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Abstract — Computer methods for flexible multibody dynamics that dle ¢o treat large deformation
phenomena are important for specific applications suchmtacoproblems. From a mechanical point of
view, large deformation phenomena are formulated in thedwsork of nonlinear continuum mechanics.
Computer methods for large deformation problems typiaaly on the nonlinear finite element method.
On the other hand classical formalisms for multibody dyrenaire based on rigid bodies. Their exten-
sion to flexible multibody systems is typically restrictedlinear elastic behavior. In the present work
the nonlinear finite element method is extended such thatithelation of flexible multibody dynamics
including large deformation phenomena can be handled ssitgdky.
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1 Introduction

In the present work we address computer methods that carehkamge deformations in the context
of multibody systems. In particular, the link between noe#r continuum mechanics and multibody
systems is facilitated by a specific formulation of rigid patynamics (Betsch & Steinmann [1]). This
formulation is closely related to the notion of natural ainates (Garcia de Jalén [2]). Our approach
makes possible the incorporation of state-of-the-art agerpmethods for large deformation problems.
Examples are arbitrary constitutive models (GroR3 & Bet&3)) jeometrically exact beams (lbrahimbe-
govic & Mamouri [4]) and shells (Betsch & Sanger [5]), domain deposition (Hesch & Betsch [6]),
and large deformation contact (Hesch & Betsch [7]).

Energy and momentum consistent numerical methods for thisdf problems offer superior stabil-
ity and robustness properties (Ibrahimbegoei al. [8]). Our approach relies on a uniform formulation
of discrete mechanical systems such as rigid bodies anddisanete flexible bodies resulting from a fi-
nite element discretization of the underlying nonlineantoouum formulation. The uniform formulation
results in discrete equations of motion assuming the fordiftérential-algebraic equations (DAES). A
constant inertia matrix is a characteristic feature of tlesent DAES. In particular, the simple DAE struc-
ture makes possible the design of structure-preserving-§tepping schemes such as energy-momentum
schemes and momentum-symplectic integrators (Leyendetk [9], Betsch et al. [10]).

A further advantage of the present treatment of flexible @gid bodies is that flexible multibody
systems can be implemented in a very systematic way. Intfaefpresent approach leads to a general-
ization of the standard finite element assembly proceduhe generalized assembly procedure makes
possible the incorporation of both arbitrary nonlineartéirilement formulations and multibody features
such as joints.

On the other hand the nonstandard description of rigid lsodkguires some care concerning the
consistent application of actuating forces. The presgid hody formulation falls into the framework
of natural coordinates which have a long tradition in maitip system dynamics (see Garcia de Jalén
[2] and the references cited therein). By definition, ndtaoardinates are comprised of Cartesian com-
ponents of unit vectors and Cartesian coordinates. It ishvooting that our specific choice of natural
coordinates (Betsch & Steinmann [1]) has its roots in thiémakemechanics (Saletan & Cromer [11, Ch.
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Using natural coordinates, the application of externajues becomes an issue since conjugate co-
ordinates are not available. One way to resolve this isstieeisntroduction of additional coordinates
which are appended to the natural coordinates via specifebedic constraints, see, for example, Gar-
cia de Jalén [2] and Uhlar & Betsch [12]. Alternatively, treglundant forces conjugate to the natural
coordinates can used to take into account the action ofreédtearques. In the present work we focus on
this approach. In particular, we show that the use of skewdioates for the description of rigid body
dynamics paves the way for the consistent time discredzaif the equations of motion. The present
approach has been guided by the close connection betwagalr@atordinates and the theory of Cosserat
points (Rubin [13]).

An outline of the rest of the paper is as follows. In Sectiom@ ¢quations of motion providing the
framework for the present description of flexible multibaglystems are summarized. The formulation
of rigid body dynamics in terms of natural coordinates isltdedh in Section 3. The extension of
the present approach to multibody dynamics is illustrate&ection 4 with the formulation of lower
kinematic pairs. After a summary of the main features of tles@nt approach in Section 5, the structure-
preserving discretization in time is dealt with in SectiorS@ction 7 comments on the inclusion of large
deformation contact. To demonstrate the capability of tepesed method three numerical examples
are presented in Section 8. Eventually, conclusions arerdiaSection 9.

2 Equations of motion

We start with the equations of motion pertaining to a finitexehsional mechanical system subject to
holonomic constraints. From the outset we confine ourselfsechanical systems whose kinetic energy
can be written as

T(4)= 34~ Md ()

Here,q € R" is the vector of redundant coordinates and a superposededotas the derivative with
respect to time. Moreove¥ € R™"is aconstantmass matrix. As has been outlined in the Introduction
a constant mass matrix is a consequence of the use of natunalicates for the description of spatial
multibody systems. The equations of motion pertaining ®dlscrete mechanical systems of interest
can be written in variational form

G =5 (Mi+ 3 Ngi(q) ~ F) =0 @
I=1

which has to be satisfied for arbitradyg € R". The last equation has to be supplemented with algebraic
constraint equationg (¢) =0, 1<| < m. The associated constraint forces assume the @)\Hﬂg (q),
where)! are Lagrange multipliers. The last term in (2) accounts kbemal forcing. For simplicity of
exposition we do not distinguish between forces that candsiwetl from potentials and nonpotential
forces. Note, however, that we may repldces R" in (2) with

F - F-0U(q) 3)

Then, the potential forces are derived from a potential tiondJ (¢), and the nonpotential forces are
contained inF'. Due to the presence of algebraic constraints the equatfanstion assume the form of
differential-algebraic equation®AES9. The configuration space of the constrained mechanictésigs
under consideration is defined by

Q={gcR"g(g)=0,1<1<m} ()

Throughout this work we assume that the constraints ar@amtient. Consequently, the vectolg (q) €

R" are linearly independent fay € Q. Due to the presence afigeometric constraints the discrete me-
chanical system under consideration hasm degrees of freedom. Admissible variatiobg have to
belong to the tangent spaceQaat g € Q given by

TeQ={v eR"0Og (q)-v=0,1<I<m} (5)



Remark 2.1 The variational form (2) of the equations of motion is eqléw&to Lagrange’s equations
(of the first kind), which may be linked to the Lagrange-dmbert principle

tN m tN
5/ (T@g)-S A dt+ [ 8q-Fdt=0 6
t0/( (@) gl a(q)) +t0/ q (6)

The Lagrange-d’Alembert principle can be viewed as an eibenof Hamilton’s principle to account
for external forcing, see Marsden & Ratiu [14].

Remark 2.2 In the above descriptio#” € R" is loosely termed ‘external force vector’. In a multibody
system formulated in terms of natural coordinates eachviddal component oF refers to a specific
rigid body (see Section 3 for further details) or a specific@of the finite element discretization of a
flexible beam or shell component. Thus the action of joirte® can be respresented by components of
F, although joint-forces are internal forces (or torquesdrir the multibody system perspective. If the
external force components are to represent joint-forcestiie’s third (or action-reaction) law has to be
obeyed.

3 Rigid body dynamics in terms of skew coordinates

92
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Figure 1: Planar sketch of the rigid body.

We next present a reformulation of the original formulatasmigid body dynamics (Betsch & Stein-
mann [1]) and Saletan & Cromer [11, Ch. 5]) in terms of skewrdowmtes. The use of skew coordinates
turns out to be beneficial to the formulation and consistemerical discretization of external torques.
In the following we use convected coordinafsto label a material point belonging to the rigid body
(Fig. 1). The position of a material point at tirhean be described by

x = x(6',t) = p(t) +6'd(t) (7)

wherep = ¢ie; is a reference point fixed in the body adg= (di);e; are director vectofs Due to the
kinematic relation (7), the covariant base vectors comeiith the directors, i.eg; = 0z/00' = d;. For
the time being the director can be regarded as base vectors that need not be of unit lesrgtiutually
orthogonal. As mentioned before, the present use of skevdir@des can be viewed as generalization of
previous rigid body formulations relying on the componeritthe direction-cosine matrix (see Saletan

INote that the summation convention applies to lower casanoimdices occuring twice in a term. They generally range
from one to three.



& Cromer [11, Ch. 5] and Betsch & Steinmann [1]). This genieadion turns out to be advantageous
for the discretization in time dealt with in Section 6. Wethar assume

d2 =dy-(dp x d3) > 0 8)

Additional constraints will be imposed in the sequel to eoéathe rigid body assumption. In addition to
the covariant base vectors we introduce contravariant \mEsgers

d =d 2(dj x dy) 9)

for even permutations of the indicés j,k). Consequentlyd' - dj = 63'J the Kronecker delta. In the
following the contravariant base vectatswill be called covariant directors.

The kinematic relationship (7) indicates that the confijareof a single rigid body can be described
by n= 12 coordinates that can be arranged in the configuratiomwvect

®
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d3

To calculate the mass matrid € R1?*12 we consider the continuum expression for the kinetic energy
1 1 3
T:—/ oov - vD3d%0 (11)
2 )

whereB, denotes the reference configuration of the body at timaé®. Correspondinglypo : By — R
is the reference mass density dbd= d(0), whered(t) is given by (8). The material velocity can be

calculated from (7):

0= (6.1 = vy(t) + B0 (1) (12)

Herewvy = ¢ is the velocity of the point of reference angd= d; will be referred to as director velocities.
Inserting the last equation into (11) a straightforwardtgkdtion yields the kinetic energy in the form

T:%M¢v¢-v¢+eiv¢-vi+%E”vi-'vj (13)
In the last equation the total malsk, and the director inertia coefficiengs E' are defined by
Mg :/ ooD3d%, ¢ :/ 0p,Did%,  Eil :/ 0'0ipD3d% (14)
B o B

Note that that all of the inertia coefficients are indepenadgrime thus leading to a constant £212
mass matrix given by

MeI €I €I €I
et EYMr E¥r e¥r
eI E?1 E?I EZI
er E%r e®r e¥r

M = (15)

To determine the external force vectBrin (2), we consider the virtual work of the external forcegegi
by dW = &q - F'. For simplicity we assume that in addition to a body forceyrét massp(6',t), a single
force vectorf(t) is applied to the material poir®'. Accordingly,

SW = / 5x- bpoD2d%6 + 5x(@) - £ (1) (16)
Bo
With regard to (7), virtual displacements can be writtedas= 3¢ + 0'3d;. Accordingly, (16) gives rise

to
W =8¢ fy+5d; - f' (17)



where the resultant force vector is given by
fo= /% bpoDid%0 4 £ (18)
and the resultant director forces assume the form
fi= /% 0ibpoDid%0 + O f (19)

Note that the resultant force vectgy and the resultant director forcgd are conjugate tg and the
directorsd;. Similar to the configuration vector (10) of the rigid bodyetvector of the external forces
featuring in the equations of motion (2) can be written as

Fe | (20)

The equations of motion pertaining to the rigid body can newvitten in the variational form

8p - {Myvy + v+ fo— fo} =0

&d; - {Evj+€vp+ fi—f'} =0 (1)

Here, f. and f. stand for the constraint forces and the constraint dirdfcimes, respectively. For the
free rigid body,f. = 0. The specific form of the constraint director forces will lmatl with in the sequel.

3.1 Rigid body constraints

The rigid body assumption can be incorporated into the pteeemulation by excluding deformation
of the director triad{d; }. This goal can be achieved by providing the following six toaint functions

Gi=3(di-di—c1) Go=3(dy-do—C) 3= 3(d3-dz—C3)

22
W=dy-dr—C4 Os=d;-d3—Cs O =d>-d3—Cg (22)

wherec; (i = 1,...,6) are constant parameters to be specified in the referenceyomation. The cor-
responding constraint equatiogs= 0 have to be satisfied at all times. With regard to (4), the 1six i
dependent constraints (22) determine the configuratiorifaldrQ™e of the free rigid body. It is worth
mentioning that the associated tangent space (5) is given by

T,Q™ = {vy € R% v e R3(i =1,2,3) [v) = w x dj, w € R3} (23)

wherew € R3 can be interpreted as angular velocity.

3.2 Balance laws

Next we elaborate on the fundamental mechanical balance ilawhe context of the free rigid body.
First, we consider théalance law for linear momentum Introducingde = &, whereé € R3 is a
constant vector, together wild; = 0 into (21), a straigthforward calculation gives

d
L="fo (24)

Here, the total linear momentum of the rigid body is givenlby= Myvy +€wj, and, as before, the
right-hand side of (24) characterizes the resultant eatdance applied to the rigid body.

Concerning théalance law for angular momentum substitutedy = £ x ¢ along withdd; = £ x d;
into (21) and subsequently take the sum of both equationis. prbcedure yields

ﬁ- [cp X {M¢’i)¢—|—€i’i)i —f¢}—|—di X {Eij’i)j +ei1}¢+f(i:—fi}] =0 (25)
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Since for the free rigid body (21) has to hold for arbitéxy ¢ R® anddd; € R3 (i = 1,2,3), the last
equation yields the reduced form of the balance of angulanemum

dix fi=0 (26)
This condition places three restrictions on the constrairgctor forcesf.. Expressing the constraint
director forces with respect to the director basis

fi=nld, (27)
condition (26) yieIds_/\”di x dj = 0. Due to the skew-symmetriy of the cross product, we get the
symmetry property\'! = A!'. Accordingly, there remain only six indpendent componeXitsfor the

specification of the constraint director forces. In pattcithe six independent constraints (22) of rigidity
yield constraint director forces of the form

6
fi=S Nag (28)
=1
Combining (27) and (28), the componerits can be connected to the Lagrange multipliers:
AL A NS
ANI]= [A* A2 AS (29)
ISEP NS
Returning to (25) and taking into account (26), we further ge
d . d .. . .
£ |px a{'\"“’”"’ +€vi}+di x a{E”vj +evpt—{px fo+dix f'}| =0 (30)
The last equation can be recast in the form
d .
aJ=<P><f¢+di><f' (31)
where _ B _
J =@ x {Myvy +€vi} +di x {EVvj+ vy} (32)

is the total angular momentum of the rigid body with respedhe origin of the inertial frame of refer-
ence. The right-hand side of (31) equals the resultant madtéorque about the origin. Note that

dix f'=m (33)
can be identified as the resultant external torque relabitlee point of reference of the rigid body.
We eventually turn to thbalance of energy Substitutingvy for & andwv; for &d;, (21) leads to
Vg - {I\/I¢'i1¢ +eii;i} = fo v
vj - {Eiji)j +eii;¢} = fi -V —f(i:-'ui
Note that the director velocities have to belong to the tahgpace (23). This implies the relationship
v = w x dj, wherew € R3 is the angular velocity. Accordingly,

fovi=fi-(wxd)=w-(dix f)=0 (35)

where condition (26) has been used. The last equation cetthieywell-known fact that constraint forces
are workless. Taking the sum of both equations in (34) yigldsbalance of energy

(34)

d
“T= Pext
gt (36)
where _
PeXt = f¢ "V + f' - Vi (37)

denotes the power of the external forces acting on the rigiy.bit is worth noting that the last equation
can also be written in the form
P = fy-vp+mw (38)

where the relationship; = w x d; along with definition (33) of the resultant external torgetative to
the point of reference of the rigid body have been used.
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3.3 Application of external torques

It can be concluded from (38) that the resultant extern@uern is conjugate to the angular velocity
w. In contrast to that, the formulation in terms of natural rctiates relies on the resultant external
director forcesf' which are conjugate to the director velocities see (37). Using natural coordinates
the question arises how the application of external torgqaesbe realized. To answer this question we
start with the kinematic relationshigy = w x d; and calculate

d xvi=d x (wxd)
={(d"d)I-diod}w (39)
=2w

Using this result, the work done by the external torguean be written as

771-(.«):%771-(di X vj)
2 i (40)
zévi-(mxd)

Since, with regard to (37), the corresponding work expoesgi terms of natural coordinates is given by
vi - f', the external director forces assume the form

fl= %m x d' (41)

This expression can be used to realize the application okt@nrel torquemn.

4 Kinematic pairs in terms of natural coordinates

We next illustrate the formulation of kinematic pairs wittetexample of a cylindrical pair (Fig. 2). To
this end we consider two rigid bodies formulated in termsatfiral coordinates as outlined in Section 3.
Accordingly, the configuration of the two-body system uncamsideration is characterized by redundant
coordinates

1 a
_|1'q o dy
qg= [Zq] where g = |, s (42)
(Xd3
Note that the contribution of body to the configuration vector coincides with (10). The equetiof
motion pertaining to the constrained mechanical systenaadl ltan again be formulated as outlined in

Section 2. Similar to (42), the contribution of each rigiddigdo the external forces leads to the system
vector

1F a (1;?.
F = {ZF} where °F = ap2 (43)
(1f3

Note that the force vectdtF' associated with bodg coincides with (10).

4.1 Initialization of kinematic relationships

To describe the motion of the second body relative to the dingt we introduce orthonormal body-
fixed triads{%d]} in such a way that the unit vectofd; are parallel to the axis of the cylindrical pair
(Fig. 2). Moreover, we choose the two orthonormal triadsdimaide in the initial configuration, i.e.
1d!(0) =2d!(0). The connection between the newly introduced orthonorradg{°d!} and the original
triads{%, } (i.e. the natural coordinates) is given by

AR = “F %A (44)



€1

Figure 2: Sketch of the cylindrical pair: Natural coordest®p, {°d;}) characterizing the current con-
figuration®3 of rigid bodya. The additional system$y’, {°d;}) are introduced for the description of
the motion of the second body relative to the first body (et along and rotation abott = %dy).
The connection betweeff'y’,{°d;{}) and the natural coordinatd§y,{%;}) is defined in the initial
configuration of the multibody system.

where _ _
“F =% ®e and "R =% ®eé (45)
The constant tensofsi in (44) are calculated in the initial configuration via
Ao =“F1(0)*R/(0) (46)

The origin of the newly introduced orthonormal triaffgl!} is fixed at material point8®' whose place-
ment in the current configuratidt®; of rigid bodya is denoted by'y’. Accordingly, making use of the
rigid body kinematics (7), '

q(p/:a¢+q@|adi 47)
Note that the location of the material poif®' has to be specified during initialization.

4.2 Configuration space of the cylindrical pair

The configuration space of the cylindrical pair can be eafined by distinguishing between internal
constraints due the assumption of rigidity and externastraints due to the interconnection between the
rigid bodies in a multibody system (see Betsch & Steinmaii)[JAccordingly, the present description
of the cylindrical pair relies on = 24 natural coordinates subject to 12 internal constrajift§’q) = 0

(a = 1,2), whereg™ : R¥? — R® follows from (22), and 4 external constraints associateth \whe
constraint functions

ld' . (2(‘0/ _ 1¢/)]
ext; .\ _ 1 48
gr (q) [1d/2. (290/ _ 150/) (48)
and 1y 24
d;-<d
@) = |1 2 (@9)

To summarize, we hawe= 24 coordinates subject to = 16 constraints which can be assembled in the
constraint functiony® : R?* — R16 given by

oC(q) = |Inla (50)



Consequently, the configuration space of the cylindrical ipalefined by

Q¢ = {q e R**|g%(q) = 0} (51)

5 Main features of natural coordinates

Before we deal with the discretization in time we summarizémieatures of the formulation of flex-
ible multibody dynamics in terms of natural coordinatesthis connection it is important to note that
geometrically exact models for beams and shells fit pegfeetll into the present framework. In partiu-
cular, if the nonlinear beam and shell formulations arerdisred in space as proposed by Betsch et al.
[16, 17, 5], the equations of motion pertaining to the rasgltdiscrete mechanical systems fit into the
framework outlined in Section 2. Thus the use of natural dimates makes possible a uniform formu-
lation of flexible multibody dynamids Main characteristics of the present approach can be suiedar
as follows:

1. Theinertia parameters are always constant leading &rtiyge structure of the inertia terms in the
equations of motion (see Section 2). In particular, theedéffitial part of the equations of motion

can be written as
Mg+0OW\(q)—F =0 (52)

where the potential forces along with the constraint forcas be derived from an augmented
potential function of the form
5|
Wa(g) =U(q)+ > NDai(q) (53)
=1
For example, the potential functidh(g) can be associated with the action of gravitational forces
or with the deformation of elastic components such as flextiglams and shells.

2. The configuration vector of the complete flexible multipsgistem is composed of vectayse R3
and thus given by
q1

' (54)

qn
Accordingly, in total, the configuration vectgre R" hasn = 3%\’ components.

3. The total angular momentum of the flexible multibody systeean be cast in the form
N
J= ; M2Pga x vp (55)
ab=1

whereM?® contain the constant inertia parameters age: gp.

4. The balance of angular momentum can be written as
d J = ZN F2i-0O,V 56
at —a:l‘JaX( — U (9)) (56)

Needless to say that these features have a strong impact distiretization in time.

2The present framework comprises as well domain decompngitoblems (see Hesch & Betsch [6]) and large deformation
contact (see Hesch & Betsch [7, 18, 19])



6 Structure-preserving discretization in time

In this section we comment on the time integration methodieghpo the constrained mechanical sys-
tems at hand. The specific structure-preserving schemedamgarder accurate and relies on previous
works by Betsch & Steinmann [20] and Gonzalez [21]. If theamdng mechanical system is conser-
vative, the present integrator conserves the total endrtheamsystem. In addition to that, if the systems
has symmetry, the present scheme conserves the associatmeentam map. We won't dwell on the
algorithmic conservation properties in the present wanktdad, we focus on the implications of natural
coorinates for the numerical time integration.

Consider a representative time inter{alt, 1] with time stepAt = t,, 1 —tn, and given state-space
coordinatesg, € Q andwv, € R" at timet,. Concerning the initial values & we assumey € Q and
vo € TgQ. The resulting algebraic problem to be solved is statedlbsvs: Find(gny1,vn1) € R" x R"
andAnn1 € R™as the solution of the algebraic system of equations

At
Qani1s 920 = & (va, + Vay,4)

X ab _ a (57)
z M (Ubn+1 - Ubn) = At Fn+% - anVA(QanJrl)
b=1

9(qni1) =0

fora=1,...,AL In (57), Eqavx(qn,qnﬂ) denotes a discrete derivative of the augmented potential
functionV, : R" — R in the sense of Gonzalez [22].

6.1 Rigid body constraints

Concerning the rigid body constraints dealt with in SecBah we choose

C1=CZZC3:1

58
Cs=C=C=0 (°8)

In the continuous setting this choice of parameters is edgmt to the orthonormality of the director triad
{d;(t)} at all times. That is, in the continuos settinf(t) - d;j(t) = &;. However, using the mid-point
approximation

1
i 2
in general destroys the orthonormality property, althoiigé still satisfied at the discrete timgsand
thy1 due to (573. That is,

dj (di, +di,.,) (59)

di %'diH% # 0jj (60)

n+

This implies that the mid-point directors represent basgore that in general are not of unit length nor
mutually orthogonal.
6.2 Consistent application of external torques

Since the rigid body formulation described in Section 3a®lbn skew coordinates, property (60) does
not cause any difficulties. In particular, it is obvious fr¢4i), that the director forces due to an external
torqgue which enter the external force veclqj;; in (57), are given by

2

Here,m,, 1 represents an external torque applied in the time intetél. 1], andd‘M; are contravariant
2
mid-point directors that can be calculated from (9) such pihaperty

di

n-‘r% ’ djn+

, =9 (62)

10



holds. It can be easily verified that the discrete balancengfilar momentum can be written as

N
_ a ™
Jnr1—Jn —AtaZlQaM% X (Fn+% anVA(QnaQn+l)) (63)

Note that the last equation can be viewed as discrete cqamtef the continuous version (56). If only
one single rigid body is considered, (63) can be regardeibasete counterpart of (31), where (3) has to
be taken into account. Focusing on the contribution of thecttr forces (61) due to an external torque,
for one single rigid body (63) yields

4

— a
Jn+1_ Jn — AtaZlqan+l X FI'H»%

2
(64)

) )
=AMt ((di

_ =7 i
— d,n+%><<mn+%><d 1

i : i
n+% dn+%)mn+% (dln+% mn+%)dn+%)

= Atmn+%

Consequently, formula (61) guarantees that external ésrgue properly applied in the discrete setting.
Formula (61) has originally been proposed in Betsch et &l. [Aowever this work does not rely on skew

coordinates for the description of rigid bodies. Contrarrmid-point directors have been introduced
in [23, Sec. 4.3] to remedy the lack of angular momentum sbaiscy in the discrete setting.

7 Inclusion of large deformation contact

The present framework for flexible multibody dynamics acodates contemporary nonlinear finite el-
ements and thus can be directly applied to large-deformatomtact problems. In particular, unilateral
contact constraints can be formulated as a set of inequaitgtraints which can be rewritten as equal-
ity constraints using a standard active set strategy. Tlde-to-surface (NTS) method (see Hesch &
Betsch [18] for details) can be considered the prevailinghio for contact problems in the context of
finite elements. Actual developments extend the collopalype NTS method to a variationally consis-
tent formulation known as mortar contact method (see Hes&e&ch [7, 19]). For both methods, the
classical Karush-Kuhn-Tucker conditions read

gCOY‘I S 0, )\COH Z O, gcon)\con — O (65)
which can be rewritten as
g = A" — max{0,A\®°"—cg™"}, c>0 (66)

This formulation makes possible a very efficient computgslé@mentation of the active set strategy. We
refer to [7, 19] for a full account on the present formulatadiarge deformation contact problems.
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8 Numerical examples

8.1 Spacecraft attitude maneuver

In the first numerical example we demonstrate the importahé@mula (61) for the consistent applica-
tion of external torques. To this end we apply the presentagub to the control of spacecraft rotational
maneuvers.

Figure 3: The spacecraft as 4-body system.

The spacecraft is modeled as multibody system consistifigunfrigid bodies (Fig. 3), namely the
base body and three reaction wheels. A similar example hars dealt with in Leyendecker et al. [24].
The data for the present 4-body system have been taken frédjn {Bing principle axis for each rigid
body the data used in the simulations are summarized in Table

body M, E! E22 E3 L
1 1005.3096 89.3609  201.0619 357.4434
2 424.1150 8.8357  106.0288 106.0288 0.9167
3 424.1150  106.0288 8.8357  106.0288 1.25
4 424.1150  106.0288 106.0288 8.8357  1.5833

Table 1: Spacecraft: Data for the 4-body system. Noteltlnotes the distance between the center of
mass of the reaction wheels and the base body.

The reaction wheels are spinning about body-fixed axis ob#se body. For simplicity the three
body-fixed axis are assumed to coincide with the directané&d’d;} of the base body. Spacecraft
attitude maneuvers are performed by applying reaction iwhetor torques

Im =)y, 3m=?)dy, “m= (%43 (67)

In the example we prescribe constant motor torgiies 200.

A total of n = 48 natural coordinates is employed to describe the mulilsydtem at hand. Each
body is subject to 6 rigid body constraints (22) and (58)jrgjwise tom™ = 24 internal constraints.
Revolute joints are used to connect the reaction wheelstbdke body. This amountsi§ =3 x 5 =
15 external constraints. Accordingly, in total there are= m™ + m®! = 39 independent constraints
leading ton— m =9 degrees of freedom.

The newly devised formula (61) has been used to consistapflly the motor torques to the reaction
wheels. In this connection Remark 2.2 has been taken intuatcThat is, the torque acting on the base
body is given by

Yn=— (27n+3m+4m) (68)

Since no resultant external torque acts on the spacedraftotal angular momentum is a first integral of
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the motion. This can be verified along the lines of Section B particular,

12
_ a
Jn+1— Jn = AtazlqarH% X Fn+;_2L

4 .

Ay b
2Zd|%><( +1Xd > (69)
_ by b by b b ji
_Atbzl(( di -t )Py~ (- mn+%)d'n+%>
: b
= At m,. 1
=0

In the numerical simulation we focus on the 3-compordgmf the total angular momentum and the total
kinetic energyT of the multibody system at hand. The numerical results dubdapplication of the
newly devised formula (61) are denoted 5§ and Tontra,

For comparison we apply the motor torques via the straighiod mid-point evaluation of the con-
tinuous expression of the ‘original’ formulation (see [R3]

1
fi . :Em (70)

I’H~2

nti X din+2
The corresponding results are denotedlw andTko,

A number ofN time steps is used to resolve the time interdab|. It can be observed from Fig.
4 that J°""@ stays constant for aN. This corroborates algorithmic conservation of the totejuar
momentum. In severe contrast to th%?" does not stay constant. Accordingly the balance law for
angular momentum is violated. This discretization errar loa decreased by raising the number of time
stepsN. These observations are further supported by considehi@gatal kinetic energy in Fig. 5.
Accordingly, Tkontra does hardly change if the time steps are refined. That isgusity N = 5 time
steps already leads to a very good approximation of theikieeergy. This is in severe contrastf®".

50

-50f = 1

-100

-150

-200

=250

-300

-350

Figure 4: Spacecraft:
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—*— "3

kuv —
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.]3 N=80

time

Comparison of angular momentum.
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Figure 5: Spacecraft. Comparison of kinetic energy.

8.2 Lightweight robot applied to the mounting of flexible cables

The second example deals with a multibody model of the KUKIARDLightWeight Robot (LWR)
(Bischoff et al. [25]) applied to the manipulation of higHlgxible cables (Fig. 6). The LWR is mod-
elled as multibody system with seven revolute joints. Onatieer hand the flexible cable is formulated
as geometrically exact beam connected to a plug which issetbdelled as rigid body. The right end of
the cable is clamped to a rigid block fixed in space.

In the forward simulation the end-effector grips the pluthatleft end of the cable and subsequently
bends the cable leading to large deformations. The jomuies of the LWR are prescribed by applying
the approach described in Section 6.2. Snapshots ot themart depicted in Fig. 7. In addition to that,
in Fig. 8 the evolution of the total mechanical energy is sh@lwng with the potential energy (due to
gravity) and the strain energy stored in the cable.

fixed bearing—

i aj q; d. 9i
00 0 0 O
1 0 90 310 O .
50 -90 0 0 < nonlinear beam
3 0 —90 400 O
4 0 90 0 O
5 0 90 390 O
6 0 -90 0 O N
70 0 0 O plug
+ robot

Figure 6: Hartenberg-Denavit parameters of the lightweighot (left) and components of the flexible
multibody system (right).
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Figure 7: Snapshots of the motion foe {0,1,2,5,6,7,10,12}.

_____________

Figure 8: Energy evolution of the flexible multibody systetwtal energyEq, potential energy,q: and
internal strain energiin:.
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8.3 Tennis player

vl |
08t Impact—| -
W o6

0

02

%80 05 10 ‘1{[, 20 25 30
Figure 9: Multibody system with flexible compo-
nents. Figure 10: Strain energy of flexible components.

The last numerical example deals with the flexible multibsgstem depicted in Fig. 9. This example
demonstrates the inclusion of geometrically exact beardshaells as well as large deformation contact
within the present framework for flexible multibody dynasiicThe model of a tennis player consists
of 19 rigid bodies, whereas the tennis racket is modeled motilinear beams and shells (see Fig. 9).
Shell elements are also used for modeling the tennis balé rmbtion of the tennis player himself is
prescribed (fully actuated). Due to the presence of thelexennis racket the whole system is highly
underactuated. The motion of the system until the onsetrbeb between the tennis ball and the racket
is illustrated with some snapshots in Fig. 11. The impacheftennis ball on the racket leads to large
deformations accompanied with a sudden increase of thie sinargy (Fig. 10).

9 Conclusions

Natural coordinates allow for a systematic descriptionahplex multibody systems. In this connec-
tion, the specific rigid body formulation described in SeatB provides the link between standard multi-
body systems comprised of rigid bodies and flexible multjpbegstems resulting from the finite ele-
ment discretization of deformable solids and structureBe present approach leads to a uniform set
of differential-algebraic equations governing the motargeneral flexible multibody systems. More-
over, the specific structure of the equations of motion makssible the design of structure-preserving
time-stepping schemes which exhibit superior numeriedibty and robustness.

On the other hand, we have shown that the rigid body fornaraith terms of natural coordinates
requires particular caution when it comes to applying exetorques. In a previous work (Betsch et
al. [23] ) an ad-hoc modification of the external forces hasnbproposed to restore the balance law
for angular momentum in the discrete setting. In the presamk this modification has been further
substantiated by resorting to skew coordinates from theetutt is worth noting that our approach has
been guided by the theory of Cosserat points (Rubin [13]k dbvious that the consistent formulation
and numerical treatment of external torques is of crucigddrtance for the application of the present
approach to the (optimal) control of (flexible) multibodysgyms.
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