO=D, P(C;sV), (55)

which denote the second Piola-Kirchhoff stress tensor heditiving force of the phase- eld.
Equations[(44)E(45) are the prescribed mechanical Deicdmhd Neumann boundary conditions,
whereas equation§ (49)-(51) denote the phase- eld Deichhd Neumann boundary condi-
tions. Furthermore equatioris {52)-(54) denote the ingttadditions. Note, in order to obtain
the IBVP for the second order phase- eld model, equatioh (#2ds to be exchanged by

HO + %(s(') 40992 s0y=0 in BY. (56)
Furthermore, equationis (49) and](50) need to be exchangedrajtion
rs=0 on Wgt21 . (57)

Note that we do not enforcg 0. Accordingly, within our formulation, the phase- eld may
be healed except the material is fully broken, $.e. 1, which will be enforced with a Dirichlet
type mechanism (see next paragraph for more informations).

Virtual work  Analogously, we are able to collect the virtual work conitibns, such that

6= o+ a0+ G

dyn int,ext cr;2=4

+ Geo. (58)
i

To this end the displacement solution space is de ned by

VO = £ O Ox Oty 2 HYBY) DX Osty=" O on g, (59)

10
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such that the solution function” is element of the Sobolev spaldé which includes the space
of square-integrable functions and square-integrabledesivatives. Furthermore the solution
function is required to satisfy the Dirichlet boundary citiseh. The space of test functions with
the corresponding test functioh @ is postulated &s

VO = O OOy 2B+ O(x D)= 0on g. (60)

Accordingly, the test-function vanishes at the Dirichleuhdary. Using standard techniques,
the contributions to the weak form are obtained as follows

Z

Gan=_, " +0 oo, (61)

| z Pz | Z |
GUei= SO FO Grad(' Wydv @ BOav 0 7Oy,

’ Bé') Bgl) E]I)
(62)
Using a suitable test space for the second order PDE in )gien by

Ve = 150 s (x D;1) 2 HYB{)jsV =1 on O, (63)
Vg = f s9: sOx ®)2HY B s =0 on g, (64)

where ) denotes a sharp crack insi&éi) and thus can be regarded as Dirichlet condition,

yields the weak form

: R T (O N _ : .

GY, = — . s (s + @ HOY+4(10)2 Grad( ) Grad(s") dVv. (65)
By

For the fourth order PDE given ial(7), a test space which glesihigher continuity is needed,
such as

Vo = 10 :sO(x ;) 2 H2(BY)js” =1 on g, (66)
Vel = s sO(x @) 2H2(BJ)j sV =0 on Pg. (67)

Accordingly, the weak form is obtained by

W .. G . i e+ MV ()2 (i) (i)
cia = 20 Bm(s (s +@H )+ 2 (1Y) Grad( st’) Grad(s')

0

+ (14 s gy gy, (68)

Using Lagrange multipliers for the incorporation of the @t conditions, the virtual work of
contact yields

GCO = Gcg + Gco’ (69)

3Note that the test functiori () can also be interpreted as virtual displacement.

11
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whereGY = Ve andG_, :=  V, have been introduced. Eventually, the governing
eguations are obtained as folldvs
Gign* Ginen+ Geo=0; 8 P2V, (70)
i
B —n- [ @)
Gclr;2:4 =0; 8 st 2 Vclr;2:4’ (71)
i
Gh=0; 8 N2R. (72)

Note, the abbreviation 2/4 indicates that either the vintu@k of the second order phase- eld
equation[(6b) or the virtual work of the fourth order phasdd equation[(68) can be taken into
account.

3 Spatial discretization

To perform the spatial discretization for the numericatiioh of the variational formulation
each domain is subdivided into a nite set of non-overlagpétements

(i)
B B ()h= ’ B(i)he (73)
e
For the second order phase- eld model standard FEA @ifhcontinuous shape functions is
suf cient, whereas for the fourth order phase- eld modelmezd to applyC! continuous shape

functions which we accomplish using IGA.

Standard FEA — Allen-Cahn phase- eld model For the second order phase- eld model
we are able to use standard Lagrangian shape functions @pat&netric as well as Bubnov-
Galerkin FE interpolations. Accordingly, solution andttiesctions are approximated by

O I U OCLE N T | U G CLEN I O (74)
s = sl sOh= 1, SV 8A21 = f1; i) Npoud. (75)

HereL(X M) : By ! R denote Lagrangian shape functions. Inserting these ajppations
into the weak formsxgiven in(70}=(72) yields the semi-disewirtual work

q) (M el + FOT EOT L G i=0, (76)
i
N < o
sv o (LY HOM+ S LdLYs) +4 @10 LY 1 Ldshdvi=0,  (77)
8"
GhM=0. (78)
. R L
Here, M = ', oLy LY dV are the coef cients of the consistent mass matrix. Further-
more, F ™™ F O denote the nodal internal and external force vectors. Nutesemi-
discrete contact contributiorG ;" andG " are dealt with in the very last paragraph of this
section.
4Strictly speaking, the underlying virtual work(38) is nat aquality but an inequality equation, due to the
contact constraint§ (84)-(B6) involved. As already mereiy here and in what follows it is assumed that the

contact interface is known using e.g. an active set strategularization techniques or others. Based on this
assumption the virtual work can be written as an equalitg é&sg. [37._35]).

12
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Figure 6: Continuity of cubic B-splines with knotvector [0 0 0 0 1 2 2 3 3 3 4 4 4 4]

IGA — Cahn-Hilliard phase- eld model For the higher order Cahn-Hilliard phase- eld model
we use an IGA approach to satisfy the demandXbcontinuity. For the approximation we use
a linear combination of suitable splines and corresponsaigtion and test control variables

v (i)h = Rg)qﬂ); v(ih = RX) qg); gih = Rﬁ\‘)sﬁ\”; gh = RS) Sg);
BA2! =11 :::; Nhogd (79)
HereR{(X ) : By ! R denote multivariate NURBS with tensor product structure

L N (O wi (80)
Id:1 N1\(|I§)F)| ( (i);l) Wllsll)

RY = ROI( )= p

A
[

Thereini = [iq;:::;14] denote the multi index of the B-splinebe;(l';)pI with multi indexp =
[p1;:::; pa] for the respective order of each parametric direction. Moee w; denote the
NURBS weights. A comprehensive overview for IGA can be foun6jn Note, for global
C1-continuity, which is required for the Cahn-Hilliard phastd model, at least quadratic B-
splines need to be provided. B-splines are recursively di ®r ordemp, = 0 we have

1 if i(li);l (i)l « (O

[0) ()Y = i\ +1
Niipi=o () 0 otherwise | ’ (81)

Iip=

whereas for ordep > 0the corresponding B-spline can be computed with

0 (OHEON 0 NP OL (0

[ (i)Y — i i (iy;! i+p+ [ ()l

Ni|;pl( )_ (i)l (i);l Ni|;p 1( )+ (i);l (il I\|i|+1;p 1( )1 (82)
i+p i i+p+1 i|+1

where problem speci ¢ knot vectors need to be provided

Of = ey OF 7. (83)

13
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Figure 7: Hierarchical level 1 subdivision of 1D linear, aubnd quintic B-splines (black: original spline/parent,
colored: 're ned' splines/children).

With the knot vectors both the nite element mesh as well &dbntinuity is determined (see
Figurel6). B-splines and NURBS basis functions are local limedgpendent

RV =0, c=0. (84)
A

Furthermore the partition of unity is ful lled

RV(P)=1. (85)
A

Another property is that B-splines as well as NURBS only haveimmh support. In general
B-splines and NURBS are non-interpolatory but can be constriutbiat they are. B-splines and
NURBS basis functions are always positive, i.e.

RY( @) > 0. (86)

As re nement techniques h-re nement e.g. achieved via kngértion leads to expensive global
re nement. For local re nement techniques there mainlysexiT-splines, which are the IGA
representation of hanging nodes and the concept of hiecatale nement which we want to
apply subsequently. For hierarchical B-splines the basistions are subdivided instead of
the elements. In particular the B-spline to be re ned (paréntreplaced by using a linear
combination of copied and scaled version of the original Basg(children) via

X1y

B = i ( ()= om Pl GO

J i (2 (i)l J I(i)hl(i) i(li)ﬂ) ) (87)
|

j=01=1

Thereinh, refers to the coarse level element length in the parametaespThe re nement
procedure for one level is shown for the one-dimensiona¢ égag-igure[ ¥ and for the two-
dimensional case in Figuré 8. Next we rewrite the hieraaitBesplines given in equation (B7)
approach by using the subdivision matBx", Si(;'j) which contains the scaling. A single B-
spline on levek can then be replaced by its children, which correspond toliBesgpon level
k+1

X |
Bg);';k( (|)): Si(;lj)Bg);Z 1+J;k+1( (|))_ (88)
j=0

14



M. Franke, C. Hesch and M. Dittmann

Figure 8: Subdivision of a 2D quartic B-spline (left: pareamght: children).

This is only valid for uniform knot vectors (for non-uniforknot vectors, see Sabin [32]).
Afterwards, the control mesh needs to be extended by

A = SO = sPT, )
whereq(') el represents a set of new coordinates. The extension of BesplonNURBS is
given by

Pl 21 1+ k+1 i i);k+1
" sB  Og
R(I)k R(')' ke (i) — U=
("= 557 (90)

21 1+ ;k+1 k+1
sy B IR gk
i j=0
The partition of unity as well as the continuity are stillisad. For further details see [29].
Insertion of the polynomial approximations into the vittueork of the coupled phase- eld

system yields

) (MQBed+ F" FSTY 6 =0, (91)
i
Gt

+ oy RaRe'ss +4 Q0 10r RY 1 RYs)dvi=0,  (92)

SX) (RX) HOh 4

GhM=0. (93)

R .
Here,M() = oRVRY dv are the coef cients of the consistent mass matrix. Further-

Bo
(i);int

more,F , F“g) “* denote the nodal internal and external force vectors, appaded with

HNURBS. As constitutive relations the discrete second Piotahhoff stress tensor as well as
the driving force for the phase- eld

SQ)”‘ - 2D, g)(c(i);h;s(i);h); HOh = p, g)(C(i);h;S(i);h), (94)

need to be provided.
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Mortar contact element For the discretization of the contact interface we aim at atsdo
approach. Herein, we restrict our consideration to the I@gecfor the Lagrange discretized
case we refer to the Mortar method given in [15]. In order to@ify the approach without
violation of the requiredC! continuity of the primal space we use linear approximatibthe
dual space as has been proposed in [17, 7]. Accordingly,dhtact traction is approximated
as follows

X
tyh = La a; tQ"= Lo aA. (95)
A2+D) A2-Q)
Thereink® =[g,; :::; &, denotess,s nodes on the physical contact bounda%)/. More-

overLa: ¥! R are(d 1)-dimensional shape functions associated with ngd@s~® .

It is important to remark, that the discrete Lagrange miidispace for re ned contact regions
can provide possible singularities (for more informatiges [16]). Eventually, we are able to
state the semi-discrete cr?ntact contribution

|
@ .

i
= 1 1 2
Ge"= NaN  Nas qé) Nac dc NA N Nag q(B) nAcqu) : (96)

Therein the nodal normal traction.» is employed. Furthermore, the Mortar integrals
Z
Nag = La( P)Re( P) dA; (97)
(1) ;h
“Z
Nac = La( ®)Re( @) dA, (98)

1) ;h
co

are comprised of the above introduced linear shape fursttigfi V') for the dual and quadratic
shape functionRg( ), Rc( @) for the primal space. In order to be able to integrate the
contact contributions we provide an isoparametric tramséion

i);h X (1)
ORCy=" M() (99)
K=1

where we make use of bilinear, triangular shape functidns. The segment-wise Mortar
integrals are then given by

n o= L (Y"PR (BN ))Iseed (100)

z
n o= L (9 YR (PN )Isegd - (101)
4

ThereinJseg denotes the segment-wise Jacobian. Using the tangenti@rsen the reference
con gurationA ( ) = Ra. ( ), the segment-wise Jacobian can be computed by

Jseg= KA1( D)) An( DI ))kde(D (). (102)

Eventually the segment-wise contact contributions neets issembled into the global system.
For a more detailed explanation of the Mortar method, esfigdhe technically demanding
segmentation and the assembly see [14, 15, 17, 7].
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4 Temporal discretization

For the temporal discretization we subdivide the time wd#lr of interest intoN equidistant
increments t = t,.; t,, as follows

I‘t 1
| =[0;T]= [th;th+a] (203)
n=0
where in the following the variables,, si at timet,, are assumed to be known, whereas the
variablesgh ™, si*! at timet,.; are searched. Then we employ a second order accurate one
step midpoint-type discretization. In particular the yuliscrete equations

(i):n+1 iyn £

q'(A") (M}Jé Jg t dg + r RX)(X (|)) Sg);n:n+lr Rg)(x (I)) dv q(Bl),n 2
i . B(()i)
Neaxtn+ L o
I__“2),6‘Xt’,ﬂ 5 dV) + chn,n +1 — 0 ’ (104)
(i)
. ZBO . G vy (i)in+ L i iy _(iyn+ 3
sV RWHO™:+ ZRUREs)™ 2+ GIr RY 1 RE'sy""?
|3 . N (iynpe L
+ &P 0 RO ay <o, 105)
Gcg;n;n +1 - 0 , (106)

are obtained. In order to obtain a structure preserving iitegration scheme, an algorithmic
stress computation

N
SMnn+1 — o @ (iyin+ %
e @;(i);h
(i):n+1 On , ae @yne Gy @977 (i):h
+2_° ° & ) g c M (107)

c@h.  cnh
using the concept of the discrete gradient is employed. MNwtethe concept of the discrete
gradient exhibits superior stability and robustness ptogxe even for large time steps. The
fully discrete contact contributions can be calculated by

i
O] @

|
nn+l n+1 1) 2 n n
+ Nagdg”  Naclc’

nn+l n n
Geo = a N 2h Nag dg”  Nac Cc

|
mn+l _ +1 (1) (2
Gey™ ™ = an™2z  njg Qg Nac A& -

n+

N[

A N

5 Numerical examples

In order to show the enhanced properties of the proposedaetivo representative numeri-
cal examples are examined. In particular the proposedroldacal NURBS based discretization
with the Mortar contact method and the phase- eld approadhecture are investigated in the
examples, where local re nements are prede ned. Note, liersimple geometries employed,
all NURBS weights are chosen equal to one, such that the NURBS eaorisidered as B-
splines.
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Figure 9: Patch test with two level local re nement of the appody, where reference (left) and current con gu-
ration (right) are shown.

Patch test As rst example we investigate the local re nement with theoposed IGA ap-
proach within a patch test (cf. [16]). The initial con guian is depicted in Figure 9. As usual
for patch tests, the lower block is clamped, such that they imdble to expand in tangential
directions. Furthermore, we apply a Neumann boundary topiper surface on the upper body
with constant pressure eld of = 1:3e3.

We use quadratic B-splines and apply a two level re nementtferupper body and no local
re nement for the lower body, such that we obtain non-comfimg nite element meshes in
contact. Large areas between coarse and fully re ned eleswam be observed which is due to
the support of the splines. The upper body consists off 4 elements on level 0. In total the
upper body consists of 2192 elements with 10224 degrees@ddm (DOFs). The lower body
consistsob 5 5elements onlevel 0. The lower body consists of 125 elemeititsimvtotal
1029 DOFs.

A compressible neo-Hookean material model is employed wéimé parameters () =
12981 and () = 865:3846 which correspond to a Young's modulus Bf) = 2250 and a
Poisson ratio of () = 0:3, respectively. The corresponding strain energy densitgtfan is
given by

@)

. . @) . . . .
Ot = — w(Cc 3 +— Qv 2 0 p Wy, (108)

whereJ® = det(F ). We are interested in a quasi-static solution, accordittggydensity is
neglected for both bodies.

We obtain a uniform stress distribution as can be observé&igure 10. The corresponding
displacement solution is shown in Figure 9. Accordinglg fortar method with higher order
hierarchical NURBS approach and local re nement passes ttoh pest (cf. [16]).
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Figure 10: Von Mises stress distribution.

Bending contact fracture problem The next example deals with the contact of an elastic
block with an elastic plate. Note, this example is taken ff@g]. The initial con guration is
depicted in Figure 11. As can be observed, the plate is cldwbereas the upper boundary of
the block is moved downwards with a constant increment dizeuo= 5e-3 e3 for the rst 200
stepsand u =2:5 10 3e; for the remaining steps.

The plate is of siz&20 30 2, whereas the block is of size 4 4. The center point
of the plate is placed aD 15 1 and the center point of the block is placed @t 26 45 .
The block consists of 4 4 elements and the plate @ 19 2 elements on level 0.
Additionally, we apply a prede ned local hierarchical reement to account for the physical
events (contact and fracture). Therefore the contact zbitre dlock is locally re ned with one
level. The plate is locally re ned using one level re nementhe area of the expected contact
boundary and two level re ned at the clamping zone (see [eéidur). In total 12948 elements
with overall 72912 DOFs and minimal element sizehgf, = 0:0769are employed.

Both bodies are modeled using the compressible neo-Hookatatial model given in (108).
The Lane parameters of the plate are chosen@s= 1:153&7 and & = 7:6923:6, which

Figure 11: Reference con guration of bending contact fueetproblem.
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Figure 12: Final phase- eld (left) and,, stress (right) result of bending contact fracture problem.

correspond to a Young's modulus BfY = 2e7 and a Poisson ratio ofY) = 0:3. The Lang
parameters of the block are chosen &5 = 2:884&4 and @ = 1:923%4, which correspond
to a Young's modulus oE ® = 5e4 and a Poisson ratio of® = 0:3. Accordingly, we expect
no locking behavior and there is no need for an advanced elgenent model. For the plate
the phase- eld parameters are choselas 2:7 €2 andl = 0:1538

The nal phase- eld result as well as the nal,, stress distribution are depicted in Figure
12. As can be observed the plate ripped out of the clamping,zrch that the plate becomes
statically undetermined. Accordingly, the problem canlm®tsolved anymore with the consid-
ered guasi-static setup. Note, a more detailed explanatidrexamination of this example is
given in [16].

6 CONCLUSIONS

The underlying contribution introduces a large defornraframework to describe both con-
tact and fracture. For the former the variational considtértar method, whereas for the latter
the phase- eld method is used. In particular an accuratesamobth fourth order phase- eld
model is employed which requires glol@t continuity. Therefore an existing IGA framework
with a sophisticated Mortar method for the contact bouredais combined. With the proposed
NURBS-IGA approach a wide range of curved geometries can b@spmated exactly. More-
over, an hierarchical re nement scheme is employed whichsdoot violate the partition of
unity. This allows the local re nement of the bodies in orderaccount for different physical
events like e.g. contact or fracture.

In total an accurate and ef cient higher order method is psmal for computational modeling
of large deformation Mortar contact and phase- eld fraetproblems.
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