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SUMMARY

An energy-momentum consistent integrator for non-linear thermoelastodynamics is newly developed and
extended to domain decomposition problems. The energy-momentum scheme is based on the first law of
thermodynamics for strongly coupled, non-linear thermoelastic problems. In contrast to staggered algo-
rithms, a monolithic approach, which solves the mechanical as well as the thermal part simultaneously, is
introduced. The approach is thermodynamically consistent in the sense that the first law of thermodynamics
is fulfilled. Furthermore, a domain decomposition method for the thermoelastic system is developed based
on previous developments in the context of the mortar method. The excellent performance of the new
approach is illustrated in representative numerical examples. Copyright � 2011 John Wiley & Sons, Ltd.
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1. INTRODUCTION

General thermoelastic material models have been a major topic in research for the past decades
(see e.g. Reese and Govindjee [1] and Miehe [2] among many others). Especially the non-linear
stability of the time-discrete systems has been addressed in several papers (see Simo [3]). The
present paper is based on an approach by Holzapfel and Simo [4], in which rubber elasticity has
been extended to a class of entropic elastic materials, written entirely in the material configuration.

Energy-momentum schemes are well known in the context of non-linear elastodynamics (see,
for example, Gonzalez [5] and Betsch and Steinmann [6, 7] and the references therein) and have
been applied to a wide range of applications (see e.g. for contact problems Hauret and Le Tallec
[8] and Hesch and Betsch [9, 10]). They are able to conserve qualitative features of the systems
and, more importantly, they exhibit an excellent performance in long-term simulations and are
numerically stable. In a nutshell, in the present work we merge the concept of structure preserving
integrators with the concept of entropic thermoelastic materials. In contrast to actual developments
(see Romero [11, 12] and Gross [13]) we apply only a minor modification to the concept of the
discrete gradient (see Gonzalez [14]), based on the first law of thermodynamics to achieve our
goal.

Additionally, we introduce a structure preserving, variationally consistent mortar domain decom-
position method for thermoelastic systems, based on previous developments in Hesch and Betsch
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1278 C. HESCH AND P. BETSCH

[15] confined to the isothermal case. The present domain decomposition method provides a flexible
approach for the coupling of different discretization schemes or for nonmatching triangulariza-
tions. The development of variationally consistent domain decomposition constraints started two
decades ago with the work of Bernadi et al. [16, 17]. Further advances can be found in Krause
and Wohlmuth [18] and in Dohrmann et al. [19]. An extension to non-linear solid mechanics is
given in Puso [20]. Thermomechanical contact problems using the mortar method are addressed
in Hüeber and Wohlmuth [21].

An outline of the present work is as follows. The fundamental equations in the context of the
first law of thermodynamics are outlined in Section 2. In particular, the weak form of the balance
equations is derived within this section. The equations of motion of the thermoelastic system
under consideration along with the energy-momentum consistent discretization in time will be
dealt with in Section 3. In Section 4 we apply a spatial discretization based on finite elements.
In this connection, the use of nonconforming meshes is facilitated. Therefore, we introduce in
Section 5 the mortar method for the domain decomposition of thermoelastic systems along with
an energy-momentum consistent time-stepping scheme. Representative numerical examples are
presented in Section 6. Eventually, conclusions are drawn in Section 7.

2. FINITE STRAIN THERMOELASTODYNAMICS

We start with a short summary of non-linear thermoelasticity. More details on the continuum
description of thermoelastic solids can be found in textbooks, such as Holzapfel [22] and Gonzalez
and Stuart [23]. Consider a continuum body with reference configuration B0⊂R3 undergoing a
motion characterized by a time-dependent deformation mapping u :B0×[0,T ]→R3, where [0,T ]
is the time interval elapsed during the motion. The current configuration is denoted by Bt=ut (B0).
Material points are labeled by X∈B0, the material velocity is given by v :B0×[0,T ]→R3,
v=�u/�t , and the deformation gradient is denoted by F :B0×[0,T ]→R3×3, F=Du. The linear
momentum is given by p=�0v, where �0 stands for the density in the reference configuration.

The absolute temperature � :B0×[0,T ]→R is assumed to be a smooth function of (X, t)∈
B0×[0,T ]. We further assume that the material behavior is governed by the free energy function
� :B0×[0,T ]→R, �=�̂(C,�), where C :B0×[0,T ]→R3×3, C=FTF is the right Cauchy-
Green deformation tensor. Accordingly, the nominal (or first Piola-Kirchhoff) stress tensor P :
B0×[0,T ]→R3×3 and the entropy � :B0×[0,T ]→R are defined by

P = 2F∇C�̂(C,�)

� = −∇��̂(C,�)
(1)

Moreover, the nominal heat flux vector Q is defined by

Q=−K̂(C,�)Grad(�) (2)

Here, K̂(C,�) is a thermal conductivity tensor which must be positive semi-definite. Note that the
constitutive laws (1) and (2) are thermodynamically consistent in the sense that they satisfy the
restrictions imposed by the second law of thermodynamics (in the form of the Clausius–Duhem
inequality). The Lagrangian form of the local balance of linear momentum and energy for a
thermoelastic body can be written as

u̇ = �−1
0 p

ṗ = Div(P)+B̄

��̇ = −Div(Q)+ R̄

(3)

where B̄(X, t) and R̄(X, t) denote the material descriptions of prescribed body force and heat supply
per unit volume. The above equations have to be satisfied for all X∈B0 and t�0. To complete
the initial-boundary value problem for the thermoelastic body under consideration, the equations

Copyright � 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2011; 86:1277–1302
DOI: 10.1002/nme
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in (3) have to be supplemented by appropriate initial and boundary conditions. Accordingly, initial
conditions in B0 and at time t=0 are specified by

u(·,0)=X, u̇(·,0)=v0, �(·,0)=�0 in B0 (4)

where v0 and �0 are prescribed fields. Moreover, boundary conditions on �B0 at times t�0 are
specified by

u = ū on �B�
0 ×[0,T ], �= �̄ on �B�

0×[0,T ]

PN = T̄ on �B�
0×[0,T ], Q ·N=−Q̄ on �BQ

0 ×[0,T ]
(5)

where �B�
0 and �B�

0 are subsets of �B0 with the properties �B�
0 ∪�B�

0=�B0 and �B�
0 ∩�B�

0=∅.
Similarly, �B�

0 and �BQ
0 are subsets of �B0 with the properties �B�

0∪�BQ
0 =�B0 and �B�

0∩
�BQ

0 =∅. Furthermore, N denotes the unit outward normal field on �B0, and ū, T̄, �̄, and Q̄ are
prescribed fields.

2.1. Weak formulation

To perform a finite element discretization in space we next recast the coupled thermoelastic problem
in weak form. To this end we introduce the space of test functions V� defined as

V�={�u(·) :�u(X)=0 for X∈�B�
0 } (6)

along with

V�={��(·) :��(X)=0 for X∈�B�
0} (7)

Scalar multiplication of (3)2 by the test function �u∈V� and subsequent integration yields∫
B0

�u· ṗdV =
∫
B0

�u·[Div(P)+B̄]dV (8)

Similarly, (3)3 leads to ∫
B0

����̇dV =
∫
B0

��[R̄−Div(Q)]dV (9)

Applying integration by parts along with the divergence theorem, (8) and (9) can be written as∫
B0

[�u· ṗ+DuR : D�u]dV =
∫

�B�
0

�u·T̄dA+
∫
B0

�u·B̄dV∫
B0

[����̇−Q·Grad(��)]dV =
∫

�BQ
0

��Q̄ dA+
∫
B0

��R̄ dV

(10)

These equations have to hold for all �u∈V� and ��∈V�. In (10)1, the second Piola-Kirchhoff
stress field R=Du−1P has been introduced. While the balance of linear momentum and the
balance of energy are stated in weak form, we retain the kinematic relationship (3)1 in local form.

2.2. Balance laws in global form

We next summarize fundamental balance laws in global form which should be preserved under
discretization in space and time. This viewpoint leads to the notion of energy-momentum consistent
integrators. The design of a specific energy-momentum consistent integrator is one of the main
goals of the present work. For simplicity of exposition in what follows we restrict our attention on
the thermoelastic problem with pure Neumann data, i.e. �B�

0 =�B�
0=∅. While Dirichlet boundary

conditions on the mechanical part affect the momentum balance equations, Dirichlet boundary
conditions on the thermal part affect the energy balance.
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1280 C. HESCH AND P. BETSCH

Setting �u=l, where l∈R3 is arbitrary and constant, showing that (10)1 yields the balance
law for linear momentum in integral form in a straightforward procedure:

d

dt
L=

∫
�B�

0

T̄dA+
∫
B0

B̄dV (11)

Here, the total linear momentum is given by L=∫B0
pdV , and the right-hand side of (11) charac-

terizes the resultant external force applied to the continuum body.
Similarly, substituting �u=l×u into (10)1, the integral form of the balance law for angular

momentum is recovered:

d

dt
J=

∫
�B�

0

u×T̄dA+
∫
B0

u×B̄dV (12)

In this connection, J=∫B0
u×pdV is the total angular momentum of the continuum body with

respect to the origin of the inertial frame of reference. The right-hand side of (12) equals the
resultant external torque about the origin.

2.2.1. Balance of energy. We next consider the integral form of the balance law for energy.
As before we focus on the thermoelastic problem with pure Neumann data. Substituting �u= u̇
into (10)1 yields

d

dt

∫
B0

1

2
u̇ ·pdV︸ ︷︷ ︸

dT/dt

+
∫
B0

1

2
R : ĊdV︸ ︷︷ ︸
W

=
∫

�B�
0

u̇ ·T̄dA+
∫
B0

u̇·B̄dV︸ ︷︷ ︸
Pext

(13)

Here, T denotes the total kinetic energy of the continuum body, W is the net working, and Pext is
the power of external forces. The relationship between the free energy � and the specific internal
energy e is given by

�=e−�� (14)

Differentiation with respect to time yields

�̇= ė− �̇�−��̇ (15)

On the other hand the constitutive Equations (1) are based on the free energy function �=�̂(C,�),
and thus imply

�̇= ��̂(C,�)

�C︸ ︷︷ ︸
1
2R

: Ċ+ ��̂(C,�)

��︸ ︷︷ ︸
−�

�̇ (16)

Accordingly, taking into account (15) and (16), the stress power can be written as

1
2R : Ċ= ė−��̇ (17)

Introducing the total internal energy of the continuum body E=∫B0
e dV , the net working can

now be written in the form

W = Ė−
∫
B0

��̇dV (18)

Testing (10)2 on the constant ��=	, 	∈R, gives∫
B0

��̇dV =−
∫

�B0

Q ·NdA+
∫
B0

R̄ dV =: Q (19)
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where Q is the total net heating of the continuum body. Substituting (19) into (18), we recover the
first law of thermodynamics in the form dE/dt=W+Q. Moreover, in view of (13), the global
form of the energy balance law can be written as

d

dt
[T+E]= Pext+Q (20)

In case the external forces are associated with a potential energy V ext, i.e. Pext=−dV ext/dt , the
energy balance law reads as

d

dt
[T+E+V ext]=Q (21)

Concerning the discretization in space and time of the coupled thermoelastic problem under
consideration we aim at numerical methods that correctly reproduce the above balance laws for any
time step. For example, if the external forces vanish the linear momentum as well as the angular
momentum of the system should be conserved exactly. Moreover, if (21) applies and the system
is insulated (i.e. Q=0), the total energy should be exactly conserved in the discrete setting thus
correctly reproducing the continuous law (21).

3. DISCRETIZATION IN TIME

We next perform the discretization in time of the coupled thermoelastic problem under considera-
tion. In particular, we present a new energy-momentum consistent integrator for thermoelastody-
namics.

Consider a sequence of times t0, . . . , tn, tn+1, . . . and assume that the state at tn , denoted by
(un,�n), is known. Then the goal is to approximate the state (un+1,�n+1) at tn+1, where the
time-step size �t= tn+1− tn is prescribed. Consider the algorithmic approximation to the weak
form (10) defined by∫
B0

[
�u· pn+1−pn

�t
+Dun+1/2Rn,n+1 : D�u

]
dV =

∫
�B�

0

�u ·T̄n+1/2 dA+
∫
B0

�u·B̄n+1/2 dV∫
B0

[
���n+1/2

�n+1−�n

�t
−Qn,n+1 ·Grad(��)

]
dV =

∫
�BQ

0

��Q̄n+1/2 dA+
∫
B0

��R̄n+1/2 dV

(22)

The above two equations are supplemented by the mid-point-type approximation to the kinematic
relationship (3)1 given by

un+1−un=�tvn+1/2 (23)

together with

pn+
=�0vn+
 for 
∈{0, 1
2 ,1} (24)

In the above formulas, (·)n+1/2 denotes the standard mid-point approximation, e.g. un+1/2=
1
2 (un+1+un). Moreover, in (22)1, Rn,n+1 denotes a consistent algorithmic version of the second
Piola-Kirchhoff stress tensor defined by

Rn,n+1=∇C�̂(Cn+1/2,�n+1/2)+ en+1−en−�n+1/2��−∇C�̂(Cn+1/2,�n+1/2) :�C

�C :�C
�C (25)

where

Cn+1/2 = 1
2 (Cn+Cn+1)

�C=Cn+1−Cn, �� = �n+1−�n

(26)
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1282 C. HESCH AND P. BETSCH

In this connection, (14) gives rise to

ek=�̂(Ck,�k)−�k∇��̂(Ck,�k) (27)

for k∈{n,n+1}. Accordingly, the algorithmic stress Rn,n+1 just depends on the state variables
(un,�n) and (un+1,�n+1). We further remark that in the isothermal limit formula (25) boils down
to the discrete gradient in the sense of Gonzalez [14] corresponding to De(C), see also Gonzalez
[5] and Betsch and Steinmann [6].

In (22)2, Qn,n+1 denotes a consistent algorithmic version of the nominal heat flux vector
defined by

Qn,n+1=−K̂(Cn+1/2,�n+1/2)Grad(�n+1/2) (28)

3.1. Algorithmic versions of the global balance laws

We next verify that the newly proposed energy-momentum consistent integrator does indeed satisfy
the global balance laws summarized in Section 2.2. Again we focus on pure Neumann data.
Inserting �u=l into (22)1 yields

Ln+1−Ln=�t
∫

�B�
0

T̄n+1/2 dA+
∫
B0

B̄n+1/2 dV (29)

Furthermore, inserting �u=l×un+1/2 into (22)1 yields

Jn+1−Jn=�t
∫

�B�
0

un+1/2×T̄n+1/2 dA+
∫
B0

un+1/2×B̄n+1/2 dV (30)

The last two results can be viewed as time-discrete counterparts of the global balance laws for
linear and angular momentum. To show algorithmic satisfaction of the global balance law for
energy, substitute vn+1/2 for �u in (22)1 to obtain∫

B0

[�0vn+1/2 ·(vn+1−vn)+Dun+1/2Rn,n+1 : (Dun+1−Dun)]dV =�t Pext
n,n+1 (31)

where use has been made of (23). On the right-hand side of the last equation Pext
n,n+1 stands for

the algorithmic version of the power of external forces given by

Pext
n,n+1=

∫
�B�

0

vn+1/2 ·T̄dA+
∫
B0

vn+1/2 ·B̄dV (32)

Taking into account the symmetry of Rn,n+1 along with the definition of the kinetic energy, (31)
can be recast in the form

Tn+1−Tn+
∫
B0

1

2
Rn,n+1 : (Cn+1−Cn)dV =�t Pext

n,n+1 (33)

In view of the definition of the algorithmic stress tensor (25), the last equation can be written as

Tn+1−Tn+En+1−En−
∫
B0

�n+1/2(�n+1−�n)dV =�t Pext
n,n+1 (34)

Now, setting ��=	 in (22)2 yields

1

�t

∫
B0

�n+1/2(�n+1−�n)dV =−
∫

�B0

Qn,n+1 ·NdA+
∫
B0

R̄n+1/2 dV =: Qn,n+1 (35)

Here, Qn,n+1 denotes the discrete version of the total net heating. Combining (34) and (35) we
arrive at the result

Tn+1−Tn+En+1−En=�t[Pext
n,n+1+Qn,n+1] (36)
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The last equation confirms algorithmic energy consistency of the integrator under consideration.
That is, the balance law for energy (20) is correctly reproduced in the discrete setting for any
time-step size �t .

4. DISCRETIZATION IN SPACE

To achieve a numerical solution for the semi-discrete, coupled thermoelastic problem, we apply
a finite element framework to both, the mechanical as well as the thermal field. In particular,
we consider a standard displacement-based finite element approach, where we introduce finite
dimensional approximations of u and �u so that

uh= ∑
A∈�

N A(X)qA and �uh= ∑
B∈�

N B(X)�qB (37)

Here, A∈�={1, . . . ,nnode} such that qA∈R3 denotes the position vector of node A and N A(X) :
B0→R are global shape functions. In the present work, we make use of standard trilinear shape
functions. In a second step, we discretize the temperature field using the same shape functions as
before

�h= ∑
A∈�

N A(X)�A and ��h= ∑
B∈�

N B(X)��B (38)

where �A∈R denotes the temperature at node A∈�={1, . . . ,nnode}. For later use we introduce
the system vectors q= [q1, . . . ,qnnode

], H= [�1, . . . ,�nnode ] and the variations thereof as �q=
[�q1, . . . ,�qnnode

] and �H= [��1, . . . ,��nnode ].
Next we develop the fully discretized weak form based on the semi-discrete formulation (22),

starting with the first term in (22)1∫
B0

�uh · p
h
n+1−ph

n

�t
dV = 1

�t
�qA ·

∫
B0

�0 N A N B dV (vB,n+1−vB,n)

= 1

�t
�qA ·MAB(vB,n+1−vB,n) (39)

where (23) and (24) have been taken into account. For simplicity of exposition we make use of
the summation convention for repeated indices. Similarly, we obtain for the first term in (22)2∫

B0

��h�h
n+1/2

�h
n+1−�h

n

�t
dV = 1

�t
��A

∫
B0

(�h
n+1−�h

n)N A N B dV �B,n+1/2

= 1

�t
��A�AB

n,n+1�B,n+1/2 (40)

where, in view of (1)2, the discrete entropy reads as

�h
k=∇��(Ch

k,�
h
k), k∈{n,n+1} (41)

and the discrete right Cauchy-Green tensor is given by

Ch
k= (Duh

k)T Duh
k, k∈{n,n+1} (42)

Next we approximate the second term in (22)1 as follows:∫
B0

Duh
n+1/2R

h
n,n+1 : D�uh dV = �qA ·

∫
B0

∇N A ·Rh
n,n+1∇N B dV qB,n+1/2

= �qA ·
∫
B0

SAB
n,n+1 dV qB,n+1/2 (43)
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Analogue to (25), Rh
n,n+1 denotes a consistent algorithmic version of the discrete second Piola-

Kirchhoff stress tensor, defined by

Rh
n,n+1=∇C�(Ch

n+1/2,�
h
n+1/2)+

eh
n+1−eh

n−�h
n+1/2��h−∇C�(Ch

n+1/2,�
h
n+1/2) :�Ch

�Ch :�Ch
�Ch (44)

As before, we formulate the inner energy in terms of the free Helmholtz energy

ek=�(Ch
k,�

h
k)−�h

k∇��(Ch
k,�

h
k), k∈{n,n+1} (45)

Similarly, the second term in (22)2 yields∫
B0

Grad(��h) ·Qh
n,n+1 dV =−��A

∫
B0

∇N A ·K̂(Ch
n+1/2,�

h
n+1/2)∇N B dV �B,n+1/2

=−��A

∫
B0

K AB
n,n+1 dV �B,n+1/2 (46)

At last, the terms on the right side of (22)1 and (22)2 can be written as∫
�BT

0

�uh ·T̄n+1/2 dA+
∫
B0

�uh ·B̄n+1/2 dV = �qA ·
[∫

�BT
0

N AT̄n+1/2 dA+
∫
B0

N AB̄n+1/2 dV

]

= �qA ·FA,ext
n+1/2∫

�BQ
0

��h Q̄n+1/2 dA+
∫
B0

��h R̄n+1/2 dV = ��A

[∫
�BQ

0

N A Q̄n+1/2 dA+
∫
B0

N A R̄n+1/2 dV

]

= ��A Qh,A
n,n+1 (47)

which completes the spatial discretization process. In summary, we receive the following equations:

�qA ·
[

MAB(vB,n+1−vB,n)+�t
∫
B0

SAB
n,n+1 dV qB,n+1/2

]
= �t�qA ·[FA,ext

n+1/2]

��A

[
�AB

n,n+1�B,n+1/2−�t
∫
B0

K AB
n,n+1 dV �B,n+1/2

]
= �t��A Qh,A

n,n+1

(48)

Next, we verify that the spatial discretization of the coupled thermoelastic system inherits the
fundamental conservation properties of the underlying semi-discrete system.

4.1. Conservation properties

4.1.1. Linear momentum. To verify conservation of linear momentum, we focus again on pure
Neumann data. Insertion of �qA=l into (48)1 and summation yields

l·(Ln+1−Ln)=�t
∑

A∈�
l·
[
−
∫
B0

SAB
n,n+1 dV qB,n+1/2+FA,ext

n+1/2

]
(49)

With regard to (43) we can state

l ·
∫
B0

(
∇ ∑

A∈�
N A

)
·Rh

n,n+1∇N B dV qB,n+1/2=0 (50)

and obtain for the discrete counterpart of (29)

Ln+1−Ln=�t
∑

A∈�
FA,ext

n+1/2 (51)
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4.1.2. Angular momentum. Next, we substitute �qA=l×qA,n+1/2 into (48)1 and obtain

l·(Jn+1−Jn)=�tl · ∑
A∈�

qA,n+1/2×
[
−
∫
B0

SAB
n,n+1 dV qB,n+1/2+FA,ext

n+1/2

]
(52)

Due to the skew-symmetry of qA,n+1/2×qB,n+1/2 and the symmetry of SAB
n,n+1 we obtain the

discrete counterpart of (30)

Jn+1−Jn=�t
∑

A∈�
qA,n+1/2×FA,ext

n+1/2 (53)

4.1.3. Total energy. Eventually, we verify algorithmic conservation of energy. Replacing �qA in
(48)1 with vA,n+1/2 and summation over all nodes yields

Tn+1−Tn+
∫
B0

∑
A∈�

[(qA,n+1−qA,n) ·SAB
n,n+1qB,n+1/2]dV =�tvA,n+1/2 ·FA,ext

n+1/2 (54)

With regard to (43) one can rewrite the last equation as

Tn+1−Tn+
∫
B0

Rh
n,n+1 : (Ch

n+1−Ch
n)dV =�t Ph,ext

n,n+1 (55)

Taking (44) into account, we obtain

Tn+1−Tn+
∫
B0

[eh
n+1−eh

n−�h
n+1/2(�h

n+1−�h
n)]dV =�t Ph,ext

n,n+1 (56)

In a second step we set ��A=	 and obtain from (48)2∫
B0

[
�h

n+1/2(�h
n+1−�h

n)−�t

(
∇ ∑

A∈�
N A
)
·Kh(Ch

n+1/2,�
h
n+1/2)∇N B�B,n+1/2

]
dV=�t Qh

n,n+1 (57)

Thus, we arrive at

Tn+1−Tn+En+1−En=�t[Ph,ext
n,n+1+Qh

n,n+1] (58)

which proves algorithmic energy consistency.

5. FOUR-DIMENSIONAL MORTAR METHOD

The goal of this section is to extend our previous developments to domain decomposition problems
in dynamic thermoelasticity. In what follows, we focus on specific coupling terms in the weak form
arising from the tying of dissimilarly meshed regions using quadrilateral meshes. Note, however,
that the presented segmentation process can be easily applied to other meshes as well.

Consider a body subdivided into two parts as depicted in Figure 1. The two parts are tied together
at a common interface �d. While the weak form corresponding to each subdomain B

(i)
0 ,i ∈{1, 2},

Figure 1. Decomposition of a body into two domains with the internal interface �d.
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is again given by (10), the coupling of both subdomains gives rise to the additional interface
contributions

Gd=
∫

�(1)
d

t(1) ·
([

�u(1)

��(1)

]
−
[

�u(2)

��(2)

])
d� (59)

The quantity t(1)∈R4 will later on denote the Lagrange multipliers, which can be interpreted as
Piola tractions for the mechanical part and have the dimension of the entropy for the thermal
part. Applying the mortar method, we discretize t(1) using the shape functions of the underlying
geometry, i.e.

t(1),h= ∑
A∈�̄(1)

N A(X(1))kA (60)

where �̄(1)= [1, . . . ,nsurf] denotes the set of nodes on the internal interfaces �(1)
d . Insertion of the

approximations (37), (38) and (60) in (59) yields

Gd(�q,�H,k)=
∫

�(1)
d

t(1),h ·
([

�u(1),h

��(1),h

]
−
[

�u(2),h

��(2),h

])
d�

= ∑
A∈�̄(1)

kA ·
( ∑

B∈�̄(1)
nAB

[
�q(1)

B

��(1)
B

]
− ∑

C∈�̄(2)
nAC

[
�q(2)

C

��(2)
C

])
(61)

where nAB and nAC denote the so-called mortar integrals given by

nAB =
∫

�(1)
d

N A(X(1))N B(X(1))d�

nAC =
∫

�(1)
d

N A(X(1))N C (X(2))d�

(62)

The nodal Lagrange multipliers kA∈R4 characterize the generalized forces of constraint for
enforcing the mortar mesh-tying constraint, given by

UA
mortar(q,H)=nAB

[
q(1)

B

�(1)
B

]
−nAC

[
q(2)

C

�(2)
C

]
(63)

To evaluate the mortar integrals, we have to divide both sides of the discrete interface into segments.
We will summarize this process in the following, for further details see Puso [20] and Hesch and
Betsch [15].

5.1. Segmentation

We consider a typical element e2∈ �̄(2), where �̄(2) denotes the set of elements on the discrete
surface �(2),h

d of an arbitrarily chosen side (2), referred to as mortar side, with the nodes q(2)
1 , q(2)

2 ,

q(2)
3 , and q(2)

4 of the element e2. These nodes are projected orthogonally to the opposing non-mortar

side �(1),h
d . Each orthogonally projected node I can be written in terms of convective coordinates

n̄
(1)
I (see Figure 2(b)) of the opposing elements, which are collected in a vector

n̄
(1)= [n̄

(1)
1 , n̄

(1)
2 , n̄

(1)
3 , n̄

(1)
4 ] (64)

Next a clipping algorithm is used to determine the segments, corresponding to each pair of
elements e∈ �̄(1) and e2, where �̄(1) denotes the set of elements on the interface �(1),h

d . Each specific
segment depends on the corresponding nodal coordinates which can be collected in the ordered set

�seg={q(1)
1−4,q(2)

1−4} (65)
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(a)
(b)

(d)

(c)

Figure 2. Segmentation process: (a) Representative element e on the non-mortar side �(1),h
d and one

opposing element e2 on the mortar side; (b) Projection of the nodal points of element e2 onto the non-mortar
side and determination of the relevant segments; (c) Location of the segments in the 
(1)

1 , 
(1)
2 coordinate

system; and (d) Coordinate transformation of each segment to a reference triangle with coordinates �1, �2.

relevant to the segment at hand. For each segment a linear transformation g→n(i),h
seg of the form

(see Figures 2(c) and (d))

n(i),h
seg (g)=

3∑
K=1

M K (g)n(i)
seg,K , i ∈{1,2} (66)

is introduced, where n(i)
seg,K denotes the vertices of the segment. In accordance with the results

of the clipping algorithm, linear triangular shape functions M K are used. Now we obtain for the
discrete values on the interface

t(1),h
seg =

∑
�

N�(n(1),h
seg (g))k� (67)

u(1),h
seg =

∑
�

N�(n(1),h
seg (g))q(1)

� , u(2),h
seg =

∑
�

N �(n(2),h
seg (g))q(2)

� (68)

�(1),h
seg =

∑
�

N�(n(1),h
seg (g))�(1)

� , �(2),h
seg =

∑
�

N �(n(2),h
seg (g))�(2)

� (69)

Here, �, �, and � denote the nodes corresponding to each particular segment. The mortar integrals
for each segment can now be calculated as follows:

n�� =
∫

�(1)
d,seg

N�(n(1),h
seg (g))N�(n(1),h

seg (g))d�

n�� =
∫

�(1)
d,seg

N�(n(1),h
seg (g))N �(n(2),h

seg (g))d�

(70)

Furthermore, the Jacobian Jseg is required

Jseg=‖A1(n(1),h
seg (g))×A2(n(1),h

seg (g))‖det(Dn(g)) (71)
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where we have made use of the convective base vectors

A
(n(1),h
seg (g))=∑

�
N�

,
(n(1),h
seg (g))X(1)

� (72)

in the initial configuration. Eventually, the mortar integrals on each segment can be written as

n�� =
∫
�

N�(n(1),h
seg (g))N�(n(1),h

seg (g))Jseg dg

n�� =
∫
�

N�(n(1),h
seg (g))N �(n(2),h

seg (g))Jseg dg

(73)

The segment contributions to the mortar mesh-tying constraints are collected in the vector

Ũe,seg(q,H)=

⎡⎢⎢⎢⎢⎣
Ũ

�=1
e,seg(q,H)

...

Ũ
�=4
e,seg(q,H)

⎤⎥⎥⎥⎥⎦ (74)

where

Ũ
�
e,seg(q,H)=∑

�
n��

⎡⎣ q(1)
�

�(1)
�

⎤⎦−∑
�

n��

⎡⎣ q(2)
�

�(2)
�

⎤⎦ (75)

To perform the assembly of the contributions of all elements e∈ �̄(1) on the non-mortar side, the
connection between local and global node numbers is stored in the location array LM, so that A=
LM(�,e), for A∈ �̄(1), �∈{1, . . . ,4} and e∈ �̄(1). Accordingly, the mortar constraints follow from

UA
mortar←UA

mortar+U�
e (76)

Or equivalently

Umortar(q,H)= A
e∈�̄(1)
Ũe= A

e∈�̄(1)

⋃
seg
Ũe,seg= A

e∈�̄(1)

⋃
seg

⎡⎢⎢⎢⎢⎣
Ũ

�=1
e,seg(q,H)

...

Ũ
�=4
e,seg(q,H)

⎤⎥⎥⎥⎥⎦ (77)

5.2. Augmentation

The above mesh-tying constraints are only frame indifferent, if they are fulfilled in the reference
configuration (see Puso [20]), which would not be the case in general. To remedy this drawback, we
reformulate the domain decomposition constraints in terms of invariants being at most quadratic.
Based on the developments in Hesch and Betsch [15] we introduce augmented coordinates dA,
which equal the nodal normal vector of the discrete interface �(1)

d . To determine the value of the
augmented coordinates, we have to apply three additional constraints for each vector dA

Uaug
A (q,d)=

⎡⎢⎢⎢⎣
dA ·a1

dA ·a2

1

2
(dA ·dA−1)

⎤⎥⎥⎥⎦ (78)
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where ai are the tangential vectors, evaluated at the placement of the vector dA on the interface‡.
Similar to the above introduction of system vectors q and H we collect the augmented coordinates
into a system vector d= [d1, . . . ,dnsurf ]. In contrast to the use of nodal normal vectors, we have
applied in our previous developments [15] a single vector dseg for each segment. Thus, there are
overall six additional unknowns (three additional coordinates and three Lagrange multipliers) for
each segment. In the present work, a dramatic decrease of unknowns is achieved by using a single
vector d� at each node � on the mortar side of the interface. Interpolating this vector using standard
shape functions of the underlying geometry (cf. Betsch and Sänger [24, Section 3]) yields

dseg=
∑
�

N�(n(1),h
seg (g))d� (79)

To simplify the numerical quadrature of the mortar integrals, we keep dseg constant within each
segment. In particular, we evaluate dseg at the fourth Gauss point gG P4

= [ 1
3 , 1

3 ] (see Figure 2(d))
in the segment, where we also evaluate the tangential vectors

a1,seg=
∑
�

N�
,
i

(n(1),h
seg (gG P4

))q� (80)

At last, we obtain the following modified constraint functions:

Ũ
�
e,seg(q,H,d)=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

U�
e,seg(q,H) ·

[
a1,seg

0

]

U�
e,seg(q,H) ·

[
a2,seg

0

]

U�
e,seg(q,H) ·

[
dseg

0

]

U�
e,seg(q,H) ·

[
0

1

]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(81)

Collecting the above segment contributions into a system vector yields

U(q,H,d)=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Uaug
A=1(q,d)

...

Uaug
A=nsurf

(q,d)

UA=1
mortar(q,H,d)

...

UA=nsurf
mortar (q,H,d)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(82)

Similarly, the Lagrange multipliers corresponding to the coordinate augmentation and the mortar
constraints are collected in the system vector k. Overall we obtain seven constraints per node on
the mortar side.

5.3. Time discretization

The last step in our development is to discretize the constrained, finite dimensional system in
time and to verify the algorithmic conservation properties. Basically we have to discretize a

‡Note that the tangential vectors are not uniquely defined at the nodes on a C (0) surface. A common approach is to
use an average of the tangential vectors of the adjacent elements.
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thermomechanical system subject to holonomic constraints. We refer to previous developments
(see Hesch and Betsch [15]) concerning purely mechanical systems in the context of domain
decomposition problems and to Betsch & Steinmann [7] and Gonzalez [25] for details concerning
the time discretization of holonomic constraints.

As before, we evaluate the primary variables (position, temperature, and augmented coordi-
nates) using a mid-point-type approximation, whereas the Lagrange multipliers k→kn,n+1 remain
constant within each time step

�qA ·
[

MAB(vB,n+1−vB,n)+�t
∫
B0

SAB
n,n+1 dV qB,n+1/2

]
=�t�qA ·[FA,ext

n+1/2−∇qAU (qn+1/2,Hn+1/2,dn+1/2) ·kn,n+1]

��A

[
�AB

n,n+1�B,n+1/2−�t
∫
B0

K AB
n,n+1 dV �B,n+1/2

]
(83)

=�t��A[Qh,A
n,n+1−∇HAU(qn+1/2,Hn+1/2,dn+1/2) ·kn,n+1]

∇dU(qn+1/2,Hn+1/2,dn+1/2) ·kn,n+1=0

U(qn+1,Hn+1,dn+1)=0

As we do not change the energy-momentum consistent integrator used for the thermoelastic system,
we will focus on the additional terms due to the constraints to verify the conservation properties.

5.3.1. Linear momentum. Proceeding along the lines of Section 4.1.1, we now obtain

l·(Ln+1−Ln)=�tl· ∑
A∈�

(FA,ext
n+1/2−∇qAU(qn+1/2,Hn+1/2,dn+1/2) ·kn,n+1) (84)

Frame-indifference of the vector of constraints U has already been shown in detail in Hesch and
Betsch [15] for the purely mechanical case. It can be easily verified that

U(q�,Hn+1/2,dn+1/2)=U(qn+1/2,Hn+1/2,dn+1/2) (85)

Here, qA
� =qA

n+1/2+�l,∀A∈� and �∈R is arbitrary. Equation (85) implies

d

d�

∣∣∣∣
�=0
U(q�,Hn+1/2,dn+1/2)= ∑

A∈�
[∇qAU(qn+1/2,Hn+1/2,dn+1/2)s] ·l=0 (86)

Insertion in (84) yields

Ln+1−Ln=�t
∑

A∈�
FA,ext

n+1/2 (87)

which confirms that the constraints do not affect linear momentum conservation.

5.3.2. Angular momentum. Proceeding along the lines of Section 4.1.2, (53) is replaced by

l ·(Jn+1−Jn)=�tl ·
( ∑

A∈�
qA,n+1/2×[FA,ext

n+1/2−∇qAU(qn+1/2,Hn+1/2,dn+1/2) ·kn,n+1]

)
(88)

Based on the results in Hesch and Betsch [15] we can postulate for the domain decomposition
constraints

U(q�,Hn+1/2,dn+1/2)=U(qn+1/2,Hn+1/2,d�) (89)
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where qA
� =exp(�l̂)qA

n+1/2, ∀A∈� and dA
� =exp(−�l̂)dA

n+1/2, ∀A∈ �̄(1). Accordingly, we can write
in analogy to (86)

d

d�

∣∣∣∣
�=0

[U(q�,Hn+1/2,dn+1/2)−U(qn+1/2,Hn+1/2,d�)] = 0∑
A∈�

[∇qAU(qn+1/2,Hn+1/2,dn+1/2) ·(l×qA
n+1/2)

−∇dAU(qn+1/2,Hn+1/2,dn+1/2) ·(l×dA
n+1/2)] = 0

(90)

Due to (83)3 the last term in the square brackets of (90)2 vanishes. Inserting the last equation into
(88) yields

Jn+1−Jn=�t
∑

A∈�
qA,n+1/2×FA,ext

n+1/2 (91)

which confirms that the constraints do not affect angular momentum conservation as well.

5.3.3. Total energy. Eventually, we verify algorithmic energy consistency. Proceeding along the
lines of Section 4.1.3, we can restrict ourselves to the contributions of the constraints. In particular,
we have to show that these contributions are workless. For the mechanical part, conservation of
energy can be proven following the arguments in Hesch and Betsch [15, Section 6.1]. Similar to
result (58), in the present case we obtain

Tn+1−Tn+En+1−En=�t

[
Ph,ext

n,n+1+Qh
n,n+1−

∑
A∈�
∇HAU(qn+1/2,Hn+1/2,dn+1/2) ·kn,n+1

]
(92)

With regard to (63) and (62) we can rewrite the last term in the square brackets (92)

∑
B∈�̄

(�4
A)n,n+1nAB−∑

C∈�̄
(�4

A)n,n+1nAC= (�4
A)n,n+1

(∫
�(1)

d

N A(X(1))d�−
∫

�(1)
d

N A(X(1))d�

)
=0 (93)

where we have made use of the property
∑

B N B(X(1))=1. Taking into account the last result,
(92) yields

Tn+1−Tn+En+1−En=�t[Ph,ext
n,n+1+Qh

n,n+1] (94)

which confirm that the constraints are workless.

Remark
The last statement depends crucially on the accuracy of the numerical evaluation of the mortar
integrals for each segment. Remarkably, the proof for linear momentum conservation in Puso [20]
leads to the same conclusion. Our numerical experiments have shown that a four point Gauss
integration is sufficient.

6. EXAMPLES

In this section we evaluate the accuracy and performance of the newly proposed method. An
incremental iterative Newton–Raphson solution procedure has been implemented in MATLAB to
solve monolithically the non-linear system of equations (48) or (84). The data for the used Ogden
model are similar to Holzapfel and Simo [4] and are summarized in Table I (see Appendix A for
a summary of the constitutive equations). Enhanced assumed strain elements (see Appendix B for
details) have been implemented as well. For all examples we define a stress free reference state in
thermal equilibrium based on a homogeneous temperature field �0=293.15K.

Copyright � 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2011; 86:1277–1302
DOI: 10.1002/nme



1292 C. HESCH AND P. BETSCH

Table I. Material properties.

	1=6.30×105 N/m2 
1=1.3
	2=0.012×105 N/m2 
2=5.0

Ogden model 	3=−0.10×105 N/m2 
3=−2.0

Heat capacity c0=1830Nm/kgK

Density �0=950kg/m3

Linear expansion coefficient 
0=22.333×10−5 K−1

Bulk modulus �(�0)=2.0×108 N/m2

Empirical coefficients �=9.0
�=2.50

Thermal conductivity K0(�0)=0.15N/sK
Softening parameter �K =0.004

Figure 3. Reference configuration.

Figure 4. Deformed configuration of the cracked rectangular bar.
The temperature distribution is color coded.

6.1. Three-dimensional cracked rectangular bar

As a first example we consider a quasi-static system by setting the density artificially to zero. Apart
from that, the coupled transient system has been calculated. Based on the last example in Holzapfel
and Simo [4] we define a rectangular bar of the size 10m×4.8m×1m. A crack of 1/3 of the width
has been inserted into the middle of the system. The reference mesh is displayed in Figure 3.

The mesh consists of 6912 elements with 36 740 thermal and mechanical degrees of freedom.
Furthermore, 62 208 enhanced strain modes are used. Both sides are clamped, i.e. Dirichlet
boundary conditions have been applied to the mechanical as well as the thermal boundary, keeping
the temperature constant on the boundary at �0=293.15K. Within each time step �t=1s both
sides are moved apart with �x=0.02m, until an increase of the length of 65% has been reached.
The resulting temperature distribution is displayed in Figure 4. As can be seen, the Dirichlet
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Figure 5. Pressure load on boundaries.

boundaries on both sides are fulfilled exactly. As expected, we receive the highest changes in
temperature at the crack tip.

6.2. Thermoelastic problem

The next problem under consideration consists of a three-dimensional L-shaped block of the
size 2.4m×3.6m×1.2m. The L-shape has been discretized with 864 elements leading to overall
4900 mechanical and thermal degrees of freedom. We apply a sinusoidal pressure load pmax=
25000N/m2 during the time interval t ∈ [0,1] to the outer surfaces, as shown in Figure 5. No thermal
boundary conditions have been set, hence the system is adiabatically isolated after the load phase.
Thus, the body moves freely in space for t ∈ [1,5]. Due to the initial loading conditions, the body
rotates about three times around the y-axis within 5 s.

Three different simulations have been performed:

• Integrator 1: Newly developed energy-momentum consistent scheme (48) or (84).
• Integrator 2: Standard mid-point rule, however the right Cauchy-Green tensor has been eval-

uated according to (26).
• Integrator 3: Standard mid-point rule.

All three integrators conserve linear and angular momentum. For the proposed energy-
momentum scheme the fulfillment of the discrete balance of angular momentum (cf. (53) and
(91)) is confirmed in Figure 7. A time step size of �t=0.01s has been used during the load phase.
After the load phase, the time step size has been doubled to �t=0.02s for integrators 1 and 2,
whereas for the integrator 3 the time step size has been changed to �t=0.011s (larger time steps
for the integrator 3 are not possible).

In Figure 6 the absolute values of change in total energy (i.e. the total mechanical and the thermal
energy) in each time step after the end of the load phase are plotted in a semilogarithmic scale.

As expected, the change in total energy for the energy-momentum scheme is below the stop
criterion of the Newton iterations for which the value 10−5 for the norm of the residual vector has
been prescribed. Without the concept of the discrete gradient, total energy will not be conserved,
but as the results clearly show the simulation remains stable using the integrator 2. The third
integrator diverges 19 time steps after the end of the load phase.

6.3. Convergence analysis

To evaluate the accuracy of the proposed algorithm, we simplify the thermoelastic problem in
Section 6.2. Four elements are used to discretize the L-Shape, furthermore the maximum pressure
has been changed to pmax=65000N/m2 and applied for the first 0.5 s as shown in Figure 8.
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Figure 6. Change in total energy within each time step.
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Figure 7. Change in angular momentum within each time step.

Figure 8. Load curve for the convergence analysis.

Additionally, we changed the Bulk modulus to �(�0)=2.0×105 N/m2, such that the body can
change its volume. The maximum temperature reached �max≈296K and the minimum temperature
�min≈291K. After the load phase, the calculation was terminated at t=1s. We calculate a refer-
ence solution qRef using a time step size of �t=10−4 s. Note that we set the tolerance of the Newton
iteration to 10−6 with regard to the L2-norm of the residual vector for all calculations. To run

Copyright � 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2011; 86:1277–1302
DOI: 10.1002/nme



ENERGY-MOMENTUM CONSISTENT ALGORITHMS 1295

0

log (Δ t)

lo
g 

(e
)

1

2

Figure 9. Convergence results.

Figure 10. Reference configuration.

the analysis, we have calculated the system using �t ∈{10−2 s,5×10−3 s,2.5×10−3 s,10−3 s,5×
10−4 s,2.5×10−4 s}. The relative error for the discrete system has been determined as follows:

eq=
nnode∑
A=1

‖qA−qA,Ref‖
‖qA,Ref‖

(95)

The values for the velocity as well as for the temperature have been generated analogously.
As can be observed from Figure 9, the proposed algorithm is second-order accurate.

6.4. Thermal domain decomposition problem

This example utilizes the same geometry of a three-dimensional L-shape as before. However, two
subdomains of the L-shaped block have been meshed independently (see Figure 10). The larger
subdomain consists of 840 elements, whereas the smaller subdomain consists of 675 elements.
1584 segments have to be computed for the domain decomposition interface. Additional 77 normal
vectors with altogether 231 augmented coordinates as unknowns are used. In contrast to the present
node-based augmentation, our original segment-based augmentation technique (see Hesch and
Betsch [15]) leads to 1584 normal vectors with altogether 4785 additional unknowns.
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Figure 11. Temperature distribution at different times.
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Figure 12. Energy over time (in s).

Thus, the system consists of overall 9110 thermal, mechanical, and augmented degrees of
freedom in conjunction with 539 constraints (231 constraints for the augmented coordinates and
308 for the mortar constraints). First we examine the influence of the mortar method on the pure
heat conduction problem, i.e. we exclude all mechanical equations from the system and apply a
linear distribution of temperature to the adiabatically isolated L-shape (cf. Figure 11, left). Figure 11
(central) shows the temperature distribution after 2 h 45 min, whereas Figure 11 (right) shows the
temperature distribution after 5 h 30 min. At this time, thermodynamic equilibrium has nearly been
reached. Figure 12 shows the total energy of the system over time.

As can be seen, energy is conserved, which reflects the first law of thermodynamics. The second
law states that the entropy production remains equal or greater zero, which can be observed in this
particular example from Figure 13.

6.5. Thermoelastic domain decomposition problem

We next deal with the completely coupled, transient thermoelastic problem. The same mechanical
configuration as in Example 6.4 has been used combined with the load phase described in Example
6.2. Again, after the load phase the adiabatically isolated system moves freely in space and the time
step size has been set to �t=0.02s. The proposed energy-momentum consistent scheme obeys
the first law of thermodynamics, as shown in Figure 14. For the problem at hand, the entropy
production is displayed in Figure 15.
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Figure 13. Entropy production over time (in s).
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Figure 14. Energy over time (in s).

7. CONCLUSIONS

A novel energy-momentum consistent scheme for thermoelastodynamics along with its extension
to domain decomposition problems has been presented. The present approach can be viewed as
straightforward extension of energy-momentum integrators to the realm of thermoelasticity. In
essence, the present method relies on an enhancement of the notion of a discrete gradient to the
coupled problem at hand. Arbitrary constitutive laws for thermoelasticity can be directly used.
This is in contrast to the design of thermodynamically consistent integrators proposed by Romero
[11, 12], which requires a reformulation within the GENERIC framework.

The extension of the present energy-momentum consistent approach to domain decomposition
problems is based on a four-dimensional mortar method for thermoelastic systems. Our new
developments imply a significant modification of our original approach which has been confined to
isothermal problems. In particular the present work reduces the number of augmented unknowns
as well as the number of constraints drastically, improving the performance of the mortar method
far beyond the performance of previous approaches.
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Figure 15. Entropy production over time (in s).

The present work will provide the foundation for the development of new energy-momentum
consistent integrators for thermomechanically coupled contact problems. Mortar-based algorithms
for large deformation contact will be the subject of a follow-up paper.

APPENDIX A: CONSTITUTIVE EQUATIONS

The constitutive equations rely on the developments of Holzapfel and Simo [4], where a detailed
derivation of the equations can be found. Since the development of constitutive equations is not
the main focus of this paper, we restrict ourselves to the well-known Ogden material given in the
aforementioned paper, written in terms of the eigenvalues �2

A, A∈ [1,2,3] of the right Cauchy-Green
tensor.

A.1. Free Helmholtz energy

Since materials like rubber behave differently in bulk and shear, we split the free Helmholtz energy
function additive into a volumetric and deviatoric part

�=�̂(�1,�2,�3,�)=Û (J,�)+
3∑

A=1
�̃(�̃A,�) (A1)

with J=�1�2�3 and �̃A= J−1/3�A. The volumetric part reads as

Û (J,�)=�(�)G(J )− e0

�0
(�−�0)+ T̂ (�) (A2)

with

�(�) = �(�0)
�

�0

G(J ) = �−2[� ln(J )+ J−�−1]
e0

�0
(�−�0) = 3
0�(�0)�−1(J �−1)(�−�0)

T̂ (�) = c0

[
�−�0−� ln

(
�

�0

)]
(A3)

Copyright � 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2011; 86:1277–1302
DOI: 10.1002/nme



ENERGY-MOMENTUM CONSISTENT ALGORITHMS 1299

On the other hand, the deviatoric part reads as

�̃(�̃A,�)=
N∑

p=1

	p(�0) �
�0


p
(�̃


p

A −1) (A4)

A.2. Derivatives of the free Helmholtz energy

With regard to the additive split of the free Helmholtz energy (A1), we can split the second
Piola-Kirchhoff stress tensor as

R=Rvol+Riso (A5)

The volumetric part of the stress tensor reads as

Rvol=2
��̂vol(J,�)

�C
= ��̂vol(J,�)

�J
JC−1 (A6)

with

��̂vol(J,�)

�J
J=�(�0)

�

�0
�−1[1− J−�]−3
0�(�0)J �(�−�0) (A7)

For the derivatives of �̂iso we recall the relation

��̃A

��B
= �(J−1/3�A)

��B
= J−1/3�AB+ �J−1/3

��B
�A

= J−1/3�AB− 1

3
J−4/3 �J

��B
�A= J−1/3

(
�AB− 1

3
�A�−1

B

)
(A8)

The isochoric contribution to the stress tensor reads as

Riso=2
��̂iso(�̃1, �̃2, �̃3,�)

�C
=

3∑
A=1

1

�A

��̂iso

��A
N̂A⊗N̂A (A9)

with

��̂iso

��A
= ��̂iso

��̃B

��̃B

��A
= J−1/3

(
��̂iso

��̃A
− 1

3

3∑
B=1

�B

�A

��̂iso

��̃B

)

= 1

�A

(
�̃A

��̂iso

��̃A
− 1

3

3∑
B=1

�̃B
��̂iso

��̃B

)
(A10)

and

��̂iso

��̃A
=

N∑
p=1

	p(�0)
�

�0
�̃

p−1
A (A11)

Thus, we obtain

2
��̂iso(�1,�2,�3,�)

�C
=

3∑
A=1

{
1

�2
A

[
N∑

p=1
	p(�0)

�

�0
�̃

p

A −
1

3

3∑
B=1

N∑
p=1

	p(�0)
�

�0
�̃

p

B

]
N̂A⊗N̂A

}
(A12)
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For the sake of completeness we deduce the derivative of the free Helmholtz energy function with
respect to the temperature

��̂iso(�1,�2,�3,�)

��
= �(�0)

�0�
2

[� ln(J )+ J−�−1]−3
0�(�0)�−1(J �−1)

−c0 ln

(
�

�0

)
+

3∑
A=1

N∑
p=1

	p(�0)

�0
p
(�̃


p

A −1)

=−� (A13)

A.3. Duhamel’s law

Concerning the thermal conductivity tensor in (2) we set

K̂(C,�)=K0(�)C−1 (A14)

with

K0(�)=K0(�0)[1−wK (�−�0)] (A15)

Note that the above constitutive laws are in accordance with the second law of thermodynamics.

APPENDIX B: ENHANCED ASSUMED STRAIN METHOD

Standard displacement-based elements are subject to volumetric locking effects in the incompress-
ible limit. To enhance the performance of the tri-linear displacement elements we incorporate
the enhanced assumed strain method developed by Simo et al. [26, 27] into the present energy-
momentum consistent framework.

Based on the developments in Simo et al. [27] the following operator is introduced:

G̃radX (•)= j0
j(n)

J−T
0 Grad
(•) (B1)

with

J(n)= �Xh

�n
, J0=J(n)

∣∣∣∣
n=0

, j(n)=det[J(n)], j0= j(0) (B2)

The enhanced deformation gradient can now be written as

Fh=
nnode∑
A=1

qA⊗ĜradX (N A)+
nenh∑
A=1
aA⊗G̃radX (M A) (B3)

where

Ĝrad(N A)=Grad0(N A)+
4∑

J=1
�A

J G̃radX (HJ ) (B4)

Here, cJ are gamma-stabilization vectors and HJ hourglass functions, defined in Belytschko et al.
[28]. Additionally we introduce Wilson’s incompatible shape functions (see Wilson et al. [29]) for
tri-linear brick elements

M1= 1
2 [
2

1−1], M2= 1
2 [
2

2−1], M3= 1
2 [
2

3−1] (B5)
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Now the discrete enhanced version of (10)1 reads as∫
B0

�uh · ṗh+FhRh : Ĝrad(�uh)dV =
∫

�BT
0

�uh ·T̄dA+
∫
B0

�uh ·B̄dV∫
B0

FhRh : G̃rad(�ah)dV = 0

(B6)

where ah=∑nenh
A=1 M AaA. Concerning the discretization in time the additional a-modes are evalu-

ated in the mid-point

ah
n+1/2= 1

2 (ah
n+ah

n+1) (B7)

The enhanced form of the fully discrete system (48) can now be written in the form

�qA ·
[

MAB(vB,n+1−vB,n)+�t
∫
B0

Ĝrad(N B) ·Rh
n,n+1Fh

n+ 1
2

dV

]
= �t�qA ·[FA,ext

n+1/2]

�a·
[∫

B0

G̃radX (M A) ·Rh
n,n+1Fh

n+1/2 dV

]
= 0

��A

[
�AB

n,n+1�B,n+1/2−�t
∫
B0

K AB
n,n+1 dV �B,n+1/2

]
= �t��A Qh,A

n,n+1

(B8)

Note that the additional equations (118)2 can be eliminated using standard condensation procedures.
We further remark that the enhancement of the space discretization outlined above does not affect
the conservation and consistency properties of the present energy-momentum integrator.
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