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ABSTRACT

The present contribution deals with the frictional contafcflexible bodies. In particular we investigate
the time integration of dynamic contact problems with ladgéormations. The overall aim is to compare
standard with recently developed integrators. To this eaghmpose an energy and momentum consistent
integrator which exhibits superior numerical stability.

1 INTRODUCTION

The aim of our work is to develop stable integrators for tramtslarge deformation contact problems (see
e.g. Referencelfd]). Using the widely-used node-to-surface method, wheremierce the constraints by
Lagrange multipliers, we obtain a unified system of indext&rential-algebraic equations (DAE). Within
this common framework we are able to incorporate strucelexhents such as shells, beams, continua as
well as rigid bodies for which we use a rotationless fornmiala{see Reference4?2, 11]). For the underly-
ing DAE’s even second order implicit integrators like efge tmidpoint rule or the Newmark method fail to
deal in a consistent way with various physical propertiethefsystem, resulting in an unstable numerical
behavior of the system. To avoid this disadvantage we appbn&rgy-momentum scheme, which has al-
ready been investigated in the context of nonlinear elgstahics (see References fl]). In the context of
contact mechanics similar consistent integrators have applied previously (see Referencés](]), vio-
lating the non-penetration condition. The present workdsudn the previous works (see Referen@&§)).

2 Continuum and contact mechanics

In order to simplify the notation for frictional multibodyatact problems we restrict our consideration on
a two body contact problem (see Figje Therefore the bodies are depicted in the reference canfign
B((f) C R3,i € [1,2] and in the current configuratiolﬁgl) C R3,i € [1,2], respectively. The material
boundaries of the bodies can be decomposed into the Neunmamuéryl",,, the Dirichlet boundany’y
and in the contact surfade.. The spatial counterparts of the boundaries are denotédywyity; andy,. In
this connection we presume that the boundaries satisfy:

9B =T® UT® UTY and T® ATY =TO AT =10 ATY =g (1)

Any material configuration of the bodies can be addressedffa and we obtain the spatial counterpart
using the mappings(¥ (X (V). We assume that the bodies come in contact within the coresidene
intervalt € Z := [0, T]. The balance of linear momentum with respect to the referenafiguration reads

p(()i) ¢ =DIV(PW) + BO )

where B() denotes the body force per reference volur/v@ # denotes the inertia force term corre-
sponding to thé-th bodylS’0 using the reference denswﬁf andP denotes the first Piola-Kirchhoff stress
tensor, which depends on the considered constitutive |aeriteed via the strain energy functiévi(®). For

the initial/boundary value problem (see Equatig)) (ve have to take the boundary and the initial conditions
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Figure 1. Configurations of two body contadsgi): bodies in the reference configuratid?ff): bodies
in the current configuration)

into account. Hence the boundary conditions are given as

e =X inTVvier 3)
TO = PONOD =TO inrWvier 4)

whereT(®) denotes the Piola traction vector and”) denotes the unit outward normal Bf’. X@ and
T denote the prescribed displacement and traction respéctit last we provide the initial conditions

@@t =0)=xg" B (5)
(t=0=v" inB" (6)

In order to deduce the contribution of each body to the weak faf the boundary value problem we define
the solution space

VO = {0 e H'(BY) : o = g onT ()} ()
and the space of test functions
VD = {5 ¢ H'(BD) : 6o =0o0onT{)} ®)

where the Sobolev spadé’(B(")) consists of the spaces of square integrable functions aid fitst
derivatives. The weak form for the problem at hand reads

—.g (1) dyn —.q ) int

/B . P 3 5 av + /B . P Grad(5p™) AV
0 0

:/(_) P BO) . g0 dV+/(_) TO) . 50 dA+/(_) 10500 dA ¥ e eV (9)
BoZ l"nz l—\cz

v~

—.qi).ext —=:G(i),c



As indicated in Equatiornd) we obtain the virtual work for the considered bodies:

2
G (90’ 5@) _ Z (G(z),dyn + G(i),int o G(i),ezt o G(i),c) =0 (10)

i=1
Additionally we postulate that the local momentum balant¢he contact boundary
—t@ d4a =t d4 (11)

holds. Thus, the contact contribution to the virtual workdse

2
e N e W . (5,0 _ 552
G _ZG - /F Lt [&p S } dA (12)

The fundamental balance principles, namely the balance fawthe linear momentunk, the angular
momentumJ as well as the total enerdy of the system should hold during the considered time intefva
as depicted in Table, whereF'(Y) denotes the resultant force®[ (V) the resultant momenta at{)-<=* the
resultant external power. In case of a conservative profdegn frictionless contact and pure stick contact),
the fundamental balance principles are maintained.

Balance principles

Linear momentum: L =32 F®
Angular momentum: J =7 M®
Energy: E=%7 (T(i) + V(i)> =32 | pi)eat

Table 1. Balance principles for bodie|”

For detailed derivation of the balance principles like thear and angular momentum as well as the total

energy of the system we refer to Referende [

3 Contact description

Figure 2. Parametrization of the contact surfaces

For the contact description we use the so-called directcgmpr (see Referenc]] but also other descrip-

tions like e.g. the covariant approach (see RefereB@fe suitable. For further considerations we use the



well-known slave-master concept (see Referebpe To this end we determin () ¢ Fél) and its spatial

counterpartp™) (X1 t) € yél) as the slave node, which should be prohibited to penetrategposing
master surfacE'® rather than its spatial counterpaﬁz)*. Using the closest point projection

min || (X V) — @ (X?)) (13)

we obtaing? (X () (X (1)) with closest distance to the slave nadé) (X (1)). In the following we ne-
glect the arguments of the slave poipt") := ) (X 1)) and its corresponding master poiat?) :=
¢ (XA (X M)). The master surface corresponds to a 2-D manifold which wanpetrize using convec-
tive coordinateg®, £2 (see Figure?). Therefore the aforementioned master node is charaetebig

e = (P(2)(51752)’ x®?) .— X<2>(§1,§2) (14)

whereé!, €2 denote the projection point correspondingXd®. Thus, we are able to define the spatial
bases for the projection point moving with the slave pgifit

a; =G, &) (15)

In this connection we define the gap function
g=n- (99(1) _ ¢<2>) (16)

wheren denotes the unit outward normalﬂyéQ) at@(?). With the bases for the projection point at hand we
introduce the outward unit normal

a; X a2
_ 17
a1 x as|| an

The contact traction can be subdivided into a normal and getatial part due to their different physical
behaviour in the different directions:

t:=tM =tyn+tr (18)

The normal contact conditions, well-known as the Karuslmik@ucker conditions, are given by

920 (19)
tN:t-n§O (20)
tNg:O (21)

For frictional contact we further have to incorporate tamge contact conditions in terms of a frictional
constitutive law. Here we make use of Coulomb’s friction,léwv which the tangential contact conditions
can be stated as (see Refererfii [

¢=|tr|| —pty <0 (22)
tr

_ T 23

v ¢ e (23)

¢>0 (24)

Cp=0 (25)

wherevr denotes the tangential velocity agdienotes the consistency parameter. Finally we obtain the
virtual contact work decomposed into the normal and thedatigl part via

G(p,0p) = / N [tnn+tr, al] - [&p(l) — 6P| dA (26)
r¢

_ / (e 8g + tr, 667) A 27)
e

*In the continuous setting the choice whetBf1) or X (2) is defined as slave node is arbitrary.



4 Spatial discretization

For the numerical treatment of the underlying weak form geation 0)) we first accomplish the spatial
discretization leading either to a set of ordinary difféi@nequations (ODE’s) or DAE’s (continuous in
time), dependent on the used method for incorporation ottmact constraints. After this we consider
the temporal discretization in Secti@ For the spatial discretization we use displacement-bésid
elements. Therefore the bodiBS) are subdivided into a finite number of elements

Nel

z) s z) h U B (i),h (28)

wheree corresponds to the respective element. For the solutiertet function and the reference config-
uration, we use the following approximations

Mnode Mnode Mnode

Q) — Z Nrol,  sph = Z NyopP,  xOh = Z Ng x® (29)
I=1 -

wherep!”, 50" and X'V denote the nodal counterpartsgfi)-", 5" and X ()", In Equation R9)
N4 denote the shape functlons for an eight-node tri- Imea:tktnrlement Concerning the spatial discretiza-
tion of the weak form in EquatioriL() we obtain the semi-discrete virtual work for both bodiemgghe
approximations in Equatior2@) via

::JVII“;,) ::f('i),int

2
Z /(‘) . pN] NJ dVv (‘5(‘]1)-,’1 . §(p(i),h +/(») ) (VX(i) NI .S ) Vx() NJ dV(p(l) h 680(1)7}1
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::fl(i),c:ct

whereS denotes the second Piola-Kirchhoff stress tensor. Camistith the eight-node brick elements
used for the isoparametric discretization of the bodiesstiape functiond’; in Equation 80) are bi-linear
and restricted to the surface. In Equati®d)(the integrals over the domain can be approximated via the
sum over all domain elemenis=1, ..., ng

o @ [ e av o

and the integrals over the Neumann surface can be appredméa the sum over all Neumann boundary
elementsr =1,...,n,

~/F(1) h dA Z /(1) h (32)

n=1

The remaining integrals in EquatioB3) on the right hand side can be evaluated using standard afuaelr
rules. In summary, we obtain the semi-discrete virtual work

"(p,50) = Zéso (M9 @0+ gt 4 giert] 4 et = (33)

whereMI(f,) denotes the nodal mass contribution.



NTS-Element Similar to the approximations done for the solution, testction and the reference config-
uration we use the following approximations for the contamindaries

Nnode Nnode Nnode

=Y Mg, sph = ZNJéso X[ = ZNKso (34)
I

where unlike Equation29) N(.) denote bilinear shape functions amgl,;. denotes the number of element
nodes. For the description of the virtual contact work wethsevell known NTS-method (see for example
the textbooks Referencd3, 10]) as depicted in Figur8. As determined in Sectio, X e T s

regarded as a slave node with its corresponding mastercedfd. Concerning the contact virtual work

/ (1) h \
<

Figure 3. Three-dimensional five node NTS-element.

we only need to consider the solution and test functionsespwnding to the contact surface. The discrete
gap functiorny” can be calculated via

gh _ (Sogl),h o SOEQ),h) . ’I’Lh (35)

Accordingly, the discrete virtual contact work reads
Geh — / (th 69" + e, 667" ) da (36)
Fgl)h J

and can be obtained by the sum over all surface elements

N

=3 /F (e, ol + ol 0E") da (37)

where index notation is used. In Equatiddv) s = 1,...,n. denotes the-th contact element and the
remaining integrals can be evaluated as usual.

5 Equation of motion

For the incorporation of the contact constraints differ@ethods exists. The most important are the La-
grange multiplier method and the penalty method. The Lagjeamfor the constraint system is given by:

Ne



Using Equation38) we obtain the following semi-discrete index-3 DAE’s:

Ne

M @+ VV(p +ZGT YA =0 (39)
o1

Pn.

HereG, denotes the gradient of the constraigta/ith respect to the configuration. For the penalty method

we obtain ordinary differential equations instead of DABsIt in the following we focus on the Lagrange
multiplier method.

5.1 Frictionless contact

For the frictionless case, each contact element incorpstht constraint
(bév = s

with its corresponding Lagrange multipligr;.. We obtain the DAE's

M@+ VV(p +ZGNT =0 (41)

o
| =0 (42)
N
Standard integrators like e.g. the midpoint-rule or the Mank-scheme applied for the time discretization
of the DAE’s @41-42) fail to consistently reproduce the total energy of the eysteading to an unstable
numerical behaviour of the system. Therefore we propodedridliowing a mixed approach together with
the concept of a discrete gradient leading to an energy amdentum consistent integration scheme.

Mixed approach As mentioned above we apply an energy-momentum schemeg@djpoReference$|

3] for frictionless contact. In order to design such an enargymentum scheme we introduce additional
coordinatesi, € R? and the vectorf, € R? which corresponds to the normaland to the convective
coordinate respectively. To determine the augmented coordinates trkedince augmented constraints
2% to link the new coordinates to the actual configuration. Togewith the NTS-constraint’ we
obtain:

N
gu(urdu, o) = [f] (43)

For more details about the fundamental properties of thisifitation we refer to Referencé][ With
regard to Cauchy’s representation theorem, Equa88ndan be reparametrized by using at most quadratic
invariantsr. One obtains an augmented Lagrangian of the considereshsyst

~ 1
Ly 2 @ -Mep— V ng CPs,dmfs)) s (44)

We define seventeen appropriate invariants (see Refergh&3s

1

m(ps,ds, fs) = | (45)



in order to reformulate the constrairgs (w (s, ds, fs)). The semi-discrete equations of motion can be
obtained by the Lagrangian and we finally arrive at:

M @+ VV(p +Z (D1 (s, ds, £5)) " Vargs(m) - As =0 (46)

s=1

D2 (s, ds, £5))" Vags(m) Ay =0 (47)
(

>
s=1
i: (D3 ™\ Ps, d57 fs))T vﬂ’gs(ﬂ') : As =0 (48)
s=1
g1(m(p1,dy, f1))
: =0 (49)

Gn.(T(Pn., dn., fn.))

Again we refer to Referencé] for the derivation of the fundamental properties of the stoaints and for
the verification of the conservation of the angular momenfum ZI_’J M. ;1 x ¢y as well as of the

total energyE (¢, ¢) = & ¢ - M ¢ + V() of the semi-discrete system.

5.2 Frictional contact

For frictional contact we have to distinguish whether stickslip occurs. To this end usually a return
mapping scheme (for more details see Referernb@d f]) is implemented that works as follows. One first
assumes stick and computes therefore a trial s¥té*() during the increment. Then the slip condition can
be evaluated:

Wi = INEL |~ AN (50)

wherey denotes the coefficient of friction. Stick occurdif’i4’ < 0 and else slip occurs. In this connection
the frictional tractions\r; ,, 1 will be determined

Apial | if wirial <0 (stick)
)\Tj,n+1 = )‘”mnl-pl ; trial ; (51)
,LLAN n+1 ||A‘” Al if \I’n—l-l >0 (Sllp)

Thus, for the stick case we have to incorporate the conssrain

o
s = |1t (52)
pl?

corresponding to the Lagrange multipliers, A1 andAro. We obtain the DAE’s

M@+ VV(p) + Z GetiekT( =0 (53)
o1
¢'ILC
In case of slip we have to incorporate only the constraintfiemormal part

corresponding to the Lagrange multiplies;. The frictional tractions\r; .1 for slip are notindependent
Lagrange multipliers (see Referenddl]) and will be calculated according to Equatidsil),. Finally we



obtain the DAE’s

M@+ VV(p)+ Z GIPT () A, =0 (56)
o1

=0 (57)
N

Ne

6 Time discretization

For the time discretization we divide the time interdal= [0,7] = Uf:/ 01 [tn,tnt1] INto equidistant

incrementsh = ¢,41 — t, to apply an one step time integration scheme. In the follgvire time dis-
cretization of both the frictionless and frictional corttpooblems will be considered. For later comparison
we apply a standard midpoint rule and a newly developed grm@mentum scheme (firstly presented in
Referenceq]) in order to investigate the numerical properties of thtela

6.1 Midpointrule

For the midpoint rule the configuration and velocity are eagtd in the midpoint, thus we finally obtain
the discrete equations:

Pn+l — Pn — hvn-&-% =0 (58)
M (v77,+1 - ’Un) +h <VV((PTL+%) + Z Gz(wn+%) )‘5,714‘1) =0 (59)
s=1
¢1,n+1
: | =o0 (60)
¢nc,n+1

This algebraic system of nonlinear equations will be solvgdpplying Newton’s method.

6.2 Energy-momentum scheme - mixed formulation

We aim at the time discretization using a mixed formulatisee( Sectiord.1), where the NTS constraints
are reformulated in appropriate invariants. The next siefesign an energy-momentum scheme is to apply
a discrete gradient in the sense of Gonzalez (see Referg®ic4l. This creates an energy-momentum
scheme which besides the algorithmic consistency of bottmnembum maps is able to conserve the total
energy of the system. Finally we can write the completelgrdite system within the concept of the discrete
gradient as follows:

Pn+1 — Pn — h'anr% =0 (61)
M (vn+1 - vn) + hvcp V(Sona 80n+1) (62)
Ne T—
+h Z (Dl ™ ‘Ps 5o ds n+3o s7n+%)) % 95(7"7177"71+1) ’ AS,n+1 =0 (63)
Ne T— _
Z (D2 W(‘Ps7n+%ﬂds,n+%7 s7n+%)) Vie Gs(Tns Tnt1) - Asng1 =0 (64)
s=1
Nne T—
Z ( Sos n+1 ds 71—&-%7 s,n—l—%)) V gs (ﬂ-n?ﬂ-nﬂLl) : )\s7n+1 =0 (65)
s=1

§1 (77(801,77,—&-13 d1,77,+1a .fl,77,+1))
: -0 (66)

g"c (Tr(sonc,n—&-% ) dnc,n—l-% ) nc.,n—&-% ))



Here the discrete gradieNt, V (¢y, pni1) app_lied to the internal energy is used (for more details see
ReferenceZ]). In addition, the discrete gradieW; §(m,,, 7, 1) is defined as follows:

vﬂ' gs(ﬂ-na 7Tn+1) =V, gs (7rn+%)

gs(ﬂ'n—&-l) —3s (Wn) + Vi G5 (7"71-5-%) (7"'5.,11+1 - 7"'5.,11)

+
Hﬂ'strl - 7"'8771”2

(Ws,n—l-l - 7"'s,n) (67)

The verification of the conservation of the angular momeranohthe total energy of the discrete system can
be found in Referencé]. In this connection we have to remark that the consistenaglition is violated in
general by an inactive constraint, which gets active withgpecific time step. Further details can be found
in Referencesd, 6].
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