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SUMMARY

The present work deals with a new approach to frictional large deformation contact problems. In particular, a
new formulation of the frictional kinematics is introduced that is based on a specific augmentation technique
used for the introduction of additional variables. This augmentation technique substantially simplifies the
formulation of the whole system. A size reduction of the resulting system of algebraic equations is proposed.
Consequently, the augmentation technique does not lead to an increase in size of the algebraic system of
equations to be ultimately solved. The size reduction retains the simplicity of the formulation and preserves
important conservation laws such as conservation of angular momentum. Copyright © 2013 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

The development of numerical methods for frictional contact problems is one of the most
challenging task in the field of computational sciences. It combines several fields of research,
including optimization theory to deal with arising inequality constraints, the development of appro-
priate discretization schemes in space and time, and tribology for the physical modeling of the
surface interaction.

The numerical model to be developed can be subdivided into different tasks, using constitutive
laws to describe the physical nature of the surface interaction and, on the other hand, kinematic
relations to embed these laws into the generally nonlinear finite element method. We omit any
small deformation considerations and focus on the large deformation frictional contact problem.
For a comprehensive survey of contemporary methods, we refer to the textbooks of Laursen [1] and
Wriggers [2].

Within this paper, we focus on the development of a new method for the contact kinematics. The
governing constitutive laws have been extensively investigated by several authors (see among others
He and Curnier [3] and Laursen and Oancea [4]). We apply the well-known Coulomb’s law, using
the established analogy between Coulomb friction and nonassociative plasticity (see for example
[5]). However, the proposed approach is capable to embed all kinds of constitutive friction laws.

Our approach follows the lines of the work of Laursen [1, 6], referred to herein as the direct
approach [7]. Therefore, in contrast to earlier works (see for example Wriggers and Simo [8]
and Parisch [9]), continuum mechanical arguments are used to derive the underlying variational
formulation.
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In contrast to previous works dealing with large deformation frictional contact, we propose a new
augmentation technique for the description of the frictional kinematics. The augmentation tech-
nique relies on the introduction of additional variables representing the local convective coordinates.
Note that the terminus augmentation is widely used for different methods, including the augmented
Lagrangian update algorithm. Within our newly proposed method for frictional contact, we refer
to augmentation techniques as used in the context of multibody systems [10]. The additional vari-
ables are connected to the original ones by introducing additional algebraic constraints that are
enforced by means of Lagrange multipliers. When compared with the traditional direct approach,
the augmentation technique significantly simplifies the whole formulation.

After the discretization in space has been performed, the resulting differential-algebraic equa-
tions can be reformulated to reduce the size of the algebraic system to be eventually solved. That
is, applying a size-reduction procedure within the discrete setting essentially recovers the size of
the original system. It is worth noting that the size-reduction process does not affect the algorithmic
conservation properties of the proposed discretization in space and time. In particular, our discretiza-
tion approach inherits the conservation laws for linear and angular momentum from the underlying
continuous formulation.

The development of structure-preserving time-stepping schemes for large deformation contact
problems has been subject of extensive research, see Laursen and Chawla [11, 12], Armero and
Petöcz [13, 14], and Hesch and Betsch [15, 16]. Similar to these works, the spatial discretization of
the contact surface used in the present work is based on the node-to-surface (NTS) method. The
extension to more sophisticated models using mortar-based formulations [17–22] will be dealt with
in a subsequent work.

The article is organized as follows. The fundamental equations of the underlying problem in
strong and weak form are outlined in Section 2. In this connection, the well-established descrip-
tion of the frictional kinematics is summarized, and the newly proposed augmentation technique is
introduced. The spatial discretization and the NTS method together with the specific formulation
of the augmentation technique is given in Section 3. In Section 4, we apply a suitable time integra-
tion scheme and verify algorithmic conservation of linear and angular momentum. Representative
numerical examples are presented in Section 5. Eventually, conclusions are drawn in Section 6.

2. GOVERNING EQUATIONS

We consider continuum bodies B.i/0 � R3, i 2 ¹1, ..., kº written in their reference configurations
for the large deformation problem at hand. To characterize the deformation, we assume the exis-
tence of a mapping '.i/ W B.i/0 � Œ0,T �! R3, '.i/ D '.i/.X .i/, t /, such that we can introduce the

deformation gradient F .i/ W B.i/0 � Œ0,T �!R3�3 as follows:

F .i/ D
@'.i/

@X .i/
(1)

Note that F .i/ remains nonsingular and invertible throughout the considered time interval I WD
Œ0, T �, that is, J .i/ WD det.F .i// > 0 8t 2 I. The material behavior is governed by the strain energy
functionW.C .i// W B.i/0 � Œ0,T �!R where C W B.i/0 � Œ0,T �!R3�3, C D F TF denotes the right
Cauchy–Green tensor, and we define the first Piola–Kirchhoff stress tensor as follows:

P .i/ D F .i/
@W .i/.C .i//

@C .i/
(2)

Eventually, the balance of linear momentum reads

�
.i/
0 R'

.i/ D Div.P .i//CB.i/ (3)

where B.i/ denotes the body force per reference volume and �.i/0 R'
.i/ the inertia term using the ref-

erence density �.i/0 . The boundaries are subdivided into the Dirichlet boundary �.i/
d

, the Neumann
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Figure 1. Configurations of the two body contact problem (B.i/
0

: bodies in the reference (material) confi-

guration, B.i/t : bodies in the current (spatial) configuration).

boundary �.i/n , and the contact boundary �.i/c (Figure 1). We require that these boundaries do not
overlap; hence, they satisfy

@B.i/0 D �.i/n [ �.i/c [ �
.i/

d
and �.i/n \ �

.i/
c D �

.i/
n \ �

.i/

d
D �.i/c \ �

.i/

d
D ; (4)

Moreover, appropriate boundary conditions are given by

'.i/ D N'.i/ on �.i/
d
8 t 2 I (5)

P .i/N .i/ D NT
.i/

on �.i/n 8 t 2 I (6)

where N .i/ denotes the unit outward normal. We assume that the bodies are in contact within
the considered time interval t 2 I and restrict our consideration on a two body contact problem
neglecting self-contact for simplicity of exposition. Additionally, we provide the initial conditions

'.i/.0/D '
.i/
0 in B.i/0 (7)

P'.i/.0/D P'
.i/
0 in B.i/0 (8)

finalizing the strong form of the problem. Next, we rewrite the system in weak form to obtain the
virtual work of the whole system. To this end, we define the solution space

V.i/s D
°
'.i/ 2H 1.B.i// W '.i/ D N'.i/ on �.i/

d

±
(9)

and the space of test functions

V.i/t D
°
ı'.i/ 2H 1.B.i// W ı'.i/ D 0 on �.i/

d

±
(10)

where the Sobolev space H 1.B.i// consists of square-integrable functions and square-integrable
first derivatives thereof. The virtual work contribution of each body reads

G.i/.'.i/, ı'.i//D
Z

B.i/
0

�
.i/
0 R'

.i/ � ı'.i/ dV C

Z
B.i/
0

F .i/S .i/WGrad.ı'.i// dV�

Z
B.i/
0

NB
.i/
� ı'.i/ dV �

Z
�
.i/
n

NT
.i/
� ı'.i/ dA�

Z
�
.i/
c

t.i/ � ı'.i/ dA

(11)

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2013)
DOI: 10.1002/nme



M. FRANKE, C. HESCH AND P. BETSCH

for ı'.i/ 2 V.i/t and '.i/ 2 V.i/s . Here, S denotes the second Piola–Kirchhoff stress tensor.
Now, the principle of virtual work for the two-body contact problem under consideration can be
written as G D

P2
iD1G

.i/ D 0. Taking into account the balance of linear momentum across the
contact interface

� t.2/ dAD t.1/ dA (12)

the contact contribution to the virtual work can be summarized in the expression

Gc.', ı'/D
2X
iD1

G.i/,c
�
'.i/, ı'.i/

�
D

Z
�
.1/
c

t.1/ �
h
ı'.1/ � ı'.2/

i
dA (13)

In the last statement, ' contains the collection of the mappings '.i/, i D 1, 2 (similarly for ı').

2.1. Contact formulation

We assume that a point '.1/.X .1/, t / 2 � .1/c , � .1/c D '
�
�
.1/
c

�
on the surface � .1/c is in contact with

the opposing master surface � .2/c and define the projection

k'.1/.X .1//�'.2/
�
NX
.2/
.X .1//

�
k!min (14)

where '.2/
�
NX
.2/
.X .1//

�
is the closest point to '.1/.X .1//. The master surface � .2/c itself can be

viewed as a 2D manifold parametrized by the convective coordinates �˛ , ˛ 2 ¹1, 2º. Thus, the
projection can be characterized by the relationships

NX
.2/
.X .1// WDX .2/. N�/ (15)

and

N'.2/ WD '.2/. N�/, N� D
h
N�1, N�2

i
(16)

where N�˛ are calculated from (14). We further introduce tangent vectors

a˛ WD '
.2/
,˛ .
N�/ (17)

where .�/,˛ denotes the derivative with respect to �˛ . Note that the vectors a˛ are directed
tangentially along the coordinate curves �˛ at N'.2/ (Figure 2). Associated dual vectors are
defined by

a˛ Dm˛ˇaˇ (18)

where m˛ˇ D .m˛ˇ /
�1 is the inverse of the metric m˛ˇ D a˛ � aˇ . Next, we introduce the gap

function

g D
�
'.1/ � N'.2/

�
� n (19)

where n denotes the unit outward normal to � .2/c at N'.2/, defined as

nD
a1 � a2

ka1 � a2k
(20)

Note that the tangent vectors a˛ along with the normal vector n are covariant base vectors.
Furthermore, the normal vector n is assumed to be directed tangentially along the coordinate line
�3 (Figure 2). The variation of the gap function can now be written in the form

ıg D
�
ı'.1/ � ı N'.2/

�
� n (21)
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Figure 2. Parametrization of the master surface � .2/c .

As usual, we decompose the contact traction in (13) into the normal and the tangential part

t.1/ D tN nC tT (22)

and require that tT � nD 0. For the normal component, the Karush–Kuhn–Tucker conditions

g > 0, tN 6 0, tN g D 0 (23)

have to hold, whereas the vector tT lies in the tangent space of the master surface � .2/c and can be
resolved via

tT D tT˛a
˛ (24)

The corresponding frictional constitutive law to define the tractions tT˛ will be dealt with in the
appendix.

Summarizing, the contact contribution to the virtual work can now be written in the form

Gc.', ı'/D
Z
�
.1/
c

h
ı'.1/ � ı N'.2/

i
� ŒtN nC tT˛a

˛� dA (25)

The last statement depends crucially on the variation of the convective coordinates N� on which we
will focus next.

2.2. Frictional kinematics

Next, we focus on the variation of the convective coordinates to complete the contact formulation
given in (25). In particular, we outline the most common approach, referred to as the direct approach
in the following [23] and present subsequently a new augmentation technique for the description of
the frictional kinematics.

Direct approach The convective coordinates N� D
�
N�1, N�2

�
can be obtained from the solution of the

minimum distance problem (14). Correspondingly, the orthogonality condition�
'.1/ � N'.2/

�
� a˛ D 0, 8˛ 2 ¹1, 2º (26)

has to be valid. Computing the time derivative of the last equation yields�
P'.1/ � PN'.2/ � aˇ

PN�ˇ
�
� a˛ C

�
'.1/ � N'.2/

�
�
�
Pa˛ C a˛ˇ

PN�ˇ
�
D 0 (27)
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Using the unit length of the normal vector, that is, n � n D 1 together with .'.1/ � N'.2// D gn, we
can rearrange the terms in (27) and obtain the rate of change of the convective coordinates

PN�ˇ D A˛ˇ
h�
P'.1/ � PN'.2/

�
� a˛ C g n � PN'

.2/
,˛

i
(28)

where A˛ˇ denotes the inverse of A˛ˇ WD m˛ˇ � g h˛ˇ and h˛ˇ D a˛ˇ � n is the curvature of the
surface. Replacing the velocity by the variation yields

ı N�ˇ D A˛ˇ
h�
ı'.1/ � ı N'.2/

�
� a˛ C g n � ı N'

.2/
,˛

i
(29)

Assuming that g D 0 is valid at the contact interface, the variation of N�˛ boils down to

ı N�˛ D
�
ı'.1/ � ı N'.2/

�
� a˛ (30)

Accordingly, the virtual work expression (25) can be recast in the form

Gc.', ı'/D
Z
�
.1/
c

�
tN ıgC tT˛ı

N�˛
�
dA (31)

where relation (21) has been used. The majority of previous works dealing with large deforma-
tion frictional contact problems rely on (31) [2]. Note that statement (31) holds true if (29) is used
instead of (30), because the additional terms to be considered only redefine the tractions tT˛ in
tangential direction.

2.3. Coordinate augmentation technique

Following the arguments in Hesch & Betsch [16], we extend a specific coordinate augmentation
technique to frictional contact problems. This technique relies on the introduction of additional
coordinates f D Œf 1, f 2� 2 R2 that represent the convective coordinates Œ�1, �2�. To link the new
coordinates to the original ones, we introduce two constraint functions

ˆaug.', f/D

" �
'.1/ �'.2/.f/

�
� a1.f/�

'.1/ �'.2/.f/
�
� a2.f/

#
(32)

and require thatˆaug D 0. Similar to definition (17) for the tangent vectors, in (32), a˛.f/D '
.2/
,˛ .f/

for ˛ D 1, 2. Analogous to the definition of the gap function (19), we introduce

Qg.', f/D
�
'.1/ �'.2/.f/

�
� Qn.f/ (33)

where Qn.f/ again follows from (20) by replacing a˛ with '.2/,˛ .f/. The contact contribution to the
virtual work can now be determined along the lines of the direct approach. Accordingly, similar to
(31), we obtain

Gc.', f , ı', ıf/D
Z
�
.1/
c

. tN ı QgC tT˛ıf
˛// dA (34)

where ı Qg D
�
ı'.1/ � ı'.2/.f/

�
� Qn.f/. It is important to realize that the augmented coordinates f are

to be viewed as primary variables on an equal footing with the original variables '. Consequently,
the newly proposed augmentation technique strongly affects the discretization in space and time.
Indeed, it will be shown in the sequel that the newly proposed augmentation technique simplifies
the implementation significantly when compared with the direct approach.

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2013)
DOI: 10.1002/nme



AN AUGMENTATION TECHNIQUE FOR FRICTIONAL CONTACT

3. SPATIAL DISCRETIZATION

We apply a suitable spatial discretization process to the bodies under consideration and to the contact
constraints. More precisely, displacement-based finite elements are used for the bodies in contact,
subdividing each body B.i/ into a finite number of elements n.i/

el
via

B.i/ � B.i/,h D
n
.i/

el[
e

B.i/,he (35)

The polynomial approximations of the solution and the test space are written as

'.i/,h D
X
I2!

NI q
.i/
I , ı'.i/,h D

X
J2!

NJ ıq
.i/
J (36)

where q.i/I represents the nodal position at point I 2 ! D ¹1, : : : , nnodeº and ıq.i/J the corresponding
variation at point J . Furthermore, NI W B.i/ ! R are global trilinear Lagrangian shape functions.
The semi-discrete version of the principle of virtual work can now be written in the form

Gh.q, ıq/D
X
i

ıq
.i/
I �

�Z
B.i/,h

�
.i/
0 NI NJ dV Rq.i/J C

Z
B.i/,h

rX NI � S
.i/,hrX NJ dV q.i/J

�

Z
B.i/,h

NI NB
.i/,h

dV �

Z
�
.i/,h
n

NI NT
.i/,h

dA

	
�Gc,h

(37)

Note that the nodal position vectors q.1/I and q.2/I have been collected in the vector q (similarly for
ıq). The last term in (37) denotes the discrete version of the contact virtual work, which will be
dealt with in the following section. We can rewrite (37) as follows

Gh.q, ıq/D
X
i

ıq
.i/
I �

�
M IJ Rq

.i/
J C f

.i/,int,I � f .i/,ext,I C f .i/,c,I C f .i/,fric,I
�

(38)

whereM IJ represents the nodal mass contributions, f .i/,int,I the internal nodal forces, and f .i/,ext,I

the external forces. Throughout the paper, we assume that the internal and external forces are
associated with a potential energy function

V.q/D

Z
B.i/,h

W.C h/dV � qI � f
.i/,ext,I (39)

The last two terms in (38) represent the normal contact and frictional forces, which will be derived
in the next section.

3.1. Node-to-surface element

Similar to the approximations of the solution and the test space, we define the following
approximations at the contact boundaries

'.i/,hc D
X
I2 N!

ON Iq
.i/
I , ı'.i/,hc D

X
J2 N!

ON J ıq
.i/
J (40)

where ONI denote bilinear shape functions at the corresponding node I 2 N!, representing the set
of all nodes on the contact interface. Using the direct approach, we have to compute the convected
coordinates N�1 and N�2 internally within each NTS element A (Figure 3) by solving24

�
q
.1/
s � q

.2/
s

�
N�1, N�2

��
� a1

�
N�1, N�2

��
q
.1/
s � q

.2/
s

�
N�1, N�2

��
� a2

�
N�1, N�2

�
35D 0 (41)

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2013)
DOI: 10.1002/nme



M. FRANKE, C. HESCH AND P. BETSCH

Figure 3. Three-dimensional five node node-to-surface element.

for the convective coordinates using a Newton–Raphson iteration. The discrete nodal gap function
ghs (Figure 3) reads

ghs .qA/D
�
q.1/s � q

.2/
s . N�1, N�2/

�
� n
�
N�1, N�2

�
(42)

using the set of nodes �NTS WD ¹qAº D
°
q
.1/
s , q.2/1 , q.2/2 , q.2/3 , q.2/4

±
. Employing the discrete nodal

gap function, we can define the constraint function in normal direction

N̂ n.qA/D

Z
�
.1/
c

ghs dA (43)

along with the Lagrange multipliers N�n that can be viewed as discrete counterpart of the normal
traction tN .

The corresponding tangential tractions are dealt with in Appendix A for the case of Coulomb’s
law. Note that we incorporate the frictional response using a widely used regularization method
based on a penalty parameter. Other types of enforcement of the frictional response are possible
[24–26], because the proposed augmentation technique remains unaffected by, for example, the
existence of additional Lagrange multipliers. The chosen approach is used for the sake of clarity in
the presentation.

Similar to the kinematic relationship (29), the variation of the convective coordinates in the
discrete setting reads

ı N�˛,h
s D A

˛ˇ
h�
ıq.1/s � ı Nq

.2/
s

�
� aˇ C g

hn � ıaˇ

i
(44)

If we assume that the gap is zero, we obtain

ı N�˛,h
s D A

˛ˇ
�
ıq.1/s � ı Nq

.2/
s

�
� aˇ (45)

and the corresponding discrete virtual contact work for a single NTS element reads

Gc,h
s D

Z
�
.1/
c

�
tN ıg

h
s C tT˛ı

N�˛,h
s

�
dA (46)
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With regard to (38), we rearrange the frictional contributions using a single vector ıq � f fric. Fur-
thermore, we collect all normal constraints in a single vector ˆn.q/ and assemble the associated
Lagrange multipliers in the vector �n. Then, the semi-discrete equations of motion read

0DM Rq Crq V.q/Crq .ˆ
n.q/ ��n/C f fric.q/

0Dˆn.q/
(47)

whereM denotes the consistent mass matrix.

3.2. Coordinate augmentation technique

Next, we apply the coordinate augmentation technique described in Section 2.3 to the NTS ele-
ment. In contrast to the direct approach, we calculate the convective coordinates on a global level,
that is, we do not solve the algebraic system of equations in (41) internally but enforce them as
additional constraints

N̂ aug
.qA, fA/D

" �
q.1/ � q.2/.fA/

�
� a1.fA/�

q.1/ � q.2/.fA/
�
� a2.fA/

#
(48)

Here, we make use of a vector fA 2 R2 for each NTS element, representing the convective coor-
dinates

�
N�1, N�2

�
. The associated Lagrange multipliers are given by N�

aug
. In addition to that, the

constraints in normal direction are given by

N̂ n.qA, fA/D
�
q.1/s � q

.2/
s .fA/

�
� n.fA/ (49)

As before, we collect all data in global vectors, that is, we collect all augmented coordinates in
a single vector f 2 Rl , where l denotes the number of all convective coordinates. Furthermore,
the augmented constraints (48) are arranged in a single vector ˆaug.q, f/ 2 Rl and the associated
Lagrange multipliers in a single vector �aug 2 Rl . The semi-discrete equations of motion can now
be written as follows

0DM Rq CrqV.q/Crq.ˆ.q, f/ ��/

0Drf.ˆ.q, f/ ��/C f aug.q, f/

0Dˆ.q, f/

(50)

where ˆ.q, f/ D Œˆaug, ˆn�T 2 Rm and � D Œ�aug, �n�T 2 Rm. Furthermore, f aug.q, f/ D
ŒtT1 , : : : , tTn �

T 2Rl combines the frictional tractions in a single vector.

Implementation To implement the newly proposed method in an efficient way, we eliminate the
additional Lagrange multipliers �aug using the algebraic condition .50/2. For a single NTS element,
this condition reads

rfA

�
N̂ aug
� N�

aug
�
CrfA

N̂ n N�nC Nf
aug
D 0 (51)

where Nf
aug
D ŒtT1 , tT2 �

T 2 R2 represents the tangential tractions of the corresponding NTS
element. The Lagrange multipliers can now be calculated analytically as follows

N�
aug
D�

�
rfA
N̂ aug

��1
�
�
rfA
N̂ n N�nC Nf

aug
�

(52)

Accordingly, on the level of each NTS element, the Lagrange multipliers associated with the aug-
mented coordinates can be expressed in terms of the extended set of coordinates qA, fA and the con-
tact traction N�n in normal direction. Using (52) for each NTS element, the vector N�

aug
of Lagrange

multipliers can be eliminated from the semi-discrete equations of motion (50). Accordingly, we
arrive at

0DM Rq CrqV.q/C .Prfˆ
n.q, f/Crqˆ

n.q, f// ��nCPf aug.q, f/

0Dˆ.q, f/
(53)
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where the block diagonal matrix PD diag. NP1, : : : , NPn/ consists of the local projection matrix

NPD�rqA
N̂ aug

�
rfA
N̂ aug

��1
(54)

for each NTS element. Note that rfˆ
n D 0 is valid at the solution point, and we obtain the

simplified system

0DM Rq CrqV.q/Crq.ˆ
n.q, f/ ��n/CPf aug.q, f/

0Dˆ.q, f/
(55)

The last set of equations defines the residual ŒRq , ˆ�T, which we have to solve with respect to
q 2 Rn, f 2 Rl , and �n 2 Rm�l . This first reduction step can be written in matrix notation using
the modified projection matrix

eP D 
 In�n P 0n�m

0m�n 0m�l Im�m

�
2R.nCm/�.nClCm/ (56)

where n denotes the number of degrees of freedom of the configuration q, m the number of con-
straints ˆ D Œˆaug, ˆn�, and l the number of augmented coordinates f . Premultiplication of (50)
by the projection matrix in (56) yields (55).

In a second step, we eliminate the augmented coordinates within the Newton–Raphson iteration"
Kqq Kqf rqˆ

n

rq
Tˆ rf

Tˆ 0

#
�

24 	q

	f
	�n

35D 
 Rq
ˆ

�
(57)

that is used to solve (55). Here, Kqq and Kqf denotes the derivative of Rq with respect to q and f ,
respectively. Next, we extract the equations for the augmented constraints of a single NTS element
from (57)

rqA
T N̂ aug

	qACrfA
T N̂ aug

	fA D N̂
aug

(58)

and solve this last equation with respect to 	fA, such that we obtain

	fA D
�
rfA

T N̂ aug
��1
N̂ aug
�
�
rfA

T N̂ aug
��1
rqA

T N̂ aug
	qA

D
�
rfA

T N̂ aug
��1
N̂ aug
C NP

T
	qA

(59)

Insertion in (57) yields the reduced system"
Kqq CKqfP

T rqˆ
n

rq
Tˆn 0

#
�



	q

	�n

�
D

"
Rq �Kqf

�
rf

T N̂ aug
��1

ˆaug

ˆn

#
(60)

The last reduction step can also be written in matrix notation using

NP D
"

In�n P 0n�.m�l/

0.m�l/�n 0.m�l/�l I .m�l/�.m�l/

#
2R.nCm�l/�.nCm/ (61)

It is important to remark that the whole reduction procedure can be carried out on element level for
each single NTS-element, because P is block diagonal. The convective coordinates can be recovered
using (59). The consistent linearization can now be carried out in two different ways:

1. As shown in (57), we have to linearize .55/1 with respect to the configuration q and the aug-
mented coordinates f . The involved constraints (48) and (49) are at most quadratic in the
configuration and in the augmented coordinates, thus the only terms of higher order to be
derived depending on the used constitutive law f aug (this derivative is always necessary) and

the 2� 2 inverse matrix
�
rfA

T N̂ aug
��1

, that is, we have to linearize P.
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2. In .55/, we have used the projection matrix eP to obtain a new residual, which we have to
linearize to obtain the .nCm/� .nCm/ matrix in (57). Alternatively, we can premultiply the

full linearized original system (50) by eP and obtain

"
Ko
qq CPKo

fq Ko
qf CPKo

ff rqˆCPrfˆ

rq
Tˆ rf

Tˆ 0

#
�

24 	q

	f

	�

35D eP
264 Roq

Rof

ˆ

375 (62)

where terms labeled by the upper index .�/o represent the contributions arising from .50/1 and
.50/2. Next, we remove 	�aug and the corresponding columns from the system, because we
solve directly for �aug using (52). The second reduction step follows as before, now avoiding
the linearization of P. Note that we take again advantage of its block diagonal structure, such
that all steps can be carried for each contact element.

The linearization is extremely simplified, compared with traditional methods, where we need to
calculate the linearization of the variation of the convective coordinates (cf. Laursen [1])

	ı N�˛ DA˛ˇ
h
�aˇ

�
ı N�� 	 N'.2/,� C ı N'

.2/
,� 	 N��

�
�
�
aˇ � a�ı � g n � aˇ�ı

�
ı N�� 	 N�ı C

g
�
ı N',ˇ� 	

N�� C	 N',ˇ� ı
N��
�
n�

�
ı N'

.2/

,ˇ C aˇ� ı
N��
�
� aı 	 N�

ı��
	 N'

.2/

,ˇ C aˇ� 	
N��
�
� aı ı N�

ı C
�
ı'.1/ � ı N'.2/

� �
	 N'

.2/

,ˇ C aˇ� 	
N��
�
C�

	'.1/ �	 N'.2/
� �

ı N'
.2/

,ˇ C aˇ� ı
N��
�i

(63)

where 	 N� has the same structure as ı N�, given in (29).
Remark: Although we use Lagrange multipliers to enforce the normal constraints, we can also

apply an augmented Lagrangian method to calculate the exact values of �n.

3.3. Conservation properties

The conservation properties of the underlying mechanical system are well known, so we concentrate
on the contact contributions. Reconsider the virtual work contributions of a single contact element

Gc,h.q, ıq/D
Z
�
.1/
c

tNn �
�
ıq.1/s � ıq

.2/
s

�
C

tT˛A
˛ˇ


�
ıq.1/s � ıq

�.1/
s
� aˇ C g

hn � ıaˇ

�
dAD 0

(64)

where we make use of (46) along with (42) and (44). The conservation of linear momentum may
be verified by substituting ıqI D �, where � 2 R3 is arbitrary and constant into the global virtual
work of the constraint forces

Gc,h.q, Œ��/D
Z
�
.1/
c

tNn � .�� �/C

tT˛A
˛ˇ

"
.�� �/ � aˇ C g

hn �
X
I

ON I
,ˇ�

#
dAD 0

(65)
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using the direct approach in (44). To verify conservation of angular momentum, we substitute
ıqI D �� qI and obtain

Gc,h.q, Œ�� qI �/D�� �
Z
�
.1/
c

tNn�
�
q.1/s � Nq

.2/
s

�
C

tT˛A
˛ˇ
h
aˇ �

�
q.1/s � Nq

.2/
s

�
C ghn� aˇ

i
dA

D�� �

Z
�
.1/
c

tNn� g
hnC

tT˛A
˛ˇ
h
ghaˇ � nC g

hn� aˇ

i
dAD 0

(66)

Note that the simplified variation (45) conserves angular momentum only if the normal gap is equal
zero.

Finally, we verify the conservation properties of the augmented system in (50). The corresponding
contact virtual work reads

Gc,h.q, ıq, f/D ıq � rq .ˆ.q, f/ ��/ (67)

where we have taken (50)1 into account. Insertion of ıqI D � into the augmented system yields

Gc,h.q, Œ��, f/D � �
X
I

rqI
.ˆ.q, f/ ��/ (68)

whereas insertion of ıqI D �� qI yields

Gc,h.q, Œ�� qI �, f/D � �
X
I

qI �rqI
.ˆ.q, f/ ��/ (69)

Because the constraints are frame indifferent with respect to rigid body motions of the form

Nq
]
I D c CQ NqI (70)

where c 2R3 is a constant vectorQ 2 SO.3/, we can show that for each NTS element, the relation

N̂
�
Nq], Nf

�
D N̂

�
Nq, Nf
�

(71)

is valid. Substituting c D 
�, � 2R3,QD I and subsequent derivation with respect to 
 yields

0D
d

d


ˇ̌̌̌
�D0

N̂
�
Nq], Nf

�
D � �

X
I

rqI
N̂
�
Nq, Nf
�

(72)

Thus, (68) holds for arbitrary � and linear momentum is conserved. Substituting c D 0 and
Q D exp.
 O�/, where O� is a skew-symmetric matrix, associated with the axial vector � so that
O�aD �� a for any a 2R3, we end up with

0D
d

d


ˇ̌̌̌
�D0

N̂
�
Nq], Nf

�
D � �

X
I

qI �rqI
N̂
�
Nq, Nf
�

(73)

Thus, (69) holds for arbitrary � and angular momentum is conserved for the semi-discrete system.
The same statements are true for the reduced system, because the algebraic reformulation does not
change the general characteristics of the system.
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4. TEMPORAL DISCRETIZATION

The semi-discrete equations of motion (47) and (50) have to be discretized in time. Consider a time
interval I D Œ0,T � D

SN�1
nD0 Œtn, tnC1� subdivided into increments 	t D tnC1 � tn and assume

the state at time tn to be known. Now, for a typical time step tn ! tnC1, the full discrete version
of (47) reads

qnC1 � qn D	tvnC1=2

M .vnC1 � vn/D�	trqV.qn, qnC1/�rqˆ
n.qnC1=2/ ��� f

fric.qn, qnC1/

0Dˆn.qnC1/

(74)

Here, rV.qn, qnC1/ denotes the discrete gradient of the strain energy function [27]. The dis-

crete version of the frictional kinematics used in f fric.qn, qnC1/ D tT˛ı
N�˛,h
s,nC1=2 is related to the

definition of the convective coordinates

ı N�˛,h
s,nC1=2 D A

˛ˇ

nC1=2

h�
ıq.1/s � ı Nq

.2/
s

�
� aˇ ,nC1=2C g

h
nC1=2nnC1=2 � ıaˇ

i
(75)

Note that we deal with the adjoint discrete traction tT˛ using a local evolution scheme in
Appendix B. The time-discrete version of the augmented system in (50) reads

qnC1 � qn D	tvnC1=2

M .vnC1 � vn/D�	trqV.qn, qnC1/�	trqˆnC1=2 ��

0DrfˆnC1=2 ��C f
aug
nC1=2

0DˆnC1

(76)

where rqˆnC1=2 D rqˆ.qnC1=2, fnC1=2/, rfˆnC1=2 D rfˆ.qnC1=2, fnC1=2/, and ˆnC1 D
ˆ.qnC1, fnC1/. As already mentioned, f aug consists of the tractions tT˛ , see (50). Accordingly,
f

aug
nC1=2

has to be evaluated as shown in Appendix B. Following the arguments outlined in the
previous section, we create a local projection matrix as follows

NPnC1=2 D�rqA
N̂ aug
nC1=2

�
rfA
N̂ aug
nC1=2

��1
(77)

and obtain for the reduced system

qnC1 � qn D	tvnC1=2

M .vnC1 � vn/D�	trqV.qn, qnC1/�	trqˆ
n
nC1=2 ��

n �	tPnC1=2f
aug
nC1=2

0DˆnC1

(78)

The second reduction step follows immediately from (60) using the discretized projection matrix in
(77) evaluated at time nC 1

NPnC1 D�rqA
N̂ aug
nC1

�
rfA
N̂ aug
nC1

��1
(79)

The full discrete system to be solved in each Newton–Raphson iteration now reads"
Kqq CKqfP

T
nC1 	trqˆ

n
nC1=2

rq
TˆnnC1 0

#
�



	q

	�n

�
D

"
Rq,nC1=2 �Kqf

�
rf

T N̂ aug
nC1

��1
ˆ

aug
nC1

ˆnnC1

#
(80)

where Rq,nC1=2 consists of the residual contributions in .78/2, and Kqq and Kqf denotes the con-
sistent linearization ofRq,nC1=2 with respect to q and f , respectively. In a final step, we recover the
augmented coordinates by solving

	fA D
�
rfA

T N̂ aug
nC1

��1
N̂ aug
nC1C

NP
T

nC1	qA (81)

for each NTS element.
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It is obvious that the linearization is extremely simplified compared with traditional schemes.
Furthermore, the proposed scheme is more consistent because it ensures the exact fulfillment of the
orthogonality conditions .76/4 at each time node within the chosen mid-point type scheme.

4.1. Conservation properties

As before, we focus on the contact contribution and begin with the verification of the conservation
of linear momentum. To this end, we substitute ıqI D �, � 2 R3 into the weak form of the contact
contributions

Gc,h.qnC1=2, Œ��/D
Z
�
.1/
c

tNnnC1=2 � .�� �/C

tT˛A
˛ˇ

nC1=2

"
.�� �/ � aˇ ,nC1=2C g

h
nC1=2nnC1=2 �

X
I

ON I
,ˇ�

#
dA

D 0

(82)

which confirms that the constraints do not affect linear momentum conservation. Following the
arguments in (66), we substitute ıqI D �� qI ,nC1=2 and obtain

Gc,h.qnC1=2, Œ�� qI ,nC1=2�/D� � �

Z
�
.1/
c

tNnnC1=2 � g
h
nC1=2nnC1=2C

tT˛A
˛ˇghnC1=2

�
aˇ ,nC1=2 � nnC1=2C nnC1=2 � aˇ ,nC1=2

�
dA

D 0

(83)

which confirms that the constraints do not affect angular momentum conservation as well.
At last, we verify the conservation properties of the full discrete system in (76) and substitute

ıqI D �

Gc,h
�
qnC1=2,�, fnC1=2

�
D � �

X
I

rqIˆ
�
qnC1=2, fnC1=2

�
�� (84)

whereas we obtain

Gc,h
�
qnC1=2, Œ�� qI ,nC1=2�, fnC1=2

�
D � �

X
I

qI ,nC1=2 �rqIˆ
�
qnC1=2, fnC1=2

�
�� (85)

if we substitute ıq D ��qI ,nC1=2. Once again frame indifference of the vector of constraintsˆ.q, f/
against rigid body motions is crucial for the fulfillment of the conservation laws. Proceeding along
the lines of Section 3.3, we can easily verify that

N̂
�
Nq
]

nC1=2
, NfnC1=2

�
D N̂

�
NqnC1=2, NfnC1=2

�
(86)

where Nq]
I ,nC1=2 D c CQ NqI ,nC1=2. Substituting c D 
�, � 2R3,QD I yields

0D
d

d


ˇ̌̌̌
�D0

N̂
�
Nq
]

nC1=2
, NfnC1=2

�
D � �

X
I

rqI
N̂
�
NqnC1=2, NfnC1=2

�
(87)

Analogous to the semi-discrete system, linear momentum is algorithmically conserved. Substituting
c D 0 andQD exp.
 O�/ yields

0D
d

d


ˇ̌̌̌
�D0

N̂
�
Nq
]

nC1=2
, NfnC1=2

�
D � �

X
I

qI ,nC1=2 �rqI
N̂
�
NqnC1=2, NfnC1=2

�
(88)

Thus, angular momentum is algorithmically conserved for the full-discrete system. Note that the
last statement is also true for the reduced system, because the algebraic reformulation of the system
does not change any properties of the underlying formulation.
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5. NUMERICAL RESULTS

In this section, we evaluate the accuracy and performance of the newly proposed method and com-
pare the results to well-known and established methods. To solve the arising nonlinear system of
equations, a Newton–Raphson solution procedure has been implemented.

5.1. Contact of two elements

To evaluate the properties of the algorithms under consideration, we investigate a simple nonlinear
three-dimensional example, which is constructed such that we obtain reproducible results. In partic-
ular, we consider two 3D elements, using trilinear shape functions. A compressible Neo–Hookean
material is used with associated strain energy density function

W.C /D
�

2
Œtr.C /� 3�C

�

2
.lnJ /2 ��lnJ (89)

where J D
p

det.C / and �l D 865.3846, �l D 1298.1 are Lamé parameters corresponding to a
Young’s modulus of E D 2250 and a Poisson’s ratio of � D 0.3. The reference density is given by
�0 D 1000 and the coefficient of friction � D 0.5. The initial position of the 16 nodes are given in
Table I together with the initial velocity (Figure 4). Because of the initial configuration, the tangent
vectors a˛ of the master surface are not orthonormal.

Both elements are flying free in space, that is, no boundary conditions are prescribed. First, we
show results using an implicit Euler backward algorithm. Therefore, the z-position of node 8 of the
upper block, which is directly in contact with the lower block, is plotted over time in Figures 5 and 6.
In particular, Figure 5 shows the results for different time step sizes of the newly proposed algorithm
using both reduction steps, whereas Figure 6 shows the results of the conventional direct approach.
As expected, the Euler backward algorithm damps oscillations for larger time step sizes. In Figure 7,
we show a comparison of the augmented system, the reduced system, and the direct approach for a

Table I. Nodal positions and initial velocity.

Node Position Velocity Node Position Velocity

1 [�0.5, �1, 2.1] [0, 0.1, �0.04] 1 [�1, �1, 1] [0 0 0]
2 [�0.5, 0, 2.1] [0, 0.1, �0.04] 2 [�1.5, 1.5, 1] [0 0 0]
3 [�0.5, �1, 1.1] [0, 0.1, �0.04] 3 [�1, �1, 0] [0 0 0]
4 [�0.5, 0, 1.1] [0, 0.1, �0.04] 4 [�1.5, 1.5, 0] [0 0 0]
5 [ 0.5, �1, 2.1] [0, 0.1, �0.04] 5 [1, �1, 1] [0 0 0]
6 [ 0.5, 0, 2.1] [0, 0.1, �0.04] 6 [1.2, 1, 1] [0 0 0]
7 [ 0.5, �1, 1.1] [0, 0.1, �0.04] 7 [1, �1, 0] [0 0 0]
8 [ 0.5, 0, 1.1] [0, 0.1, �0.04] 8 [1.2, 1, 0] [0 0 0]

Figure 4. Reference configuration and initial velocity v.
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Figure 5. Augmented coordinates, z-position of node 8 plotted over time.
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Figure 6. Direct approach, z-position of node 8 plotted over time.
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Figure 7. Comparison of the different approaches under consideration.

time step size of 	t D 0.005. The results coincide extremely well for the used implicit Euler back-
ward algorithm. Thus, the advantages of the new approach considered here relies on the simplified
structure of the contact element.
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Figure 8 shows additionally the results of the proposed new algorithm using a mid-point type eval-
uation, as proposed in Section 4. Using the mid-point type evaluation, we obtain even for large time
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Figure 8. Augmented coordinates, mid-point type evaluation.
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Figure 9. Total energy over time.
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Figure 10. Total angular momentum over time.
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step sizes reliable results, for example, for 	t D 0.2, using only 100 time steps for the whole simu-
lation. Note that Lagrange multipliers have been used to enforce the constraints in normal direction
throughout all shown examples.

Finally, total energy and total angular momentum are plotted in Figures 9 and 10 for the proposed
scheme using the mid-point type evaluation. As can be seen, total energy is conserved after the fric-
tional impact. Furthermore, total angular momentum is also conserved. Although not shown here,
linear momentum is also conserved algorithmically.

5.2. Two tori impact problem

In this example, we consider an impact problem of two tori to demonstrate that the proposed algo-
rithm is suitable for large systems. Initial values and the material properties have been taken from
Yang and Laursen [28]. The initial configuration is displayed in Figure 11. The inner and outer

Figure 11. Initial configuration of the two tori impact problem.

Figure 12. Deformation at time 2.5 and 5.
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Figure 13. Total energy plotted over time.
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Figure 14. Components of angular momentum plotted over time.

Figure 15. Comparison at t D 5 for �D 0.1 (left) and �D 0.3 (right).

radius of the tori are 52 and 100; the wall thickness of each hollow torus is 4.5. Both tori are subdi-
vided into 8024 elements, using a Neo–Hookean hyperelastic material with E D 2250 and � D 0.3.
The initial densities are � D 0.1 and the homogeneous, initial velocity of the left torus is given
by v D Œ30, 0, 23�. A time step size of 0.01 has been used throughout the whole simulation. The
deformation at different time steps is shown in Figure 12.

The evolution of the total energy is shown in Figure 13, whereas the three components of
angular momentum are shown in Figure 14. As expected, total energy decreases because of the
frictional behavior. Because we used the proposed mid-point type evaluation of the system, angular
momentum is conserved.

Finally, Figure 15 shows the deformation at t D 5 for different friction coefficients, using �D 0.1
and � D 0.3. The deformation changes significantly because large sliding effects are directly
correlated with the friction coefficient.

6. CONCLUSIONS

A novel formulation for the frictional kinematics has been developed in the framework of large
deformation contact. This new method rests on an augmentation technique, which substantially
simplifies the underlying expressions at the cost of an enlarged global system of algebraic equations
to be solved. To remedy this drawback, a size-reduction procedure has been proposed on the basis of
the elimination of the Lagrange multipliers associated with the augmented coordinates. In a second
step, the size of the system has been further reduced to the original size. In this connection, a new
analytical representation of the projection of the convective coordinates to the configuration space
has been established.
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The new approach is much more simple compared with traditional methods. As shown, the inter-
nal Newton iteration to determine the actual convective coordinates has been removed, and the
residual and the tangent contributions of the contact element are significantly simplified. We have
demonstrated the usability of the proposed augmentation technique for large deformation problems.
Because the size-reduction of the system relies on an analytical reformulation, the underlying con-
servation laws are not affected. Thus, we could ensure algorithmic conservation of linear and angular
momentum. This provides enhanced numerical stability of the method for large simulations.

APPENDIX A: CONSTITUTIVE EVOLUTION EQUATIONS

Many researchers have investigated various constitutive laws used to describe the tangential trac-
tions. We omit a further investigation and focus on a standard dry friction Coulomb law to complete
the set of equations used for the numerical examples. On the basis of this specific formulation, we
state that

ktT k6 � tN and  WD ktT k �� tN 6 0 (A.1)

The tangential displacement in the case of slip follows from uT D � tT where � denotes the
consistency parameter, which depends on (A.1), and we can write

�

²
D 0, if  < 0

> 0, else if ktT k D � tN
(A.2)

In analogy to plasticity, we rewrite the last statement as follows

 6 0, � > 0, � D 0

vT D �

�
@

@tT


	
D �

tT

ktT k

(A.3)

and regularize the equation for the tangential velocity vT .A.3/2 using a penalty method

vT D �
tT

ktT k
C

1


T
PtT (A.4)

(Figure A.1). Note that the components in tangential direction read

PtT˛

T
Dm˛ˇ P�

ˇ � �
tT˛
ktT k

(A.5)

where we have made use of vT Dm˛ˇ P�ˇ a˛ .

Figure A.1. Admissible region for tangential traction tT in case of Coulomb law.
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AN AUGMENTATION TECHNIQUE FOR FRICTIONAL CONTACT

APPENDIX B: LOCAL TIME STEPPING SCHEME FOR THE FRICTIONAL
EVOLUTION EQUATIONS

Here, we apply a one-step integration scheme of the local evolution equations (A.5) following the
arguments in the work of Armero and Petöcz [14]. Consequently, the approximation of the tractions
can be written as follows

tT˛,nC# � tT˛,n D 
T m˛ˇnC#

�
�
ˇ

nC#
� �ˇn

�
� 
T �

tT˛,nC#

ktTnC#k
(B.1)

where # 2 Œ0, 1� controls the corresponding time stepping scheme and should be chosen consistent
with the global time stepping scheme. Taking the inequality conditions (A.3) into account, we obtain

nC# D ktTnC#k �� tN 6 0, � > 0, � nC# D 0

tT˛,nC# D tT˛,n C 
T .m˛ˇnC#

 
�
ˇ

nC#
� �ˇn /� � #

tT˛,nC#

ktTnC#k

!
(B.2)

Note that tN is represented by a Lagrange multiplier, constant within the time step. To implement
(B.2), we apply a return mapping scheme and start by considering the stick case, that is, � D 0

t trT˛,nC#
D tT˛,n C 
T m˛ˇnC# .�

ˇ

nC#
� �ˇn /

trnC# D kt
tr
TnC#
k �� tN 6 0

(B.3)

which defines our trial state. Depending on the condition .B .3/2, slip occurs, and we obtain

t trT˛,nC#
D 
T # �

tT˛,nC#

ktTnC#k
C tT˛,nC# (B.4)

by comparing (B.2)2 and (B.3)1. After short calculations using the relation ttrTnC#=kt
tr
TnC#
k D

tTnC#=ktTnC#k, the consistency parameter in the case of slip is determined by

� D
tr
nC#

# 
T
> 0 (B.5)

Thus, the final contribution in the case of slip reads

tT˛,nC# D � tNnC#
tT˛,nC#

kttrTnC#k
(B.6)

To summarize, the return mapping scheme can be written as follows

tT˛,nC# D

8̂<̂
:
t trT˛,nC#

, iftr
nC#
6 0

� tNnC#
t tr
T˛,nC#

kttr
TnC#

k
, else iftr

nC#
> 0

(B.7)

which completes the used definition for the tractions.
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