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Abstract. The present work deals with the design of structure-preserving numerical

methods in the field of nonlinear elastodynamics and structural dynamics. Structure-

preserving schemes such as energy-momentum consistent (EMC) methods are known to

exhibit superior numerical stability and robustness. Most of the previously developed

schemes are relying on a displacement-based variational formulation of the underlying

mechanical model. In contrast to that we present a mixed variational framework for the

systematic design of EMC schemes. The newly proposed mixed approach accomodates

high-performance mixed finite elements such as the brick element due to Kasper & Tay-

lor [15]. Accordingly, the proposed approach makes possible the structure-preserving

extension to the dynamic regime of mixed high-performance elements. Numerical exam-

ples demonstrate the advantageous properties of the newly developed numerical meth-

ods resulting from the structure-preserving discretization in space and time.
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1 Introduction

Energy-momentum consistent (EMC) time-stepping schemes and their energy-de-

caying variants have been primarily developed in the framework of nonlinear structural

dynamics. This type of structure-preserving integrators is known to exhibit superior

numerical stability and robustness [12]. Previous developments of EMC schemes have

been essentially confined to displacement-based finite elements. We refer to [30, 9, 24,

6, 2, 19, 18, 25],[29, 32, 16, 20, 7, 23, 8, 4] and [28, 11, 17, 5, 1, 13] for representative

developments in the framework of nonlinear beams, shells and continua, respectively.

In this connection we remark that often applied finite element techniques such as

selectively reduced integration, assumed natural strain interpolations and enhanced as-

sumed strain approximations based on incompatible displacement modes essentially do

not affect the design of EMC schemes1. In fact, second-order accurate EMC integra-

tors typically rely on a mid-point type discretization of the weak form of the balance of

linear momentum in conjunction with the introduction of an algorithmic stress formula

[22].

To the best of our knowledge, a general framework for the design of EMC schemes

for truly mixed nonlinear finite elements has not been accomplished so far. We refer to

[3] for a mixed variational formulation for nonlinear structural dynamics which provides

a natural framework for the EMC discretization in time. The EMC scheme in [3] is

restricted to mixed finite elements, based on a Hu-Washizu type variational formulation

in terms of displacements, Green-Lagrangian strains and conjugated stresses.

In the present work we newly present a Hu-Washizu type mixed variational formula-

tion along with its EMC temporal discretization. Our developments start from a 6-field

extension of Hamilton’s principle that relies on the displacements, velocities, deforma-

tion gradient, right Cauchy-Green deformation tensor and the components of both the

1st and 2nd Piola-Kirchhoff stress tensor. The proposed 6-field variational principle can

be linked to Liven’s theorem [21, Sec. 26.2] and the Hu-Washizu principle [31]. The

corresponding Euler-Lagrange equations provide the mixed variational formulation for

the EMC discretization in time. The resulting mixed semi-discrete formulation can be

used to develop EMC schemes for mixed finite elements relying on independent inter-

polations as named above.

We apply the newly developed mixed framework for the design of EMC integra-

tors to the high-performance mixed-enhanced element developed by Kasper & Taylor

[15]. This element exhibits superior coarse mesh accuracy along with a locking-free re-

sponse in the incompressible limit. We refer to [14, 15] for further investigations in this

direction. Given the commonly observed numerical stability and robustness of EMC

1This remark excludes the broader class of assumed strain methods for nearly incompressible prob-

lems in nonlinear elastodynamics investigated in [1], see also [11]
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integrators, the mixed-enhanced element [15] can be regarded as ideal candidate for the

EMC extension to the transient regime. The resulting structure-preserving numerical

method can be expected to allow stable simulations on coarser space-time grids com-

pared to standard methods. Furthermore we even obtain physically meaningful results

for quasi incompressible material.

An outline of the rest of the paper is as follows. In Section 2 we present the ba-

sic notation and introduce our six-field formulation which provides the Euler-Lagrange

equations needed for the subsequent discretization process. The design of a structure-

preserving time-stepping scheme is treated in Section 3. The present approach to the

design of EMC integrators is then further developed in the framework of the mixed-

enhanced formulation in Section 4. After the presentation of numerical examples in

Section 5, conclusions are drawn in Section 6.

2 Continuum Mechanics

We start our developments by an introduction of the notation of the applied contin-

uum approach. After that, we introduce our mixed framework for the design of EMC

integrators. At the end of this section, the conservation properties will be shown.

2.1 Notation

We consider a motion of a continuum body from the reference configuration B ∈ R3

to the current configuration ϕ(B). This motion can be identified as a time-dependent

continuous differentiable function ϕ ∈ U , where

U := {ϕ : B × [t0, te] → R
3 : ϕ ∈ H1(B) andϕ

∣∣
∂Bϕ

= ϕ̄} (1)

with the time-interval [t0, te] during the motion. We label material points by X ∈ B and

the material velocity is labeled by V ∈ V , with

V := {δϕ : B × [t0, te] → R
3 : δϕ ∈ H1(B) and δϕ

∣∣
∂Bϕ

= 0} (2)

Furthermore, the smooth boundary of the body can be partitioned into two parts, where

ϕ = ϕ̄ on ∂Bϕ and P̃N = t̄ on ∂Bσ (3)

with the prescribed motion of the body ϕ̄, the first non-symmetric Piola-Kirchhoff stress

tensor P̃ ∈ M, the unit outward normal field N and the traction vector t̄. The space of

P̃ is defined as

M = {P̃ : B × [t0, te] → R
3×3 : P̃iI ∈ L2(B)} (4)

We assume, that

∂B = ∂Bϕ ∪ ∂Bσ and ∂Bϕ ∩ ∂Bσ = ∅ (5)
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To describe the deformation of the body, we introduce the deformation gradient

F̃ = Gradϕ(X, t) =
∂ϕ(X, t)

X
= Dϕ (6)

and its determinant as j = detF̃ > 0, where F̃ ∈ M. The right Cauchy-Green defor-

mation tensor defines a measure of strain and can be written as

C̃ = F̃
T

F̃ (7)

where C̃ ∈ M. Next we introduce the stress tensors that are work conjugate to the

deformation gradient F̃ and the right Cauchy-Green deformation tensor C̃. We use the

stored energy function Ŵ (F̃) or W̄ (C̃) to define the stress and strain relations by

P̃ =
∂Ŵ (F̃)

∂F̃
and S̃ = 2

∂W̄ (C̃)

∂C̃
(8)

with the first Piola-Kirchhoff stress tensor P̃ as introduced above and the symmetric

second Piola-Kirchhoff stress tensor S̃ ∈ M.

The equations of motion can be derived by imposing the condition of stationarity to

S(ϕ,V) =

∫ te

t0

(L(ϕ,V) + (ϕ̇−V) · ∂V L(ϕ,V)) dt (9)

for arbitrary variations of the state-space coordinates (ϕ,V) ∈ R3 × R3 in the time

interval [t0, te]. Note that in (9), Hamiltons principle is linked to Livens theorem (see,

for example, Pars [21, Sec. 26.2 Liven’s theorem]). The aforementioned Lagrangian

is defined as the difference between the kinetic and potential energy as L(ϕ,V) =
T (V)− V (ϕ). The kinetic energy of the body is given by

T (V) =

∫

B

1

2
V · ρ0VdV (10)

where ρ0 : B → R is the reference density. We admit the decomposition of the potential

energies in an internal and external part as

V (ϕ) = Vint(C̃(ϕ)) + Vext(ϕ) (11)

The external potential energy can be written as

Vext = −

∫

B

b̄ ·ϕ dV −

∫

∂Bσ

t̄ ·ϕ dA (12)

where b̄ : B → R3 is the reference body force. In the following we focus on body forces

only, so that the second term in (12) will not be considered in the sequel. For a stored

energy function W̄ (C̃), the potential of the internal energy is assumed to be given by

Vint =

∫

B

W̄ (C̃(ϕ)) dV (13)
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2.2 Hu-Wahizu type formulation

Instead of a two-field functional (9), we now consider an extension of the original

Hu-Washizu variational [31] to a six-field formulation given by

SHW(ϕ,V,F,P,C,S) =

∫ te

t0

[
T (V)−

(
Vint(C) + Vext(ϕ)

)
+ (ϕ̇−V) ·DT (V)

−

∫

B

(
P : gP (ϕ,F) + S : gS(F,C)

)
dV

]
dt

=

∫ te

t0

∫

B

(
(ϕ̇−

1

2
V) ρ0V

)
dV dt−

∫ te

t0

Vext(ϕ) dt

−

∫ te

t0

∫

B

(
W (C) +P : gP (ϕ,F) + S : gS(F,C)

)
dV dt

(14)

where the energies are defined by (10), (12) and (13), respectively. The algebraic con-

straints in (14) can be written as

g
P (ϕ,F) = Dϕ− F = 0

g
S(F,C) =

1

2
(FT

F−C) = 0
(15)

Next to the motion ϕ and velocity field V, the independent quantities are the defor-

mation gradient F ∈ M, the first Piola-Kirchhoff stress tensor P ∈ M, the right

Cauchy-Green deformations tensor C ∈ M and the second Piola-Kirchoff stress tensor

S ∈ M. The stored energy function W (C) depends on C only. Note that the stress

fields P and S play the role of Lagrange multipliers for the enforcement of the algebraic

constraints in (15). With the condition of stationarity subjected to the end-point condi-

tions, the variational principle in (14) yields the Euler-Lagrange equations. We obtain

the stationarity of (14) step-by-step for each independent fields, where the directional

derivative is defined by

δ•SHW = D•SHW(δ•) (16)

For the variation of the velocity field follows

δV SHW = δV

∫ te

t0

∫

B

(
ρ0V·ϕ̇−

1

2
ρ0V·V

)
dV dt =

∫ te

t0

∫

B

δV ·
(
ϕ̇−V

)
ρ0 dV dt (17)

The variation of the motion is given by

δϕSHW = δϕ

∫ te

t0

∫

B

(
V · ϕ̇ ρ0 −P : gP (ϕ,F) dV − Vext(ϕ)

)
dt (18)

= −

∫ te

t0

∫

B

((
δϕ ρ0 · V̇ −P : Dδϕ

)
dV − δVext(ϕ)

)
dt+

∫

B

[
V · δϕ

]te
t0
dV

(19)
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where we consider

∫ te

t0

∫

B

V ·
d

dt
δϕ ρ0 dV dt = −

∫ te

t0

∫

B

δϕ · ρ0 V̇ dV dt +

∫

B

[
V · δϕ

]te
t0
dV (20)

The last term vanishes, because δϕ(t0) = 0 and δϕ(te) = 0. Next, we obtain the

variation with respect to the deformation gradient as

δFSHW = δF

∫ te

t0

∫

B

(
P : gP (ϕ,F) + S : gS(F,C)

)
dV dt

=

∫ te

t0

∫

B

(
P : (−δF) + S :

1

2
(δFT

F+ F
TδF)

)
dV dt

=

∫ te

t0

∫

B

δF : (−P+ FS) dV dt

(21)

The variation with respect to the right Cauchy-Green deformation tensor leads to

δCSHW = −δC

∫ te

t0

∫

B

(
S : gS(F,C) +W (C)

)
dV dt

= −

∫ te

t0

∫

B

(
DW (C) : δC−

1

2
S : δC

)
dV dt

= −

∫ te

t0

∫

B

δC :
(
DW (C)−

1

2
S
)
dV dt

(22)

For the sake of completeness, the variation with respect to the stress tensors are given

by

δPSHW = δP

∫ te

t0

∫

B

P : gP (ϕ,F) dV dt =

∫ te

t0

∫

B

δP : gP (ϕ,F) dV dt

δSSHW = δS

∫ te

t0

∫

B

S : gS(F,C) dV dt =

∫ te

t0

∫

B

δS : gS(F,C) dV dt

(23)
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The variations can also be written in the form of

δSHW(ϕ,V,F,C,P,S) =−

∫ te

t0

∫

B

(
ρ0 (V̇ − b̄) · δϕ+P : Dδϕ

)
dV dt

+

∫ te

t0

∫

B

(ϕ̇−V) · ρ0 δV dV dt

−

∫ te

t0

∫

B

(
δP : gP (ϕ,F) + δS : gS(F,C)

)
dV dt

+

∫ te

t0

∫

B

(P− FS) : δF dV dt

+

∫ te

t0

∫

B

(
1

2
S−DW (C)

)
: δCdV dt = 0

(24)

where the external potential energy includes the body forces only. This procedure yields

the corresponding Euler-Lagrange equations which can be written as

∫

B

δV ·
(
ϕ̇−V

)
ρ0 dV = 0

∫

B

(
δϕ · ρ0 (V̇ − b̄) +P : Dδϕ

)
dV = 0

∫

B

δF :
(
P− FS

)
dV = 0

∫

B

δC :
(
S− 2DW (C)

)
dV = 0

∫

B

δP :
(
Dϕ− F

)
dV = 0

∫

B

δS :

(
1

2
(FT

F−C)

)
dV = 0

(25)

for all admissible variations δϕ ∈ V, δV ∈ V, δF ∈ M, δP ∈ M, δC ∈ M and

δS ∈ M. The aforementioned variational equations are supplemented by the initial

conditions ϕ
∣∣
t=t0

= ϕ0, V
∣∣
t=t0

= V0 and the consistent initial conditions F
∣∣
t=t0

= F0,

P
∣∣
t=t0

= P0, C
∣∣
t=t0

= C0 and S
∣∣
t=t0

= S0. Differentiating (25)5,6 with respect to

time, we obtain

d

dt

∫

B

δP : gP (ϕ,F) dV =

∫

B

δP :
d

dt
g
P (ϕ,F) dV = 0

d

dt

∫

B

δS : gS(F,C) dV =

∫

B

δS :
d

dt
g
S(F,C) dV = 0

(26)
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Thus the consistency conditions of the mechanical system are defined by
∫

B

δP :
(
Dϕ̇− Ḟ

)
dV = 0

∫

B

δS :

(
Ḟ

T
F−

1

2
Ċ

)
dV = 0

(27)

Equation (25) along with initial conditions define the weak form of the initial-boundary

value problem (IBVP) governing the motion of the considered body. The present IBVP

determines solutions (ϕ,V,F,P,C,S) : [t0, te] 7→ U ×V ×M×M×M×M 7→ R.

2.3 Balance laws of the continuum

In this section we summarize the important conservation laws in the continuous form

which should be preserved in the time and space discrete form. Especially if the investi-

gated problem satisfied specific symmetry conditions, the total linear momentum,L(V),
the total angular momentum, J(ϕ,V), and the total mechanical energy, E(ϕ,V,C), are

first integrals of the motion. The quantities of interest are defined by

L(V) =

∫

B

ρ0 V dV

J(ϕ,V) =

∫

B

ρ0ϕ×V dV

E(ϕ,V,C) =

∫

B

(
1

2
V · ρ0V +W (C)

)
dV + Vext(ϕ)

(28)

Alternatively, the total mechanical energy can be written in the form

E(ϕ,V,C) = T (V) + Vint(ϕ,V,C) + Vext(ϕ) (29)

where use has been made of (10), (12) and (13).

2.3.1 Balance of energy

At first we proof the balance of energy by choosing δV = V̇ in (25)1 to obtain
∫

B

ϕ̇ · V̇ ρ0 dV =

∫

B

V · V̇ ρ0 dV =
d

dt

∫

B

1

2
V ·V ρ0 dV (30)

Next, choose δϕ = ϕ̇ in (25)2 and along with (30) we get
∫

B

(
ϕ̇ · ρ0 (V̇ − b̄) +Dϕ̇ : P

)
dV

=

∫

B

V · ρ0 V̇ dV −

∫

B

V · ρ0 b̄ dV +

∫

B

Dϕ̇ : P dV

=

∫

B

1

2

d

dt
(ρ0V ·V) dV − Pext +

∫

B

Dϕ̇ : P dV = 0

(31)
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The external power can be evaluated by choosing δV = b̄ in (25)1, so that
∫

B

b̄ · ϕ̇ ρ0 dV =

∫

B

b̄ ·V ρ0 dV =
d

dt
Vext = Pext (32)

Subsequently we set δP = P in (27)1 to obtain
∫

B

P : Dϕ̇ dV =

∫

B

P : Ḟ dV (33)

Choosing δF = Ḟ in (25)3 leads to
∫

B

Ḟ : P dV =

∫

B

Ḟ : (FS) dV =

∫

B

S :
(
Ḟ

T
F

)
dV (34)

For the next step, set δS = S in (27)2 to get
∫

B

S :
(
Ḟ

T
F

)
dV =

∫

B

S :
1

2
Ċ dV (35)

Eventually, for the choice of δC = Ċ in (25)4 we obtain the result
∫

B

1

2
Ċ : S dV =

∫

B

Ċ : DW (C) dV =
d

dt

∫

B

W (C) dV (36)

and insert the equations (33)-(36) in (31). Accordingly, the total energy is conserved.

2.3.2 Balance of linear momentum

Define δϕ = ζ, where ζ ∈ R
3 is a constant vector, so that Dζ = 0. Note that this

corresponds to a rigid translation of the body. Next, with (25)2 we obtain
∫

B

ζ · ρ0
(
V̇ − b̄

)
dV = 0 (37)

The last equation can be recast in the form

ζ ·
d

dt

∫

B

ρ0 V dV − ζ · Fext = 0 (38)

where

Fext =

∫

B

ρ0 b̄ dV (39)

is the external body force. If we consider (28)1, equation (38) yields

ζ ·
(
L̇− Fext

)
= 0 (40)

This corresponds to the balance law of linear momentum.
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2.3.3 Balance of angular momentum

Next, we choose δϕ = ζ × ϕ = ζ̂ϕ in (25)2. This leads to

∫

B

(
(ζ ×ϕ) · ρ0 (V̇ − b̄) + (ζ̂Dϕ) : P

)
dV

= ζ ·
(∫

B

ϕ× V̇ ρ0 dV −

∫

B

ϕ× b̄ ρ0 dV
)
+

∫

B

ζ̂Dϕ : P dV = 0

(41)

where ζ ∈ R3 is a constant. Setting δV = ζ ×V in (25)1, it follows that

∫

B

(ζ ×V) · (ϕ̇−V) ρ0 dV = ζ ·

(∫

B

V × ϕ̇ ρ0 dV −

∫

B

V ×V ρ0 dV

)
= 0 (42)

Furthermore, it can be observed that

ζ ·
d

dt

∫

B

ϕ×V ρ0 dV = ζ ·

∫

B

(ϕ̇×V +ϕ× V̇) ρ0 dV = ζ ·

∫

B

ϕ× V̇ dV (43)

holds. Then we set δP = ζ̂P in (25)5 to get

∫

B

(ζ̂P) : Dϕ dV =

∫

B

(ζ̂ P) : F dV or

∫

B

P : (ζ̂Dϕ) dV =

∫

B

P : (ζ̂F) dV

(44)

Eventually, choose δF = ζ̂ F in (25)3 and note that ζ̂ = −ζ̂
T

to obtain

∫

B

P : (ζ̂ F) dV =

∫

B

ζ̂ F : (FS) dV =

∫

B

S : (FT
ζ̂ F) dV = 0 (45)

As a result, we recast equation (25)2 under consideration of (41)-(45) to

ζ ·
d

dt

∫

B

ϕ×Vρ0 dV − ζ ·Mext = 0 (46)

Associated with (28)2, it follows

ζ ·
(
J̇−Mext

)
= 0 (47)

where the external moment Mext depends on the body forces only and can be written as

Mext =

∫

B

ϕ× b̄ ρ0 dV (48)

Because (47) holds for all ζ ∈ R
3, the angular momentum is a conserved quantity if

Mext = 0.
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3 Discretization in time

We next focus on the design of a structure-preserving discretization in time of the

underlying variational formulation (25). In particular, we aim at time-stepping scheme

which inherit the important conservation properties described above.

3.1 Energy-momentum consistent time-stepping scheme

Consider a representative time interval [t0, te] with time-step size ∆t = tn+1 − tn,

given state space coordinates (ϕn,Vn) ∈ R3 × R3, consistent deformation states Fn ∈
M, Cn ∈ M and stresses Pn ∈ M, Sn ∈ M at tn. We show below, that a mid-point

type discretization of the IBVP results in an energy-momentum scheme, which inherits

the important balance laws from the continuous case. The energy-momentum consistent

scheme may be formulated as

∫

B

δV ·
1

∆t

(
ϕn+1 − ϕn

)
ρ0 dV =

∫

B

δV ·Vn+ 1

2

ρ0 dV
∫

B

δϕ ·
1

∆t
ρ0 (Vn+1 −Vn) dV = −

∫

B

Pn+1 : Dδϕ dV +

∫

B

δϕ · ρ0 b̄ dV
∫

B

δF :
(
Pn+1 − Fn+ 1

2

Sn+1

)
dV = 0

∫

B

δC :
(
Sn+1 − 2DW (Cn+ 1

2

)
)
dV = 0

∫

B

δP :
(
Dϕn+1 − Fn+1

)
dV = 0

∫

B

δS :

(
1

2

(
F

T
n+1Fn+1 −Cn+1

))
dV = 0

(49)

for all δϕ, δV ∈ V, δF ∈ M, δP ∈ M, δC ∈ M, δS ∈ M. The mid-point value of the

quantity (•) is evaluated by (•) = 1

2
((•)n + (•)n+1). Then the energy-momentum con-

sistent scheme in (49) determines the state-space coordinates (ϕn+1,Vn+1) ∈ R3×R3,

consistent deformation states Fn+1 ∈ M, Cn+1 ∈ M at tn+1 and the consistent stresses

Pn+1 ∈ M, Sn+1 ∈ M in the time interval [t0, te]. As mentioned above, our algorithm

is based on the mid-point discretization, however, the constraints are evaluated at the

end of each time step. The time discrete counterpart of the condition of consistency

(27)1 is given by

∫

B

δP :
(
Dϕn+1 −Dϕn

)
dV =

∫

B

δP : (Fn+1 − Fn) dV (50)
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and (27)2 can be written in the time-discrete form as
∫

B

δS :

(
1

2

(
F

T
n+1Fn+1 −Cn+1 −

(
F

T
nFn −Cn

)))
dV

=

∫

B

δS :

(
F

T

n+ 1

2

(Fn+1 − Fn)−
1

2
(Cn+1 −Cn)

)
dV

= 0

(51)

The specific temporal discretization of the IBVP results in the algorithm (49) which

defines an energy momentum consistent scheme. Consequently the physical quantities

in (28) are consistently approximated independent of the time-step size.

Remark 1 In the present work we focus on St. Venant-Kirchhoff type material models.

It can be easily verified, that

DW (Cn+ 1

2

) : (Cn+1 −Cn) = W (Cn+1)−W (Cn) (52)

In case of material models suitable for finite elasticity, DW (Cn+ 1

2

) in (49) has to be

replaced by an appropriate discrete derivative D̄W (Cn+ 1

2

) in the sense of Gonzalez

[10, 11].

3.2 Discrete balance laws

In this section, we show that the EMC scheme exactly inherited the significant con-

sistency (and conservation) properties from the underlying continuous formulation pre-

sented in section 2.3.

3.2.1 Discrete conservation of energy

We start with the proof of the energy conservation by choosing δV = Vn+1 −Vn in

(49)1 to obtain
∫

B

(Vn+1 −Vn) ·
1

∆t
ρ0 (ϕn+1 − ϕn) =

∫

B

(Vn+1 −Vn) ·Vn+ 1

2

ρ0 dV

=
1

2

∫

B

(Vn+1 ·Vn+1 −Vn ·Vn) ρ0 dV

= T (Vn+1)− T (Vn)

(53)

Next we choose δϕ = ϕn+1 − ϕn in (49)2 and observe that
∫

B

(ϕn+1 −ϕn) ·
1

∆t
ρ0 (Vn+1 −Vn) dV

= −

∫

B

Pn+1 : (Dϕn+1 −Dϕn) dV +

∫

B

(ϕn+1 − ϕn) · ρ0 b̄dV

(54)
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We notice, that for the discrete form of the external potential energy
∫

B

(ϕn+1 − ϕn) · ρ0 b̄ dV = Vext(ϕn+1)− Vext(ϕn) (55)

holds. Then we use δP = Pn+1 in (50) to get

∫

B

Pn+1 : (Dϕn+1 −Dϕn) dV =

∫

B

Pn+1 : (Fn+1 − Fn) dV (56)

After that, set δF = Fn+1 − Fn in (49)3 to obtain

∫

B

Pn+1 : (Fn+1 − Fn) dV =

∫

B

(Fn+1 − Fn) : Fn+ 1

2

Sn+1 dV

=

∫

B

Sn+1 : F
T

n+ 1

2

(Fn+1 − Fn) dV

(57)

For the variation of the second Piola-Kichhoff stress tensor we choose δS = Sn+1 in

(51) and as a result, we get

∫

B

Sn+1 : F
T

n+ 1

2

(Fn+1 − Fn) dV =

∫

B

Sn+1 :
1

2
(Cn+1 −Cn) dV (58)

Accordingly, choosing δC = Cn+1 −Cn in (49)4 leads to

∫

B

Sn+1 :
1

2
(Cn+1 −Cn) dV =

∫

B

DW (Cn+ 1

2

) : (Cn+1 −Cn) dV (59)

As a result, for (54) along with (53), (55) and (56)-(59) we obtain

T (Vn+1) + Vint(Cn+1) + Vext(ϕn+1) = T (Vn) + Vint(Cn) + Vext(ϕn) (60)

Thus, the EMC scheme reproduces the total mechanical energy exactly, independent of

the time-step size. Note that in the last equation the relationship (52) has been used.

3.2.2 Discrete balance of linear momentum

We next choose δϕ = ζ where ζ ∈ R
3 is constant so that, Dζ = 0. Now, its

straightforward to show that (49)2 yields the result

∫

B

ζ · ρ0

(
1

∆t
(Vn+1 −Vn)− b̄

)
dV = 0 (61)

which we can recast by (28)1 in the form

ζ ·

(
L(Vn+1)− L(Vn) + ∆tFext

∣∣∣
n+α

)
= 0 (62)
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where

Fext

∣∣∣
n+α

=

∫

B

ρ0 b̄ dV (63)

are the external body forces in the time interval [tn, tn+1]. This is the discrete version of

the linear momentum balance corresponding to (28)1. Hence, the linear momentum is a

conserved quantity in [tn, tn+1] for any α ∈ [0, 1] if no external forces are acting on the

body.

3.2.3 Discrete balance of angular momentum

We now choose δϕ = (ζ × ϕn+ 1

2

) = ζ̂ ϕn+ 1

2

in (49)2. We conclude that

∫

B

(ζ × ϕn+ 1

2

) ·
1

∆t
ρ0 (Vn+1 −Vn) dV

+

∫

B

Pn+1 : (ζ̂Dϕn+ 1

2

) dV −

∫

B

(ζ × ϕn+ 1

2

) · ρ0 b̄ dV

= ζ ·

(∫

B

ϕn+ 1

2

× (Vn+1 −Vn)
1

∆t
ρ0 dV −

∫

B

ϕn+ 1

2

× b̄ ρ0 dV

)

+

∫

B

ζ̂Pn+1 : Dϕn+ 1

2

dV

= 0

(64)

Then we choose δPn+1 = ζ̂Pn+1 in (49)5 to obtain

∫

B

(ζ̂ Pn+1) : Dϕn+1 dV =

∫

B

ζ̂Pn+1 : Fn+1 dV (65)

or equally ∫

B

Pn+1 : (ζ̂Dϕn+1) dV =

∫

B

Pn+1 : (ζ̂ Fn+1) dV (66)

Similarly, for the constraints at tn with δP = ζ̂ Pn+1 we get

∫

B

Pn+1 : (ζ̂Dϕ) dV =

∫

B

Pn+1(ζ̂ Fn) dV (67)

We take the average of the equations from above as 1

2
[(66) + (67)] to get

∫

B

Pn+1 : (ζ̂Dϕn+ 1

2

) dV =

∫

B

Pn+1 :

(
ζ̂
1

2
(Fn + Fn+1)

)
dV

=

∫

B

Pn+1 :
(
ζ̂ Fn+ 1

2

)
dV

(68)

1749



Alexander Janz, Peter Betsch and Christian Hesch

Now let δF = ζ̂
1

2
(F

n
+ Fn+1) in (49)3 to verify that

∫

B

Pn+1 :

(
ζ̂
1

2
(Fn + Fn+1)

)
dV =

∫

B

Fn+ 1

2

Sn+1 :

(
ζ̂
1

2
(Fn + Fn+1)

)
dV

=

∫

B

Sn+1 : F
T

n+ 1

2

(
ζ̂
1

2
(Fn + Fn+1)

)
dV

= 0

(69)

Consider equation (64) along with (65) - (69) to get:

ζ ·

(
J(ϕ

n+1
,Vn+1)− J(ϕn,Vn) + ∆tMext

∣∣∣
n+ 1

2

)
= 0 (70)

This is the discrete version of the angular momentum balance corresponding to (28)2.

Note, that the external moment is evaluated at the mid-point configuration as

Mext

∣∣∣
n+ 1

2

=

∫

B

ϕn+ 1

2

× ρ0 b̄dV (71)

4 Discretization in space

In this section, we deal with the finite element method to accomplish a numerical

solution for the semi-discrete mechanical system. We start our developments by the

approximation of the body in its reference configuration by

B ≈ Bh =

nel⋃

e

Ωe (72)

Accordingly the boundaries are approximated by ∂B ≈ ∂Bh =
⋃nel

e ∂Ωe. Next, we

make use of standard isoparametric finite elements for the finite dimensional approxi-

mation of ϕ, and the velocity V as

ϕ
h(X, t) =

ne
node∑

A=1

NA(X)ϕA and V
h(X, t) =

ne
node∑

A=1

NA(X)VA (73)

where ne
node are the nodes of the element Ωe and NA(X) : B → R are the standard

isoparametric shape functions associated with node A. Note that the nodal vectors of

an element are denoted by ϕ
A ∈ R3 and V

A ∈ R3. In the present work we deal with

trilinear shapefunctions with the property that NA(XB) = δBA . The finite element spaces

are given due to the approximation in (73) by Uh ⊂ U and Vh ⊂ V .

By inserting the spatial interpolations in (6), the approximation of the deformation

gradient is given by

F̃ =
∂ϕ(X, t)

∂X
=

ne
node∑

A=1

ϕ
A ⊗∇XNA(X) (74)
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Next, we define the kinetic energy of an element by (10) with (73) as

T =
1

2

ne
node∑

A,B=1

V
A ·MAB

ρ V
B with M

AB
ρ =

∫

Ωe

ρ0 NANB dV I (75)

where I ∈ R3×3 represents the identity matrix. The external potential energy, given in

(12) can be expresses in the discrete form as

Vext = −

ne
node∑

A=1

ϕ
A · FA

ext where F
A
ext =

∫

Ωe

NA
b̄ dV +

∫

∂Ωe

NA
t̄ dA (76)

where F
A
ext ∈ R3 denotes the external forces associated with node A.

4.1 Mixed approximation

In the present work the discretization of the mixed quantities follows the approach

by Kasper & Taylor [15]. They developed a mixed-enhanced finite element with mixed

stress field P and an mixed-enhanced strain field F. The other independent quantities,

namely the right Cauchy-Green deformation tensor C and the second Piola-Kirchhoff

stress tensor S are calculated by the constraints given in (14)5,6. Accordingly, we are

very flexible in the design of an EMC algorithm as we show below.

Consider a mixed stress and strain field, formulated in the isoparametric space and

then use a standard transform to define the approximations in the physical space. The

approximation of the deformation gradient is defined by

F = γ0 +
1

j(ξ)
F0T[E1(ξ,γ)− E2(ξ,α)]TT (77)

For the approximation of the first Piola-Kirchhoff stress tensor we obtain

P = β0 + F
−T
0 T

−T[E1(ξ,β)]T
−1 (78)

where F ∈ Mh, P ∈ Mh with Mh ⊂ M. On element level we have 26 additional

local parameters for the mixed stress, where β0 ∈ R
3×3 ensures constant stress states

within the element and β ∈ R15 reflects the varying stress field. In contrast, the mixed-

enhanced deformation gradient is approximated by 35 local parameters. Similar to the

mixed stress we have γ0 ∈ R3×3 parameters for the constant part and γ ∈ R15 param-

eters for the varying part. In addition, the enhanced parameters α ∈ R9 were added

to improve the element performance. The interpolations E1(ξ, •) and E2(ξ,α) can be

found in Appendix A.1. The approximation of the mixed quantities contains T and F0

to ensure constant states, minimize the order of quadrature and reduce the sensitivity to
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Matrix
i 1 2 3 1 2 1 2 3 3

j 1 2 3 2 3 3 1 2 1

Vector i 1 2 3 4 5 6 7 8 9

Table 1: Matrix-vector notation

initially distorted elements. Note that F0 ensures an objective formulation to a super-

posed rigid body motion. Theses quantities are evaluated at the center of the element as

F0 = Gradϕh
∣∣
ξ=0

=

ne
node∑

A=1

ϕ
A ⊗∇0NA(X) (79)

and

T = J
∣∣
ξ=0

where J = GradξX
h, j(ξ) = detJ (80)

Remark 2 Alternatively, T and F0 can be calculated as the average over the element

by

T =
1

Ωe

∫

Ωe

J(ξ) dV, F0 =
1

Ωe

∫

Ωe

F̃ dV (81)

Note that in the two dimensional case both formulations are identical.

4.2 Efficient formulation and variation

We start this section with an matrix-vector transformation to make use of the linearity

of the element parameters. Then we apply the variation of the mixed quantities.

4.2.1 Efficient formulation of the approximations

Since the local parameters are linear within the element, an efficient reformulation is

possible. Therefore we may write

F̃ =

ne
node∑

A=1

ϕ
A ⊗∇XNA(X)

i,j→i
−−−→ F̃

v

= Bϕ
v

F = γ0 +
1

j(ξ)
F0T[E1(ξ,γ)− E2(ξ,α)]TT i,j→i

−−−→ F
v = γ

v
0 +Bγ(ϕ)γ −Bα(ϕ)α

P = β0 + F
−T
0 T

−T[E1(ξ,β)]T
−1 i,j→i

−−−→ P
v = β

v
0 +Bβ(ϕ)β

(82)

where the ordering for the matrix-vector notation is given in Table 1. Due to the formula-

tion in (82), the approximations can be written in a vectorial form as F̃
v
∈ R9,Fv ∈ R9
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or Pv ∈ R
9, respectively. Then we can calculate them along with the element operator-

matrices B ∈ R9×24, Bγ(ϕ) ∈ R9×15, Bα(ϕ) ∈ R9×9 or Bβ(ϕ) ∈ R9×15 and the local

element parameters γ
v
0 ∈ R9 and β

v
0 ∈ R9 in the vectorial form. Note, that the nodal

vectors are summarized to ϕ
v = [ϕ1T...ϕ8T]T.

4.2.2 Variations

Consider the variations of the equation given in (82) with respect to both the local

element parameters and nodal parameters. For the variation to the one mentioned first

we obtain

δγ0F
v = δγv

0 δβ0
P

v = δβv
0

δγF
v = Bγ(ϕ) δγ, δβP

v = Bβ(ϕ) δβ (83)

δαF
v = −Bα(ϕ) δα

For the variation with respect to the nodal parameters we get

δqF̃ =

ne
node∑

A=1

δϕA ⊗∇XNA(X)

δqF =
( ne

node∑

A=1

δϕA ⊗∇0NA

)
T (E1(ξ,γ)− E2(ξ,α))TT

δqP = −F
−T
0

( ne
node∑

A=1

δϕA ⊗∇0NA

)T
F

−T
0 T

−T
E1(ξ,β)T

−1

(84)

4.3 Fully discrete system

The present implementation differs from the original approach by Kasper & Taylor

since the mixed strain parameters γ0,γ are not solved by the nodal parameters directly.

Thus, we facilitate the implementation and further improve the clarity of the underlying

formulation as we see below. Furthermore, a direct variational stress recovery for post-

processing is available. Since a static condensation process is still possible, the number

of global unknowns are identical and thus, the computational effort is quiet similar.

Next, we insert the approximated quantities in (49) and taking the temporal evaluation
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into account to get the fully discrete system given by

δVA · MAB
[
(ϕBn+1

− ϕBn)−∆tVBn+ 1

2

]
= 0

δϕA ·
[
M

AB
ρ

1

∆t
(VBn+1 −VBn)− F

A
ext +

∫

Ωe

Pn+1∇NA dV

+

∫

Ωe

(Pn+1 − Fn+ 1

2

2DW (Cn+ 1

2

))
1

j(ξ)
T (E(ξ,γn+ 1

2

))T TT∇0N
A dV

−

∫

Ωe

(Pn+1 − Fn+ 1

2

2DW (Cn+ 1

2

))
1

j(ξ)
T (E2(ξ,αn+ 1

2

))T TT∇0N
A dV

−

∫

Ωe

F0
−T

n+ 1

2

T−T
E(ξ,βn+1) T

−1 (F̃n+ 1

2

− Fn+ 1

2

)T F0
−T

n+ 1

2

∇0N
A dV

]
= 0

δγv
0 ·

[ ∫

Ωe

P
v
n+1 − F

v

n+ 1

2

2DW (Cv

n+ 1

2

) dV
]
= 0

δγ ·
[ ∫

Ωe

Bγn+ 1

2

(
P

v
n+1 − F

v

n+ 1

2

2DW (Cv

n+ 1

2

)
)
dV

]
= 0

δα ·
[ ∫

Ωe

−Bαn+ 1

2

(
P

v
n+1 − F

v

n+ 1

2

2DW (Cv

n+ 1

2

)
)
dV

]
= 0

δβv
0 ·

[ ∫

Ωe

(
F̃

v

n+1 − F
v
n+1

)
dV

]
= 0

δβ ·
[ ∫

Ωe

Bβn+1

(
F̃

v

n+1 − F
v
n+1

)
dV

]
= 0

(85)

with

MAB =

∫

Ωe

NA NB dV (86)

Due to the sophisticated element formulation, we have to go into detail with the

temporal evaluation of the mixed quantities. As mentioned above, the mixed stress is

assumed to be constant within a time-step. In the present formulation the mixed stress

depends on the nodal quantities too, since we use the average deformation gradient. To

avoid a violation of the angular momentum balance, we have to calculate the mixed

stress by

Pn+1 = P(ϕn+ 1

2

,β0n+1
,βn+1) (87)

The other quantities in (85) can be calculate as expected, such that

Fn+1 = F(ϕn+1,γ0n+1
,γn+1,αn+1) F0n+ 1

2

= F0(ϕn+ 1

2

)

Fn+ 1

2

= F(ϕn+ 1

2

,γ0n+ 1

2

,γn+ 1

2

,αn+ 1

2

) F̃n+1 = F̃(ϕn+1) (88)

F̃n+ 1

2

= F̃(ϕn+ 1

2

)
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Note that the temporal evaluation of the mixed quantities formulated in tensor nota-

tion are similar to (87)-(88).

Subsequently, we linearize the non-linear system of equations (85) in a straightfor-

ward way. After a standard assembly operation, a static condensation process is possi-

ble. This reduces the computational effort drastically. Further details can be found in

[26, 27].

Finally we point out that the conservation properties from the time discrete case are

inherited by the present finite element method.

5 Numerical examples

In the following section we would like to point out the performance of the proposed

mixed-enhanced finite element along with the newly developed EMC scheme.

5.1 Static investigation

The first numerical example deals with a static benchmark problem for nonlinear

finite elements to demonstrate the performance in the nearly incompressible limit. We

consider a 3d version of the so called Cook’s membrane as depicted in Figure 1. The de-

formed configuration of the problem is shown in Figure 2. The tapered panel is clamped

on the left and loaded by a shear load p on the right side, where

p =
[
0 0 3

]T
(89)

A St. Venant-Kirchhoff material model with material parameters E = 100 and ν =
0.4999 has been used. To demonstrate the superior performance we compare the Kasper

& Taylor element (H1/ME9) with a standard displacement element (H1) and an en-

hanced element (H1/E9) by Simo & Armero [26]. As illustrated in Figure 3, the con-

vergence with mesh refinement of the three elements under consideration is investi-

gated. We consider the displacement of the top corner versus the number of elements

per side. While the H1 elements locks drastically, the H1/E9 and H1/ME9 are in a good

agreement. Thus we conclude, that the present formulation performs well, even in the

incompressible limit and in bending dominated problems.

Further investigations about objectivity and plasticity and an Eigenvalue analysis can

be found in [14, 15].

5.2 Dynamic investigation

The second example can be considered as a classical benchmark for the transient

simulation of solids. According to Simo & Tarnow [28] we verify the algorithmic con-

sistency of the developed EMC scheme along with its superior performance as shown

in section 5.1.
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Figure 1: Cooks membrane problem. Geome-

try and boundary conditions

Figure 2: Cooks membrane problem. De-

formed configuration
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Figure 3: Study of convergence in static case. Quasi incompressible limit

Consider a flying L-shaped block with a constitutive behavior governed by a St.

Venant-Kirchhoff material model. The material parameters are the Young Modulus E =
2100, the Poisson ratios ν = 0.4 and the density ρ0 = 100. Both, the initial geometry

and the finite element mesh are illustrated in Figure 4. The L-shaped block has no

Dirichlet boundary and pressure loads are acting on the block as shown in Figure 4. The

time history of the external loads is illustrated in Figure 5. In this connection, the nodal
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dead loads are given by

p1(t) = f(t)×
[
−50 −50 −100

]

p2(t) = f(t)×
[
50 50 100

] (90)

The results of the EMC scheme are compared to those of the mid-point rule. All

numerical simulation have been performed with a time-step size of ∆t = 0.25. Note

that after the loading phase the discrete system under consideration can be classified

as autonomous Hamiltonian system with symmetry. Correspondingly, after t ≥ 1, the

total linear momentum, angular momentum and energy are conserved quantities. This

is correctly reproduced by the EMC integrator (within the computational accuracy),

whereas the mid-point rule exhibits numerical instabilities accompanied by an energy

blow-up (see Figure 6). As depicted in Figure 7, the EMC scheme conserves the angular

momentum exactly.

Eventually, the motion of the L-shape is illustrated in Figure 8 with a sequence of

subsequent snapshots.

e1

e2

e3

t = 1.2

1.2

2.4

2.4

3.6

p1(t) p2(t)

Figure 4: Flying L-Shape problem. Initial mesh

configuration and dimensions

f
(
t)

time t

1

0

0 2

Figure 5: Time history of the external pressure

6 Conclusions

We developed a mixed variational formulation for nonlinear solid and structural dy-

namics which provides a natural framework for the EMC discretization in time. The

underlying mixed variational equations were obtained as Euler-Lagrange equations of

a mixed extension of Hamiltons principle. The Hu-Washizu type extension accommo-

dates mixed finite elements based on independent interpolations of the displacements,
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Figure 6: Time history of the total energy
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Figure 7: Time history of the angular momentum

the velocities, the deformation gradient, the right Cauchy-Green deformation tensor and

both the first and the second Piola-Kirchhoff stresses.

We demonstrated, that the present framework is suitable even for more complicated

formulations, like the mixed-enhanced element proposed by [15].

We show in Section 5.1, that the mixed-enhanced element performs well particularly
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Figure 8: Snapshots of configurations at t ∈ 0, 1, 2, 3, 4, 5, 6, 7, 8

in the quasi-incompressible limit. The second numerical example, presented in sec-

tion 5.2, shows that the EMC scheme leads to superior numerical stability properties

compared to the common mid-point rule. While the conservation properties have been

proven in the semi-discrete case and shown numerically, we still require a proof for the

fully discrete system.

Accordingly, combining mixed finite element discretization in space with EMC dis-

cretization in time shows great promise for the design of numerical methods with supe-

rior coarse mesh accuracy in space and time. Thus, we obtain the possibility to use large

time steps while still producing physically meaningful results, since the combination of

EMC methods and mixed finite elements shows locking free response in non-linear dy-

namics.

Finally, we emphasize that many semidiscrete formulations of flexible bodies such as

nonlinear continua, beams, and shells perfectly fit into the present framework, see [3].

Moreover, the present approach can be directly extended to flexible multibody dynamics

as shown in [4].
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A Appendix

A.1 Interpolation of mixed quantities

The maps for the three dimensional case are given by

E1(ξ,γ) =



ξ2γ1 + ξ3γ2 + ξ2ξ3γ3 ξ3γ10 ξ2γ14

ξ3γ11 ξ1γ4 + ξ3γ5 + ξ1ξ3γ6 ξ1γ12
ξ2γ15 ξ1γ13 ξ1γ7 + ξ2γ8 + ξ1ξ2γ9




E2(ξ,α) =



ξ1α1 + ξ1ξ2α2 + ξ1ξ3α3 0 0

0 ξ2α4 + ξ2ξ3α5 + ξ1ξ2α6 0
0 0 ξ3γ7 + ξ2ξ3γ8 + ξ1ξ3γ9




E1(ξ,β) =



ξ2β1 + ξ3β2 + ξ2ξ3β3 ξ3β10 ξ2β14

ξ3β11 ξ1β4 + ξ3β5 + ξ1ξ3β6 ξ1β12

ξ2β15 ξ1β13 ξ1β7 + ξ2β8 + ξ1ξ2β9




(91)

or equivalent, the interpolations in tensor form

E1(ξ,γ)
i,j→i
−−−→ E1(ξ)γ

E2(ξ,α)
i,j→i
−−−→ E1(ξ)α

E1(ξ,β)
i,j→i
−−−→ E1(ξ)β

(92)
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E1(ξ) =




η ζ ηζ 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 ξ ζ ξζ 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 ξ η ξη 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 ζ 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 ξ 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 η 0
0 0 0 0 0 0 0 0 0 0 ζ 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 ξ 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 η




E2(ξ) =




ξ ξη ξζ 0 0 0 0 0 0
0 0 0 η ηζ ξη 0 0 0
0 0 0 0 0 0 ζ ηζ ξζ
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0




(93)
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