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Abstract — Computer methods for flexible multibody dynamics that are able to treat large deformation
phenomena are important for specific applications such as contact problems. From a mechanical point of
view, large deformation phenomena are formulated in the framework of nonlinear continuum mechanics.
Computer methods for large deformation problems typicallyrely on the nonlinear finite element method.
On the other hand classical formalisms for multibody dynamics are based on rigid bodies. Their exten-
sion to flexible multibody systems is typically restricted to linear elastic behavior. In the present work
the nonlinear finite element method is extended such that thesimulation of flexible multibody dynamics
including large deformation phenomena can be handled successfully.
Key-words — Flexible multibody dynamics, geometrically exact beams and shells, natural coordinates,
structure-preserving time integration, application of torques, large deformation contact.

1 Introduction

In the present work we address computer methods that can handle large deformations in the context
of multibody systems. In particular, the link between nonlinear continuum mechanics and multibody
systems is facilitated by a specific formulation of rigid body dynamics (Betsch & Steinmann [1]). This
formulation is closely related to the notion of natural coordinates (García de Jalón [2]). Our approach
makes possible the incorporation of state-of-the-art computer methods for large deformation problems.
Examples are arbitrary constitutive models (Groß & Betsch [3]), geometrically exact beams (Ibrahimbe-
gović & Mamouri [4]) and shells (Betsch & Sänger [5]), domain decomposition (Hesch & Betsch [6]),
and large deformation contact (Hesch & Betsch [7]).

Energy and momentum consistent numerical methods for this kind of problems offer superior stabil-
ity and robustness properties (Ibrahimbegović et al. [8]). Our approach relies on a uniform formulation
of discrete mechanical systems such as rigid bodies and semi-discrete flexible bodies resulting from a fi-
nite element discretization of the underlying nonlinear continuum formulation. The uniform formulation
results in discrete equations of motion assuming the form ofdifferential-algebraic equations (DAEs). A
constant inertia matrix is a characteristic feature of the present DAEs. In particular, the simple DAE struc-
ture makes possible the design of structure-preserving time-stepping schemes such as energy-momentum
schemes and momentum-symplectic integrators (Leyendecker et al. [9], Betsch et al. [10]).

A further advantage of the present treatment of flexible and rigid bodies is that flexible multibody
systems can be implemented in a very systematic way. In fact,the present approach leads to a general-
ization of the standard finite element assembly procedure. The generalized assembly procedure makes
possible the incorporation of both arbitrary nonlinear finite element formulations and multibody features
such as joints.

On the other hand the nonstandard description of rigid bodies requires some care concerning the
consistent application of actuating forces. The present rigid body formulation falls into the framework
of natural coordinates which have a long tradition in multibody system dynamics (see García de Jalón
[2] and the references cited therein). By definition, natural coordinates are comprised of Cartesian com-
ponents of unit vectors and Cartesian coordinates. It is worth noting that our specific choice of natural
coordinates (Betsch & Steinmann [1]) has its roots in theoretical mechanics (Saletan & Cromer [11, Ch.
5]).
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Using natural coordinates, the application of external torques becomes an issue since conjugate co-
ordinates are not available. One way to resolve this issue isthe introduction of additional coordinates
which are appended to the natural coordinates via specific algebraic constraints, see, for example, Gar-
cía de Jalón [2] and Uhlar & Betsch [12]. Alternatively, the redundant forces conjugate to the natural
coordinates can used to take into account the action of external torques. In the present work we focus on
this approach. In particular, we show that the use of skew coordinates for the description of rigid body
dynamics paves the way for the consistent time discretization of the equations of motion. The present
approach has been guided by the close connection between natural coordinates and the theory of Cosserat
points (Rubin [13]).

An outline of the rest of the paper is as follows. In Section 2 the equations of motion providing the
framework for the present description of flexible multibodysystems are summarized. The formulation
of rigid body dynamics in terms of natural coordinates is dealt with in Section 3. The extension of
the present approach to multibody dynamics is illustrated in Section 4 with the formulation of lower
kinematic pairs. After a summary of the main features of the present approach in Section 5, the structure-
preserving discretization in time is dealt with in Section 6. Section 7 comments on the inclusion of large
deformation contact. To demonstrate the capability of the proposed method three numerical examples
are presented in Section 8. Eventually, conclusions are drawn in Section 9.

2 Equations of motion

We start with the equations of motion pertaining to a finite-dimensional mechanical system subject to
holonomic constraints. From the outset we confine ourselfs to mechanical systems whose kinetic energy
can be written as

T(q̇) =
1
2
q̇ ·Mq̇ (1)

Here,q ∈ R
n is the vector of redundant coordinates and a superposed dot denotes the derivative with

respect to time. MoreoverM ∈Rn×n is aconstantmass matrix. As has been outlined in the Introduction
a constant mass matrix is a consequence of the use of natural coordinates for the description of spatial
multibody systems. The equations of motion pertaining to the discrete mechanical systems of interest
can be written in variational form

Gδ = δq ·
(

Mq̈+
m

∑
l=1

λl ∇gl (q)−F
)

= 0 (2)

which has to be satisfied for arbitraryδq ∈ R
n. The last equation has to be supplemented with algebraic

constraint equationsgl (q) = 0, 1≤ l ≤m. The associated constraint forces assume the form∑λl ∇gl (q),
whereλl are Lagrange multipliers. The last term in (2) accounts for external forcing. For simplicity of
exposition we do not distinguish between forces that can be derived from potentials and nonpotential
forces. Note, however, that we may replaceF ∈ R

n in (2) with

F → F −∇U(q) (3)

Then, the potential forces are derived from a potential function U(q), and the nonpotential forces are
contained inF . Due to the presence of algebraic constraints the equationsof motion assume the form of
differential-algebraic equations (DAEs). The configuration space of the constrained mechanical systems
under consideration is defined by

Q= {q ∈ R
n|gl (q) = 0, 1≤ l ≤m} (4)

Throughout this work we assume that the constraints are independent. Consequently, the vectors∇gl (q)∈
R

n are linearly independent forq ∈ Q. Due to the presence ofm geometric constraints the discrete me-
chanical system under consideration hasn−m degrees of freedom. Admissible variationsδq have to
belong to the tangent space toQ atq ∈ Q given by

TqQ= {v ∈ R
n|∇gl (q) ·v = 0, 1≤ l ≤m} (5)
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Remark 2.1 The variational form (2) of the equations of motion is equivalent to Lagrange’s equations
(of the first kind), which may be linked to the Lagrange-d’Alembert principle

δ
tN∫

t0

(

T(q̇)−
m

∑
l=1

λl gl (q)
)

dt+

tN∫

t0

δq ·F dt = 0 (6)

The Lagrange-d’Alembert principle can be viewed as an extension of Hamilton’s principle to account
for external forcing, see Marsden & Ratiu [14].

Remark 2.2 In the above descriptionF ∈ R
n is loosely termed ‘external force vector’. In a multibody

system formulated in terms of natural coordinates each individual component ofF refers to a specific
rigid body (see Section 3 for further details) or a specific node of the finite element discretization of a
flexible beam or shell component. Thus the action of joint-forces can be respresented by components of
F , although joint-forces are internal forces (or torques) from the multibody system perspective. If the
external force components are to represent joint-forces Newton’s third (or action-reaction) law has to be
obeyed.

3 Rigid body dynamics in terms of skew coordinates
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Figure 1: Planar sketch of the rigid body.

We next present a reformulation of the original formulationof rigid body dynamics (Betsch & Stein-
mann [1]) and Saletan & Cromer [11, Ch. 5]) in terms of skew coordinates. The use of skew coordinates
turns out to be beneficial to the formulation and consistent numerical discretization of external torques.
In the following we use convected coordinatesθi to label a material point belonging to the rigid body
(Fig. 1). The position of a material point at timet can be described by

x=χ(θi , t) =ϕ(t)+θidi(t) (7)

whereϕ= ϕiei is a reference point fixed in the body anddi = (di) je j are director vectors1. Due to the
kinematic relation (7), the covariant base vectors coincide with the directors, i.e.gi = ∂x/∂θi = di . For
the time being the directorsdi can be regarded as base vectors that need not be of unit lengthnor mutually
orthogonal. As mentioned before, the present use of skew coordinates can be viewed as generalization of
previous rigid body formulations relying on the componentsof the direction-cosine matrix (see Saletan

1Note that the summation convention applies to lower case roman indices occuring twice in a term. They generally range
from one to three.
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& Cromer [11, Ch. 5] and Betsch & Steinmann [1]). This generalization turns out to be advantageous
for the discretization in time dealt with in Section 6. We further assume

d
1
2 = d1 · (d2×d3)> 0 (8)

Additional constraints will be imposed in the sequel to enforce the rigid body assumption. In addition to
the covariant base vectors we introduce contravariant basevectors

di = d−
1
2 (d j ×dk) (9)

for even permutations of the indices(i, j,k). Consequently,di · d j = δi
j , the Kronecker delta. In the

following the contravariant base vectorsdi will be called covariant directors.
The kinematic relationship (7) indicates that the configuration of a single rigid body can be described

by n= 12 coordinates that can be arranged in the configuration vector

q =









ϕ

d1

d2

d3









(10)

To calculate the mass matrixM ∈R
12×12 we consider the continuum expression for the kinetic energy

T =
1
2

∫
B0

ρ0v ·vD
1
2 d3θ (11)

whereB0 denotes the reference configuration of the body at timet = 0. Correspondingly,ρ0 : B0→ R+

is the reference mass density andD = d(0), whered(t) is given by (8). The material velocityv can be
calculated from (7):

v =
∂
∂t
χ(θi , t) = vϕ(t)+θivi(t) (12)

Herevϕ = ϕ̇ is the velocity of the point of reference andvi = ḋi will be referred to as director velocities.
Inserting the last equation into (11) a straightforward calculation yields the kinetic energy in the form

T =
1
2

Mϕvϕ ·vϕ +eivϕ ·vi +
1
2

Ei jvi ·v j (13)

In the last equation the total massMϕ and the director inertia coefficientsei , Ei j are defined by

Mϕ =

∫
B0

ρ0D
1
2 d3θ , ei =

∫
B0

θiρ0D
1
2 d3θ , Ei j =

∫
B0

θiθ jρ0D
1
2 d3θ (14)

Note that that all of the inertia coefficients are independent of time thus leading to a constant 12× 12
mass matrix given by

M =









MϕI e1I e2I e3I

e1I E11I E12I E13I

e2I E21I E22I E23I

e3I E31I E32I E33I









(15)

To determine the external force vectorF in (2), we consider the virtual work of the external forces given
by δW = δq ·F . For simplicity we assume that in addition to a body force perunit mass,b(θi , t), a single
force vectorf(t) is applied to the material pointΘi . Accordingly,

δW =
∫
B0

δx·bρ0D
1
2 d3θ+δx(Θi) ·f(t) (16)

With regard to (7), virtual displacements can be written asδx= δϕ+θiδdi . Accordingly, (16) gives rise
to

δW = δϕ ·fϕ +δdi ·f
i (17)
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where the resultant force vector is given by

fϕ =

∫
B0

bρ0D
1
2 d3θ+f (18)

and the resultant director forces assume the form

f i =
∫
B0

θibρ0D
1
2 d3θ+Θif (19)

Note that the resultant force vectorfϕ and the resultant director forcesf i are conjugate toϕ and the
directorsdi . Similar to the configuration vector (10) of the rigid body, the vector of the external forces
featuring in the equations of motion (2) can be written as

F =









fϕ
f1

f2

f3









(20)

The equations of motion pertaining to the rigid body can now be written in the variational form

δϕ ·
{

Mϕv̇ϕ +eiv̇i +fc−fϕ
}

= 0

δdi ·
{

Ei j v̇ j +eiv̇ϕ +f i
c−f i}= 0

(21)

Here,fc andf i
c stand for the constraint forces and the constraint directorforces, respectively. For the

free rigid body,fc = 0. The specific form of the constraint director forces will be dealt with in the sequel.

3.1 Rigid body constraints

The rigid body assumption can be incorporated into the present formulation by excluding deformation
of the director triad{di}. This goal can be achieved by providing the following six constraint functions

g1 =
1
2(d1 ·d1−c1) g2 =

1
2(d2 ·d2−c2) g3 =

1
2(d3 ·d3−c3)

g4 = d1 ·d2−c4 g5 = d1 ·d3−c5 g6 = d2 ·d3−c6
(22)

whereci (i = 1, . . . ,6) are constant parameters to be specified in the reference configuration. The cor-
responding constraint equationsgi = 0 have to be satisfied at all times. With regard to (4), the six in-
dependent constraints (22) determine the configuration manifold Qfree of the free rigid body. It is worth
mentioning that the associated tangent space (5) is given by

TqQ
free= {vϕ ∈ R

3,vi ∈ R
3(i = 1,2,3) |vi = ω×di , ω ∈ R

3} (23)

whereω ∈ R
3 can be interpreted as angular velocity.

3.2 Balance laws

Next we elaborate on the fundamental mechanical balance laws in the context of the free rigid body.
First, we consider thebalance law for linear momentum. Introducingδϕ = ξ, whereξ ∈ R

3 is a
constant vector, together withδdi = 0 into (21), a straigthforward calculation gives

d
dt
L= fϕ (24)

Here, the total linear momentum of the rigid body is given byL = Mϕvϕ + eivi, and, as before, the
right-hand side of (24) characterizes the resultant external force applied to the rigid body.

Concerning thebalance law for angular momentum, substituteδϕ= ξ×ϕ along withδdi = ξ×di

into (21) and subsequently take the sum of both equations. This procedure yields

ξ ·
[

ϕ×{Mϕv̇ϕ +eiv̇i−fϕ}+di×{E
i j v̇ j +eiv̇ϕ +f i

c−f i}
]

= 0 (25)
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Since for the free rigid body (21) has to hold for arbitaryδϕ ∈ R
3 andδdi ∈ R

3 (i = 1,2,3), the last
equation yields the reduced form of the balance of angular momentum

di ×f i
c = 0 (26)

This condition places three restrictions on the constraintdirector forcesf i
c. Expressing the constraint

director forces with respect to the director basis

f i
c = Λi jd j (27)

condition (26) yieldsΛi jdi × d j = 0. Due to the skew-symmetriy of the cross product, we get the
symmetry propertyΛi j = Λ ji . Accordingly, there remain only six indpendent componentsΛi j for the
specification of the constraint director forces. In particular, the six independent constraints (22) of rigidity
yield constraint director forces of the form

f i
c =

6

∑
l=1

λl ∇di gl (28)

Combining (27) and (28), the componentsΛi j can be connected to the Lagrange multipliers:

[Λi j ] =





λ1 λ4 λ5

λ4 λ2 λ6

λ5 λ6 λ3



 (29)

Returning to (25) and taking into account (26), we further get

ξ ·

[

ϕ×
d
dt
{Mϕvϕ +eivi}+di×

d
dt
{Ei jv j +eivϕ}−{ϕ×fϕ+di×f i}

]

= 0 (30)

The last equation can be recast in the form

d
dt
J =ϕ×fϕ+di×f i (31)

where
J =ϕ×{Mϕvϕ +eivi}+di×{E

i jv j +eivϕ} (32)

is the total angular momentum of the rigid body with respect to the origin of the inertial frame of refer-
ence. The right-hand side of (31) equals the resultant external torque about the origin. Note that

di×f i =m (33)

can be identified as the resultant external torque relative to the point of reference of the rigid body.
We eventually turn to thebalance of energy. Substitutingvϕ for δϕ andvi for δdi , (21) leads to

vϕ ·
{

Mϕv̇ϕ +eiv̇i
}

= fϕ ·vϕ

vi ·
{

Ei j v̇ j +eiv̇ϕ
}

= f i ·vi−f i
c ·vi

(34)

Note that the director velocities have to belong to the tangent space (23). This implies the relationship
vi = ω×di, whereω ∈ R

3 is the angular velocity. Accordingly,

f i
c ·vi = f i

c · (ω×di) = ω · (di ×f i
c) = 0 (35)

where condition (26) has been used. The last equation conveys the well-known fact that constraint forces
are workless. Taking the sum of both equations in (34) yieldsthe balance of energy

d
dt

T = Pext (36)

where
Pext = fϕ ·vϕ +f i ·vi (37)

denotes the power of the external forces acting on the rigid body. It is worth noting that the last equation
can also be written in the form

Pext = fϕ ·vϕ +m ·ω (38)

where the relationshipvi = ω×di along with definition (33) of the resultant external torque relative to
the point of reference of the rigid body have been used.

6



3.3 Application of external torques

It can be concluded from (38) that the resultant external torquem is conjugate to the angular velocity
ω. In contrast to that, the formulation in terms of natural coordinates relies on the resultant external
director forcesf i which are conjugate to the director velocitiesvi, see (37). Using natural coordinates
the question arises how the application of external torquescan be realized. To answer this question we
start with the kinematic relationshipvi =ω×di and calculate

di ×vi = di × (ω×di)

=
{

(di ·di)I−di⊗di}ω

= 2ω

(39)

Using this result, the work done by the external torquem can be written as

m ·ω =
1
2
m · (di×vi)

=
1
2
vi · (m×di)

(40)

Since, with regard to (37), the corresponding work expression in terms of natural coordinates is given by
vi ·f

i, the external director forces assume the form

f i =
1
2
m×di (41)

This expression can be used to realize the application of an external torquem.

4 Kinematic pairs in terms of natural coordinates

We next illustrate the formulation of kinematic pairs with the example of a cylindrical pair (Fig. 2). To
this end we consider two rigid bodies formulated in terms of natural coordinates as outlined in Section 3.
Accordingly, the configuration of the two-body system underconsideration is characterized by redundant
coordinates

q =

[

1q
2q

]

where αq =









αϕ
αd1
αd2
αd3









(42)

Note that the contribution of bodyα to the configuration vector coincides with (10). The equations of
motion pertaining to the constrained mechanical system at hand can again be formulated as outlined in
Section 2. Similar to (42), the contribution of each rigid body to the external forces leads to the system
vector

F =

[

1F
2F

]

where αF =









αfϕ
αf1

αf2

αf3









(43)

Note that the force vectorαF associated with bodyα coincides with (10).

4.1 Initialization of kinematic relationships

To describe the motion of the second body relative to the firstone we introduce orthonormal body-
fixed triads{αd′i} in such a way that the unit vectorsαd′3 are parallel to the axis of the cylindrical pair
(Fig. 2). Moreover, we choose the two orthonormal triads to coincide in the initial configuration, i.e.
1d′i(0) =

2d′i(0). The connection between the newly introduced orthonormal triads{αd′i} and the original
triads{αdi} (i.e. the natural coordinates) is given by

αR′ = αF αΛ0 (44)
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1ϕ

2ϕ
{1di}

{2di}

1ϕ′

2ϕ′

1d′3

1d′1

1d′2

2d′3

2d′1

2d′2

e1

e2

e3

Figure 2: Sketch of the cylindrical pair: Natural coordinates(αϕ,{αdi}) characterizing the current con-
figurationαBt of rigid bodyα. The additional systems(αϕ′,{αd′i}) are introduced for the description of
the motion of the second body relative to the first body (translation along and rotation about1d′3 =

2d′3).
The connection between(αϕ′,{αd′i}) and the natural coordinates(αϕ,{αdi}) is defined in the initial
configuration of the multibody system.

where
αF = αdi ⊗ei and αR′ = αd′i ⊗ei (45)

The constant tensorsαΛ0 in (44) are calculated in the initial configuration via

αΛ0 =
αF−1(0)αR′(0) (46)

The origin of the newly introduced orthonormal triads{αd′i} is fixed at material pointsαΘi whose place-
ment in the current configurationαBt of rigid bodyα is denoted byαϕ′. Accordingly, making use of the
rigid body kinematics (7),

αϕ′ = αϕ+ αΘi αdi (47)

Note that the location of the material pointsαΘi has to be specified during initialization.

4.2 Configuration space of the cylindrical pair

The configuration space of the cylindrical pair can be easilydefined by distinguishing between internal
constraints due the assumption of rigidity and external constraints due to the interconnection between the
rigid bodies in a multibody system (see Betsch & Steinmann [15]). Accordingly, the present description
of the cylindrical pair relies onn= 24 natural coordinates subject to 12 internal constraintsgint(αq) = 0

(α = 1,2), wheregint : R12→ R
6 follows from (22), and 4 external constraints associated with the

constraint functions

gext
P (q) =

[

1d′1 ·
(

2ϕ′− 1ϕ′
)

1d′2 ·
(

2ϕ′− 1ϕ′
)

]

(48)

and

gext
R (q) =

[

1d′1 ·
2d′3

1d′2 ·
2d′3

]

(49)

To summarize, we haven= 24 coordinates subject tom= 16 constraints which can be assembled in the
constraint functiongC : R24→ R

16 given by

gC(q) =









gint(1q)
gint(2q)
gext

P (q)
gext

R (q)









(50)
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Consequently, the configuration space of the cylindrical pair is defined by

QC = {q ∈ R
24|gC(q) = 0} (51)

5 Main features of natural coordinates

Before we deal with the discretization in time we summarize main features of the formulation of flex-
ible multibody dynamics in terms of natural coordinates. Inthis connection it is important to note that
geometrically exact models for beams and shells fit perfectly well into the present framework. In partiu-
cular, if the nonlinear beam and shell formulations are discretized in space as proposed by Betsch et al.
[16, 17, 5], the equations of motion pertaining to the resulting discrete mechanical systems fit into the
framework outlined in Section 2. Thus the use of natural coordinates makes possible a uniform formu-
lation of flexible multibody dynamics2. Main characteristics of the present approach can be summarized
as follows:

1. The inertia parameters are always constant leading to thesimple structure of the inertia terms in the
equations of motion (see Section 2). In particular, the differential part of the equations of motion
can be written as

Mq̈+∇Vλ(q)−F = 0 (52)

where the potential forces along with the constraint forcescan be derived from an augmented
potential function of the form

Vλ(q) =U(q)+
m

∑
l=1

λl ∇gl (q) (53)

For example, the potential functionU(q) can be associated with the action of gravitational forces
or with the deformation of elastic components such as flexible beams and shells.

2. The configuration vector of the complete flexible multibody system is composed of vectorsqI ∈R
3

and thus given by

q =











q1

q2
...

qN











(54)

Accordingly, in total, the configuration vectorq ∈ R
n hasn= 3N components.

3. The total angular momentum of the flexible multibody systems can be cast in the form

J =
N

∑
a,b=1

Mabqa×vb (55)

whereMab contain the constant inertia parameters andvb = q̇b.

4. The balance of angular momentum can be written as

d
dt
J =

N

∑
a=1

qa× (F a−∇qaVλ(q)) (56)

Needless to say that these features have a strong impact on the discretization in time.

2The present framework comprises as well domain decomposition problems (see Hesch & Betsch [6]) and large deformation
contact (see Hesch & Betsch [7, 18, 19])
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6 Structure-preserving discretization in time

In this section we comment on the time integration method applied to the constrained mechanical sys-
tems at hand. The specific structure-preserving scheme is second-order accurate and relies on previous
works by Betsch & Steinmann [20] and Gonzalez [21]. If the underlying mechanical system is conser-
vative, the present integrator conserves the total energy of the system. In addition to that, if the systems
has symmetry, the present scheme conserves the associated momentum map. We won’t dwell on the
algorithmic conservation properties in the present work. Instead, we focus on the implications of natural
coorinates for the numerical time integration.

Consider a representative time interval[tn, tn+1] with time step∆t = tn+1− tn, and given state-space
coordinatesqn ∈ Q andvn ∈ R

n at timetn. Concerning the initial values att0 we assumeq0 ∈ Q and
v0∈ TqQ. The resulting algebraic problem to be solved is stated as follows: Find(qn+1,vn+1)∈R

n×R
n

andλn,n+1 ∈R
m as the solution of the algebraic system of equations

qan+1−qan =
∆t
2
(van +van+1)

N

∑
b=1

Mab(vbn+1−vbn

)

= ∆t
(

F a
n+ 1

2
−∇qaVλ(qn,qn+1)

)

g(qn+1) = 0

(57)

for a = 1, . . . ,N . In (57), ∇qaVλ(qn,qn+1) denotes a discrete derivative of the augmented potential
functionVλ : Rn 7→ R in the sense of Gonzalez [22].

6.1 Rigid body constraints

Concerning the rigid body constraints dealt with in Section3.1, we choose

c1 = c2 = c3 = 1

c4 = c5 = c6 = 0
(58)

In the continuous setting this choice of parameters is equivalent to the orthonormality of the director triad
{di(t)} at all times. That is, in the continuos setting,di(t) ·d j (t) = δi j . However, using the mid-point
approximation

di
n+ 1

2
=

1
2
(din +din+1) (59)

in general destroys the orthonormality property, althoughit is still satisfied at the discrete timestn and
tn+1 due to (57)3. That is,

di
n+ 1

2
·di

n+ 1
2
6= δi j (60)

This implies that the mid-point directors represent base vectors that in general are not of unit length nor
mutually orthogonal.

6.2 Consistent application of external torques

Since the rigid body formulation described in Section 3 relies on skew coordinates, property (60) does
not cause any difficulties. In particular, it is obvious from(41), that the director forces due to an external
torque which enter the external force vectorF a

n+ 1
2

in (57)2 are given by

f i
n+ 1

2
=

1
2
mn+ 1

2
×di

n+ 1
2

(61)

Here,mn+ 1
2

represents an external torque applied in the time interval[tn, tn+1], anddi
n+ 1

2
are contravariant

mid-point directors that can be calculated from (9) such that property

di
n+ 1

2
·d j

n+ 1
2
= δi

j (62)
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holds. It can be easily verified that the discrete balance of angular momentum can be written as

Jn+1−Jn = ∆t
N

∑
a=1

qa
n+ 1

2
×
(

F a
n+ 1

2
−∇qaVλ(qn,qn+1)

)

(63)

Note that the last equation can be viewed as discrete counterpart of the continuous version (56). If only
one single rigid body is considered, (63) can be regarded as discrete counterpart of (31), where (3) has to
be taken into account. Focusing on the contribution of the director forces (61) due to an external torque,
for one single rigid body (63) yields

Jn+1−Jn = ∆t
4

∑
a=1

qa
n+ 1

2
×F a

n+ 1
2

= ∆tdi
n+ 1

2
×f i

n+ 1
2

=
∆t
2
di

n+ 1
2
×
(

mn+ 1
2
×di

n+ 1
2

)

= ∆t
(

(di
n+ 1

2
·di

n+ 1
2
)mn+ 1

2
− (di

n+ 1
2
·mn+ 1

2
)di

n+ 1
2

)

= ∆tmn+ 1
2

(64)

Consequently, formula (61) guarantees that external torques are properly applied in the discrete setting.
Formula (61) has originally been proposed in Betsch et al. [23]. However this work does not rely on skew
coordinates for the description of rigid bodies. Contravariant mid-point directors have been introduced
in [23, Sec. 4.3] to remedy the lack of angular momentum consistency in the discrete setting.

7 Inclusion of large deformation contact

The present framework for flexible multibody dynamics accomodates contemporary nonlinear finite el-
ements and thus can be directly applied to large-deformation contact problems. In particular, unilateral
contact constraints can be formulated as a set of inequalityconstraints which can be rewritten as equal-
ity constraints using a standard active set strategy. The node-to-surface (NTS) method (see Hesch &
Betsch [18] for details) can be considered the prevailing method for contact problems in the context of
finite elements. Actual developments extend the collocation-type NTS method to a variationally consis-
tent formulation known as mortar contact method (see Hesch &Betsch [7, 19]). For both methods, the
classical Karush-Kuhn-Tucker conditions read

gcon≤ 0, λcon≥ 0, gconλcon= 0 (65)

which can be rewritten as

g̃con= λcon−max{0,λcon−cgcon}, c> 0 (66)

This formulation makes possible a very efficient computer implementation of the active set strategy. We
refer to [7, 19] for a full account on the present formulationof large deformation contact problems.
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8 Numerical examples

8.1 Spacecraft attitude maneuver

In the first numerical example we demonstrate the importanceof formula (61) for the consistent applica-
tion of external torques. To this end we apply the present approach to the control of spacecraft rotational
maneuvers.

Figure 3: The spacecraft as 4-body system.

The spacecraft is modeled as multibody system consisting offour rigid bodies (Fig. 3), namely the
base body and three reaction wheels. A similar example has been dealt with in Leyendecker et al. [24].
The data for the present 4-body system have been taken from [24]. Using principle axis for each rigid
body the data used in the simulations are summarized in Table1.

body Mϕ E11 E22 E33 L
1 1005.3096 89.3609 201.0619 357.4434
2 424.1150 8.8357 106.0288 106.0288 0.9167
3 424.1150 106.0288 8.8357 106.0288 1.25
4 424.1150 106.0288 106.0288 8.8357 1.5833

Table 1: Spacecraft: Data for the 4-body system. Note thatL denotes the distance between the center of
mass of the reaction wheels and the base body.

The reaction wheels are spinning about body-fixed axis of thebase body. For simplicity the three
body-fixed axis are assumed to coincide with the director frame {1di} of the base body. Spacecraft
attitude maneuvers are performed by applying reaction wheel motor torques

2m= (u1)1d1 ,
3m= (u2)1d2 ,

4m= (u3)1d3 (67)

In the example we prescribe constant motor torquesui = 200.
A total of n = 48 natural coordinates is employed to describe the multibody system at hand. Each

body is subject to 6 rigid body constraints (22) and (58), giving rise tomint = 24 internal constraints.
Revolute joints are used to connect the reaction wheels to the base body. This amounts tomext = 3×5=
15 external constraints. Accordingly, in total there arem= mint +mext = 39 independent constraints
leading ton−m= 9 degrees of freedom.

The newly devised formula (61) has been used to consistentlyapply the motor torques to the reaction
wheels. In this connection Remark 2.2 has been taken into account. That is, the torque acting on the base
body is given by

1m=−
(2m+ 3m+ 4m

)

(68)

Since no resultant external torque acts on the spacecraft, the total angular momentum is a first integral of
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the motion. This can be verified along the lines of Section 6.2. In particular,

Jn+1−Jn = ∆t
12

∑
a=1

qa
n+ 1

2
×F a

n+ 1
2

= ∆t
4

∑
b=1

bdi
n+ 1

2
× bf i

n+ 1
2

=
∆t
2

4

∑
b=1

bdi
n+ 1

2
×
(

bmn+ 1
2
×bdi

n+ 1
2

)

= ∆t
4

∑
b=1

(

(bdi
n+ 1

2
· bdi

n+ 1
2
)bmn+ 1

2
− (bdi

n+ 1
2
· bmn+ 1

2
)bdi

n+ 1
2

)

= ∆t
4

∑
b=1

bmn+ 1
2

= 0

(69)

In the numerical simulation we focus on the 3-componentJ3 of the total angular momentum and the total
kinetic energyT of the multibody system at hand. The numerical results due tothe application of the
newly devised formula (61) are denoted byJkontra

3 andTkontra.
For comparison we apply the motor torques via the straightforward mid-point evaluation of the con-

tinuous expression of the ‘original’ formulation (see [23])

fi
n+ 1

2
=

1
2
mn+ 1

2
×di

n+ 1
2

(70)

The corresponding results are denoted byJkov
3 andTkov.

A number ofN time steps is used to resolve the time interval[0,5]. It can be observed from Fig.
4 thatJkontra

3 stays constant for allN. This corroborates algorithmic conservation of the total angular
momentum. In severe contrast to thatJkov

3 does not stay constant. Accordingly the balance law for
angular momentum is violated. This discretization error can be decreased by raising the number of time
stepsN. These observations are further supported by considering the total kinetic energy in Fig. 5.
Accordingly, Tkontra does hardly change if the time steps are refined. That is, using only N = 5 time
steps already leads to a very good approximation of the kinetic energy. This is in severe contrast toTkov.
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J
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J
3
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J
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Figure 4: Spacecraft: Comparison of angular momentum.
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Figure 5: Spacecraft: Comparison of kinetic energy.

8.2 Lightweight robot applied to the mounting of flexible cables

The second example deals with a multibody model of the KUKA-DLR LightWeight Robot (LWR)
(Bischoff et al. [25]) applied to the manipulation of highlyflexible cables (Fig. 6). The LWR is mod-
elled as multibody system with seven revolute joints. On theother hand the flexible cable is formulated
as geometrically exact beam connected to a plug which itselfis modelled as rigid body. The right end of
the cable is clamped to a rigid block fixed in space.

In the forward simulation the end-effector grips the plug atthe left end of the cable and subsequently
bends the cable leading to large deformations. The joint-torques of the LWR are prescribed by applying
the approach described in Section 6.2. Snapshots ot the motion are depicted in Fig. 7. In addition to that,
in Fig. 8 the evolution of the total mechanical energy is shown along with the potential energy (due to
gravity) and the strain energy stored in the cable.

i ai αi di θi

0 0 0 0 0
1 0 90 310 0
2 0 −90 0 0
3 0 −90 400 0
4 0 90 0 0
5 0 90 390 0
6 0 −90 0 0
7 0 0 0 0

fixed bearing→

← nonlinear beam

տ
plug

← robot

Figure 6: Hartenberg-Denavit parameters of the lightweight robot (left) and components of the flexible
multibody system (right).
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Figure 7: Snapshots of the motion fort ∈ {0,1,2,5,6,7,10,12}.
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Figure 8: Energy evolution of the flexible multibody system:total energyEtot, potential energyEpot and
internal strain energyEint.
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8.3 Tennis player

shells

beams

Figure 9: Multibody system with flexible compo-
nents.

0,0 0,5 1,0 1,5 2,0 2,5 3,0
0,0
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0,6

0,8

1,0

t

E

Impact→

Figure 10: Strain energy of flexible components.

The last numerical example deals with the flexible multibodysystem depicted in Fig. 9. This example
demonstrates the inclusion of geometrically exact beams and shells as well as large deformation contact
within the present framework for flexible multibody dynamics. The model of a tennis player consists
of 19 rigid bodies, whereas the tennis racket is modeled withnonlinear beams and shells (see Fig. 9).
Shell elements are also used for modeling the tennis ball. The motion of the tennis player himself is
prescribed (fully actuated). Due to the presence of the flexible tennis racket the whole system is highly
underactuated. The motion of the system until the onset of contact between the tennis ball and the racket
is illustrated with some snapshots in Fig. 11. The impact of the tennis ball on the racket leads to large
deformations accompanied with a sudden increase of the strain energy (Fig. 10).

9 Conclusions

Natural coordinates allow for a systematic description of complex multibody systems. In this connec-
tion, the specific rigid body formulation described in Section 3 provides the link between standard multi-
body systems comprised of rigid bodies and flexible multibody systems resulting from the finite ele-
ment discretization of deformable solids and structures. The present approach leads to a uniform set
of differential-algebraic equations governing the motionof general flexible multibody systems. More-
over, the specific structure of the equations of motion makespossible the design of structure-preserving
time-stepping schemes which exhibit superior numerical stability and robustness.

On the other hand, we have shown that the rigid body formulation in terms of natural coordinates
requires particular caution when it comes to applying external torques. In a previous work (Betsch et
al. [23] ) an ad-hoc modification of the external forces has been proposed to restore the balance law
for angular momentum in the discrete setting. In the presentwork this modification has been further
substantiated by resorting to skew coordinates from the outset. It is worth noting that our approach has
been guided by the theory of Cosserat points (Rubin [13]). Itis obvious that the consistent formulation
and numerical treatment of external torques is of crucial importance for the application of the present
approach to the (optimal) control of (flexible) multibody systems.
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Figure 11: Snapshots of the motion.
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