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Abstract.

Phase-field methods to regularize sharp interfaces represent a well established technique nowadays. In fracture
mechanics, recent works have shown the capability of the method for brittle as well as ductile problems
formulated within the fully non-linear regime [2, 3].

In this contribution, we propose a novel framework to simulate porous-ductile fracture in isotropic thermo-
elasto-plastic solids undergoing large deformations [1]. Therefore, a modified Gurson-Tvergaard-Needelman
GTN-type plasticity model is combined with a phase-field fracture approach to account for a temperature-
dependent growth of voids on micro-scale followed by crack initiation and propagation on macro-scale. The
multi-physical formulation is completed by the incorporation of an energy transfer into thermal field such that
on the other hand the temperature distribution depends on the evolution of the plastic strain and the crack
phase-field.

Eventually, a number of numerical investigations show not only the possibilities of the approach for a multi-
physical analysis of complex material behavior, but also the accordance with experimental results in terms of
hardening, necking, crack initiation and propagation. Moreover, a further example based on the third Sandia
Fracture Challenge is applied to demonstrate the capability of the model for the prediction of three-dimensional
fracture pattern in complex geometries.

Introduction

The analysis of crack initiation and propagation in ductile materials plays an important role in predicting
failure mechanisms for various engineering applications. The phase-field approach to fracture has been
proven to be a very powerful technique to simulate crack phenomena in multi-physical environments [2,
3]. The goal of this work is to present a theoretical and a computationally efficient framework for ductile,
porous materials undergoing thermomechanical loading conditions in order to study the influence of the
growth of micro-voids, as well as the final rupture at the macro-scale [1].

1 Governing equations

A theory for coupled thermomechanical response at fracture undergoing large deformations is outlined in
this section. The underlying, three-dimensional (d = 3) system leads to a multi-field setting with seven
fields

{ϕ, s, θ, α, rp,F p, f} , (1)

which are the deformation map, the crack phase-field, the absolute temperature and the four plastic
fields, which are the equivalent plastic strain, its dual hardening force, the plastic deformation gradient
and the void volume fraction. Here, the void volume fraction is defined as

f = 1− 1− f0

Jp
(2)
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and is assumed as a micro-mechanically motivated damage variable, related to the plastic deformation
gradient through its determinant Jp. f0 is the initial void volume fraction.

The deformation gradient F = F e F p and its determinant J = Je Jp are decomposed multiplicatively
into elastic and plastic parts. Moreover, the fracture insensitive isochoric and volumetric parts are given
by

˜̄F e =
∑
a

[
(Je)−1/dλe

a

]g(s)

na ⊗Na and J̃e =

{
(Je)g(s) if Je > 1

Je else
, (3)

postulating that fracture requires a local state of tensile/shear deformation. λea are the elastic principal
stretches, g(s) is a polynomial degradation function and na and Na are the principal directions of the
left and right stretch tensors.

1.1 Energetic response function

The stored energy function Ψ̂ for the coupled problem takes the form

Ψ̂ = Ψ̂e(F ,F p, s, θ) + Ψ̂θ(θ) + Ψ̂p(α,∇α, θ) + Ψ̂f(s,∇s,∆s), (4)

which reflects a coupling of gradient thermoplasticity with gradient damage mechanics. The isotropic
elastic contribution is decomposed

Ψ̂e = Ψ̂e
vol(J̃

e(J, Jp, s), θ) + Ψ̂e
dev( ˜̄F e(F ,F p, J, s)), (5)

into volumetric and deviatoric parts. As a representative constitutive law used for the numerical examples
we introduce the thermomechanically extended Neo-Hookean material model

Ψ̂e
vol(J̃

e, θ) =
κ

2

(
(J̃e)2 − 1

2
− ln[J̃e]

)
− 3

2
βκ(θ − θ0)

(
J̃e − 1

J̃e

)
(6)

and
Ψ̂e

dev( ˜̄F e) =
µ

2
( ˜̄F e : ˜̄F e − 3). (7)

Therein, µ > 0 and κ > 0 denote the shear modulus and the bulk modulus, respectively. θ0 is a reference
temperature and β is the linear thermal expansion coefficient.

The purely thermal contribution to the stored energy (4) is assumed to have the simple form

Ψ̂θ(θ) = c

(
θ − θ0 − θ ln

(
θ

θ0

))
, (8)

where c ≥ 0 is a constant parameter representing the specific heat capacity. Moreover, the Piola-Kirchhoff
heat flux vector can be defined as

Q(F , s, θ,∇θ) := −K(F , s, θ)∇θ (9)

to account for the heat transfer. This is known as Duhamel’s law of heat conduction, where K is the
material thermal conductivity tensor

K(F , s, θ) := [K0(1− wK(θ − θ0))(1− s) +Kconvs]C−1. (10)

Note that in case of fracture, the conduction degenerates locally such that we achieve a pure convection
problem and the heat transfer depends on the crack opening width. Here, we formulate the conductivity
tensor K in terms of the phase-field parameter s. Moreover, wK is a thermal softening parameter, K0

is a conductivity parameter related to the reference temperature, Kconv is a convection parameter and
C = FTF denotes the right Cauchy-Green tensor.

We focus on the equivalent plastic strain α and its gradient ∇α with the particular form for the energetic
contributions

Ψ̂p(α,∇α, θ) =

α∫
0

ŷ(α̃, θ) dα̃+ y0(θ)
l2p
2
‖∇α‖2 . (11)



Here, lp is a plastic length scale related to a strain-gradient hardening effect and accounts for size effects
to overcome the nonphysical mesh sensitivity of the localized plastic deformation in softening materials.
Moreover, ŷ(α, θ) is a temperature dependent isotropic local hardening function obtained form experi-
mental data.

The variational derivative of Ψ̂p with respect to α yields

rp := δαΨ̂p = ∂αΨ̂p −Div[∂∇αΨ̂p] (12)

reflecting the characteristics of the gradient-extended model under consideration.

Eventually, the phase-field fracture contribution has to be formulated. Therefore, the sharp-crack surface
topology Γ is replaced by a regularized functional

Γl(s) =

∫
B0

γ̂(s,∇s,∆s) dV with γ̂(s,∇s,∆s) =
1

4lf
s2 +

lf
2
‖∇s‖2 +

l3f
4

(∆s)2. (13)

The functional is based on the crack surface density function γ̂ per unit volume of the solid and the
fracture length scale parameter lf that governs the regularization. Note that in the limit lf → 0, the
regularized crack surface functional Γl(s) converges to the sharp crack surface Γ. For ductile fracture, we
require additionally that lp ≥ lf . For the given fracture surface functional introduced in (13), we define
the critical energy required to create a diffusive fracture topology by

W cr =

∫
B0

ĝc(α) γ̂(s,∇s,∆s) dV, (14)

in terms of the Griffith-type critical energy release rate ĝc, which is decomposed additively into elastic
and plastic contributions ĝc(α) = gc,p + gc,eexp[−ωfα], using the modeling parameters {gc,e, gc,p, ωf}.
Summarized, the phase-field fracture contribution is given in terms of the crack-density function as

Ψ̂f(s,∇s,∆s) = ĝc(α) γ̂(s,∇s,∆s)

=
ĝc(α)

4lf
s2 +

ĝc(α) lf
2
∇s · ∇s +

ĝc(α) l3f
4

(∆s)2
(15)

which defines the crack resistance force via the variational derivative with respect to s

rf := δsΨ̂
f = ∂sΨ̂

f −Div[∂∇sΨ̂
f ] + ∆[∂∆sΨ̂

f ]. (16)

1.2 Dissipative response function

Regarding the plastic material behavior, we postulate a modified Gurson model for porous plasticity as

Φ̂p(τ , rp) =
σ2

eq

rp2 + 2q1fcosh

[
3

2
q2
p

rp

]
−
(
1 + (q1f)2

)
(17)

in terms of the Kirchhoff stress which is related to the Cauchy stress by σ = τ/J and the dissipative
resistance force rp. Here, σeq =

√
3/2 ‖τ dev/J‖ represents the von Mises equivalent stress, whereas

p = 1
3 tr[τ/J ] denotes the local pressure along with the growth-based void volume fraction f and fitting

parameters q1 ≈ 1.5 and q2 ≈ 1.0.

On the fracture part, we define a crack threshold function Φ̂f based on the constitutive representation

Φ̂f(H− rf) = H− rf , (18)

where the energetic driving force H is bounded by the crack resistance force rf dual to the fracture
phase-field s.

The associated plastic evolution equations are defined as dp = λp ∂Φ̂p

∂τ and α̇ = −λp ∂Φ̂p

∂rp , whereas the
evolution equation for the crack phase-field reads ṡ = λf ∂Φ̂f

∂(H−rf ) .

Eventually, we define the internal dissipation density function Dint := νp τ : dp + νf Hṡ, where νp is a
constant dissipation factor typically chosen in the range of 85% to 95% in the context of thermoplasticity.
In addition, νf is introduced as fracture dissipation factor based on the discussions related to an energy
transfer into the thermal field in [4] and the references therein.



2 Numerical Example

To illustrate the performance and applicability of the thermo-porous ductile fracture model to complex
three-dimensional geometries, a numerical example is considered in this section. Therefore, we adopt
CAD data from the third Sandia Fracture Challenge and apply the steel like material setting given.
Within the quasi-static simulation setting, the lower end of the hollow body is fixed in space while the
upper end is moved upwards. No heat in- or outflow is allowed. Figure 1 shows the von Misses residual
stress distribution within the deformed configuration on fully ruptured state, where the fractured regions
with g < 0.15 are removed from the contour plot for visualization purposes.

Figure 1. Third SFC. Von Mises stress distribution at fully ruptured state.
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