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ABSTRACT

The present contribution deals with the frictional contactof flexible bodies. In particular we investigate
the time integration of dynamic contact problems with largedeformations. The overall aim is to compare
standard with recently developed integrators. To this end we propose an energy and momentum consistent
integrator which exhibits superior numerical stability.

1 INTRODUCTION

The aim of our work is to develop stable integrators for transient large deformation contact problems (see
e.g. Reference [13]). Using the widely-used node-to-surface method, where weenforce the constraints by
Lagrange multipliers, we obtain a unified system of index-3 differential-algebraic equations (DAE). Within
this common framework we are able to incorporate structuralelements such as shells, beams, continua as
well as rigid bodies for which we use a rotationless formulation (see References [12, 11]). For the underly-
ing DAE’s even second order implicit integrators like e.g. the midpoint rule or the Newmark method fail to
deal in a consistent way with various physical properties ofthe system, resulting in an unstable numerical
behavior of the system. To avoid this disadvantage we apply an energy-momentum scheme, which has al-
ready been investigated in the context of nonlinear elastodynamics (see References [2, 4]). In the context of
contact mechanics similar consistent integrators have been applied previously (see References [1, 10]), vio-
lating the non-penetration condition. The present work builds on the previous works (see References [3, 6]).

2 Continuum and contact mechanics

In order to simplify the notation for frictional multibody contact problems we restrict our consideration on
a two body contact problem (see Figure1). Therefore the bodies are depicted in the reference configuration
B
(i)
0 ⊂ R

3, i ∈ [1, 2] and in the current configurationB(i)
t ⊂ R

3, i ∈ [1, 2], respectively. The material
boundaries of the bodies can be decomposed into the Neumann boundaryΓn, the Dirichlet boundaryΓd

and in the contact surfaceΓc. The spatial counterparts of the boundaries are denoted with γn, γd andγc. In
this connection we presume that the boundaries satisfy:

∂B
(i)
0 = Γ(i)

n ∪ Γ(i)
c ∪ Γ

(i)
d and Γ(i)

n ∩ Γ(i)
c = Γ(i)

n ∩ Γ
(i)
d = Γ(i)

c ∩ Γ
(i)
d = ∅ (1)

Any material configuration of the bodies can be addressed viaX(i) and we obtain the spatial counterpart
using the mappingϕ(i)

(
X(i)

)
. We assume that the bodies come in contact within the considered time

intervalt ∈ I := [0, T ]. The balance of linear momentum with respect to the reference configuration reads

ρ
(i)
0 ϕ̈(i) = DIV(P (i)) +B(i) (2)

whereB(i) denotes the body force per reference volume,ρ
(i)
0 ϕ̈(i) denotes the inertia force term corre-

sponding to thei-th bodyB(i)
0 using the reference densityρ(i)0 andP denotes the first Piola-Kirchhoff stress

tensor, which depends on the considered constitutive law described via the strain energy functionW (i). For
the initial/boundary value problem (see Equation (2)) we have to take the boundary and the initial conditions
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Figure 1. Configurations of two body contact (B
(i)
0 : bodies in the reference configuration,B

(i)
t

: bodies
in the current configuration)

into account. Hence the boundary conditions are given as

ϕ(i) = X̄(i) in Γ
(i)
d ∀ t ∈ I (3)

T (i) = P (i) N (i) = T̄ (i) in Γ(i)
n ∀ t ∈ I (4)

whereT (i) denotes the Piola traction vector andN (i) denotes the unit outward normal ofΓ(i)
n . X̄(i) and

T̄ (i) denote the prescribed displacement and traction respectively. At last we provide the initial conditions

ϕ(i)(t = 0) = X
(i)
0 in B

(i)
0 (5)

ϕ̇(i)(t = 0) = V
(i)
0 in B

(i)
0 (6)

In order to deduce the contribution of each body to the weak form of the boundary value problem we define
the solution space

V(i)
s = {ϕ(i) ∈ H1(B(i)) : ϕ(i) = ϕ̄(i) onΓ(i)

d } (7)

and the space of test functions

V
(i)
t = {δϕ(i) ∈ H1(B(i)) : δϕ(i) = 0 onΓ(i)

d } (8)

where the Sobolev spaceH1(B(i)) consists of the spaces of square integrable functions and their first
derivatives. The weak form for the problem at hand reads

=:G(i),dyn

︷ ︸︸ ︷∫

B
(i)
0

ρ
(i)
0 ϕ̈(i) · δϕ(i) dV +

=:G(i),int

︷ ︸︸ ︷∫

B
(i)
0

P (i) : Grad(δϕ(i)) dV

=

∫

B
(i)
0

ρ
(i)
0 B̄(i) · δϕ(i) dV +

∫

Γ
(i)
n

T̄ (i) · δϕ(i) dA

︸ ︷︷ ︸

=:G(i),ext

+

∫

Γ
(i)
c

t(i) · δϕ(i) dA

︸ ︷︷ ︸

=:G(i),c

∀ δϕ(i) ∈ V
(i)
t (9)



As indicated in Equation (9) we obtain the virtual work for the considered bodies:

G (ϕ, δϕ) =

2∑

i=1

(

G(i),dyn +G(i),int −G(i),ext −G(i),c
)

= 0 (10)

Additionally we postulate that the local momentum balance on the contact boundary

−t(2) dA = t(1) dA (11)

holds. Thus, the contact contribution to the virtual work reads

Gc =

2∑

i

G(i),c =

∫

Γ
(1)
c

t(1) ·
[

δϕ(1) − δϕ(2)
]

dA (12)

The fundamental balance principles, namely the balance laws for the linear momentumL, the angular
momentumJ as well as the total energyE of the system should hold during the considered time interval I
as depicted in Table1, whereF̃ (i) denotes the resultant forces,̃M (i) the resultant momenta andP (i),ext the
resultant external power. In case of a conservative problem(e.g. frictionless contact and pure stick contact),
the fundamental balance principles are maintained.

Balance principles

Linear momentum: L̇ =
∑2

i=1 F̃
(i)

Angular momentum: J̇ =
∑2

i=1 M̃
(i)

Energy: Ė =
∑2

i=1

(

Ṫ (i) + V̇ (i)
)

=
∑2

i=1 P
(i),ext

Table 1. Balance principles for bodiesB(i)
0

For detailed derivation of the balance principles like the linear and angular momentum as well as the total
energy of the system we refer to Reference [7].

3 Contact description
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Figure 2. Parametrization of the contact surfaces

For the contact description we use the so-called direct approach (see Reference [9]) but also other descrip-
tions like e.g. the covariant approach (see Reference [8]) are suitable. For further considerations we use the



well-known slave-master concept (see Reference [5]). To this end we determineX(1) ∈ Γ
(1)
c and its spatial

counterpartϕ(1)(X(1), t) ∈ γ
(1)
c as the slave node, which should be prohibited to penetrate the opposing

master surfaceΓ(2)
c rather than its spatial counterpartγ

(2)
c

∗. Using the closest point projection

min ‖ϕ(1)(X(1))−ϕ(2)(X(2))‖ (13)

we obtainϕ(2)(X̄(2)(X(1))) with closest distance to the slave nodeϕ(1)(X(1)). In the following we ne-
glect the arguments of the slave pointϕ(1) := ϕ(1)(X(1)) and its corresponding master pointϕ̄(2) :=
ϕ(2)(X̄(2)(X(1))). The master surface corresponds to a 2-D manifold which we parametrize using convec-
tive coordinatesξ1, ξ2 (see Figure2). Therefore the aforementioned master node is characterized by

ϕ̄(2) := ϕ(2)(ξ̄1, ξ̄2), X(2) := X(2)(ξ̄1, ξ̄2) (14)

whereξ̄1, ξ̄2 denote the projection point corresponding tōX(2). Thus, we are able to define the spatial
bases for the projection point moving with the slave pointϕ(1)

aj := ϕ
(2)
,ξj

(ξ̄1, ξ̄2) (15)

In this connection we define the gap function

g = n ·
(

ϕ(1) − ϕ̄(2)
)

(16)

wheren denotes the unit outward normal toγ(2)
c at ϕ̄(2). With the bases for the projection point at hand we

introduce the outward unit normal

n =
a1 × a2

‖a1 × a2‖
(17)

The contact traction can be subdivided into a normal and a tangential part due to their different physical
behaviour in the different directions:

t := t(1) = tN n+ tT (18)

The normal contact conditions, well-known as the Karush-Kuhn-Tucker conditions, are given by

g ≥ 0 (19)

tN = t · n ≤ 0 (20)

tN g = 0 (21)

For frictional contact we further have to incorporate tangential contact conditions in terms of a frictional
constitutive law. Here we make use of Coulomb’s friction law, for which the tangential contact conditions
can be stated as (see Reference [9]):

φ = ‖tT ‖ − µ tN ≤ 0 (22)

vT = −ζ
tT

‖tT ‖
(23)

ζ ≥ 0 (24)

ζ φ = 0 (25)

wherevT denotes the tangential velocity andζ denotes the consistency parameter. Finally we obtain the
virtual contact work decomposed into the normal and the tangential part via

Gc(ϕ, δϕ) =

∫

Γ
(1)
c

[
tN n+ tTj

aj
]
·
[

δϕ(1) − δϕ̄(2)
]

dA (26)

=

∫

Γ
(1)
c

(
tN δg + tTj

δξ̄j
)
dA (27)

∗In the continuous setting the choice whetherX
(1) or X(2) is defined as slave node is arbitrary.



4 Spatial discretization

For the numerical treatment of the underlying weak form (seeEquation (9)) we first accomplish the spatial
discretization leading either to a set of ordinary differential equations (ODE’s) or DAE’s (continuous in
time), dependent on the used method for incorporation of thecontact constraints. After this we consider
the temporal discretization in Section6. For the spatial discretization we use displacement-basedfinite
elements. Therefore the bodiesB(i) are subdivided into a finite number of elementsnel

B(i) ≈ B(i),h =

nel⋃

e

B(i),h
e (28)

wheree corresponds to the respective element. For the solution, the test function and the reference config-
uration, we use the following approximations

ϕ(i),h =

nnode∑

I=1

NI ϕ
(i)
I , δϕ(i),h =

nnode∑

J=1

NJ δϕ
(i)
J , X(i),h =

nnode∑

K=1

NK X
(i)
K (29)

whereϕ(i)
I , δϕ(i)

J andX(i)
K denote the nodal counterparts ofϕ(i),h, δϕ(i),h andX(i),h. In Equation (29)

N(•) denote the shape functions for an eight-node tri-linear brick element. Concerning the spatial discretiza-
tion of the weak form in Equation (10) we obtain the semi-discrete virtual work for both bodies using the
approximations in Equation (29) via

2∑

i=1









=:M
(i)
IJ

︷ ︸︸ ︷∫

B(i),h

ρNI NJ dV ϕ̈
(i),h
J · δϕ(i),h +

=:f (i),int

︷ ︸︸ ︷∫

B(i),h

(
∇X(i) NI · S

h
)
· ∇X(i) NJ dV ϕ

(i),h
J ·δϕ(i),h

−

∫

B(i),h

NI ρ B̄
h dV · δϕ(i),h −

∫

Γ
(i),h
n

N̂I T̄
h dA · δϕ(i),h

︸ ︷︷ ︸

=:f
(i),ext

I









+Gc,h = 0 (30)

whereS denotes the second Piola-Kirchhoff stress tensor. Consistent with the eight-node brick elements
used for the isoparametric discretization of the bodies, the shape functionŝNI in Equation (30) are bi-linear
and restricted to the surface. In Equation (30) the integrals over the domain can be approximated via the
sum over all domain elementse = 1, ..., nel

∫

B(i),h

(•) dV ≈
nel∑

e=1

∫

B
(i),h
e

(•) dV (31)

and the integrals over the Neumann surface can be approximated via the sum over all Neumann boundary
elementsn = 1, ..., nn

∫

Γ
(i),h
n

(•) dA ≈
nn∑

n=1

∫

Γ
(i),h
n,n

(•) dA (32)

The remaining integrals in Equation (32) on the right hand side can be evaluated using standard quadrature
rules. In summary, we obtain the semi-discrete virtual work

Gh(ϕ, δϕ) =

2∑

i=1

δϕ
(i)
I

[

M
(i)
IJ ϕ̈

(i)
J + f

(i),int
I + f

(i),ext
I

]

+Gc,h = 0 (33)

whereM (i)
IJ denotes the nodal mass contribution.



NTS-Element Similar to the approximations done for the solution, test function and the reference config-
uration we use the following approximations for the contactboundaries

ϕ(i),h
c =

nnode∑

I

N̂I ϕ
(i)
I , δϕ(i),h

c =

nnode∑

J

N̂J δϕ
(i)
J , X(i),h

c =

nnode∑

K

N̂K ϕ
(i)
K (34)

where unlike Equation (29) N̂(•) denote bilinear shape functions andnnode denotes the number of element
nodes. For the description of the virtual contact work we usethe well known NTS-method (see for example
the textbooks Reference [13, 10]) as depicted in Figure3. As determined in Section3, X(1) ∈ Γ(1) is
regarded as a slave node with its corresponding master surfaceΓ(2). Concerning the contact virtual work
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Figure 3. Three-dimensional five node NTS-element.

we only need to consider the solution and test functions corresponding to the contact surface. The discrete
gap functiongh can be calculated via

gh =
(

ϕ(1),h
c −ϕ(2),h

c

)

· nh (35)

Accordingly, the discrete virtual contact work reads

Gc,h =

∫

Γ
(1)h
c

(

thN δgh + thTj
δξ̄j,h

)

dA (36)

and can be obtained by the sum over all surface elements

Gc,h =

nc∑

s=1

∫

Γh
e,c

(

thNs
δghs + thTjs

δξ̄j,hs

)

dA (37)

where index notation is used. In Equation (37) s = 1, ..., nc denotes thes-th contact element and the
remaining integrals can be evaluated as usual.

5 Equation of motion

For the incorporation of the contact constraints differentmethods exists. The most important are the La-
grange multiplier method and the penalty method. The Lagrangian for the constraint system is given by:

Lλ =
1

2
ϕ̇ ·M ϕ̇− V (ϕ)−

nc∑

s=1

φs(ϕ)λs (38)



Using Equation (38) we obtain the following semi-discrete index-3 DAE’s:

M ϕ̈+∇V (ϕ) +

nc∑

s=1

GT
s (ϕ)λs = 0 (39)






φ1

...
φnc




 = 0 (40)

HereGs denotes the gradient of the constraintsφ with respect to the configuration. For the penalty method
we obtain ordinary differential equations instead of DAE’s. But in the following we focus on the Lagrange
multiplier method.

5.1 Frictionless contact

For the frictionless case, each contact element incorporates the constraint

φN
s = gs

with its corresponding Lagrange multiplierλNs
. We obtain the DAE’s

M ϕ̈+∇V (ϕ) +

nc∑

s=1

GN,T
s (ϕ)λNs

= 0 (41)






φN
1
...

φN
nc




 = 0 (42)

Standard integrators like e.g. the midpoint-rule or the Newmark-scheme applied for the time discretization
of the DAE’s (41-42) fail to consistently reproduce the total energy of the system leading to an unstable
numerical behaviour of the system. Therefore we propose in the following a mixed approach together with
the concept of a discrete gradient leading to an energy and momentum consistent integration scheme.

Mixed approach As mentioned above we apply an energy-momentumscheme proposed in References [6,
3] for frictionless contact. In order to design such an energy-momentum scheme we introduce additional
coordinatesds ∈ R

3 and the vectorfs ∈ R
3 which corresponds to the normaln and to the convective

coordinatesξ respectively. To determine the augmented coordinates we introduce augmented constraints
φaug

s to link the new coordinates to the actual configuration. Together with the NTS-constraintφN
s we

obtain:

gs(ϕs,ds,fs) =

[
φN
s

φaug
s

]

(43)

For more details about the fundamental properties of this formulation we refer to Reference [6]. With
regard to Cauchy’s representation theorem, Equation (38) can be reparametrized by using at most quadratic
invariantsπ. One obtains an augmented Lagrangian of the considered system:

L̃λ =
1

2
ϕ̇ ·M ϕ̇− V (ϕ)−

nc∑

s=1

g̃s(π(ϕs,ds,fs)) · λs (44)

We define seventeen appropriate invariants (see References[6, 3])

π(ϕs,ds,fs) =






π1

...
π17




 (45)



in order to reformulate the constraintsg̃s (π (ϕs,ds,fs)). The semi-discrete equations of motion can be
obtained by the Lagrangian and we finally arrive at:

M ϕ̈+∇V (ϕ) +

nc∑

s=1

(D1 π(ϕs,ds,fs))
T ∇πg̃s(π) · λs = 0 (46)

nc∑

s=1

(D2 π(ϕs,ds,fs))
T ∇πg̃s(π) · λs = 0 (47)

nc∑

s=1

(D3 π(ϕs,ds,fs))
T ∇πg̃s(π) · λs = 0 (48)






g̃1(π(ϕ1,d1,f1))
...

g̃nc
(π(ϕnc

,dnc
,fnc

))




 = 0 (49)

Again we refer to Reference [6] for the derivation of the fundamental properties of the constraints and for
the verification of the conservation of the angular momentumJ =

∑

I,J MI,J ϕI × ϕ̇J as well as of the
total energyE(ϕ, ϕ̇) = 1

2 ϕ̇ ·M ϕ̇+ V (ϕ) of the semi-discrete system.

5.2 Frictional contact

For frictional contact we have to distinguish whether stickor slip occurs. To this end usually a return
mapping scheme (for more details see References [10, 13]) is implemented that works as follows. One first
assumes stick and computes therefore a trial state (λtrial

T ) during the increment. Then the slip condition can
be evaluated:

Ψtrial
n+1 = ‖λtrial

T,n+1‖ − µλN,n+1 (50)

whereµ denotes the coefficient of friction. Stick occurs ifΨtrial
n+1 ≤ 0 and else slip occurs. In this connection

the frictional tractionsλTj,n+1 will be determined

λTj,n+1 =







λtrial
Tj,n+1 if Ψtrial

n+1 ≤ 0 (stick)

−µλN,n+1
λtrial
Tj,n+1

‖λtrial
T,n+1‖

if Ψtrial
n+1 > 0 (slip)

(51)

Thus, for the stick case we have to incorporate the constraints

φs =





φN
s

φT1
s

φT2
s



 (52)

corresponding to the Lagrange multipliersλN , λT1 andλT2. We obtain the DAE’s

M ϕ̈+∇V (ϕ) +

nc∑

s=1

Gstick,T
s (ϕ)λs = 0 (53)






φ1

...
φnc




 = 0 (54)

In case of slip we have to incorporate only the constraint forthe normal part

φs = φN
s (55)

corresponding to the Lagrange multiplierλN . The frictional tractionsλTj,n+1 for slip are not independent
Lagrange multipliers (see Reference [14]) and will be calculated according to Equation (51)2. Finally we



obtain the DAE’s

M ϕ̈+∇V (ϕ) +

nc∑

s=1

Gslip,T
s (ϕ)λs = 0 (56)






φN
1
...

φN
nc




 = 0 (57)

6 Time discretization

For the time discretization we divide the time intervalI = [0, T ] =
⋃N−1

n=0 [tn, tn+1] into equidistant
incrementsh = tn+1 − tn to apply an one step time integration scheme. In the following the time dis-
cretization of both the frictionless and frictional contact problems will be considered. For later comparison
we apply a standard midpoint rule and a newly developed energy-momentum scheme (firstly presented in
Reference [6]) in order to investigate the numerical properties of the latter.

6.1 Midpoint rule

For the midpoint rule the configuration and velocity are evaluated in the midpoint, thus we finally obtain
the discrete equations:

ϕn+1 −ϕn − h vn+ 1
2
= 0 (58)

M (vn+1 − vn) + h

(

∇V (ϕn+ 1
2
) +

nc∑

s=1

GT
s (ϕn+ 1

2
)λs,n+1

)

= 0 (59)






φ1,n+1

...
φnc,n+1




 = 0 (60)

This algebraic system of nonlinear equations will be solvedby applying Newton’s method.

6.2 Energy-momentum scheme - mixed formulation

We aim at the time discretization using a mixed formulation (see Section5.1), where the NTS constraints
are reformulated in appropriate invariants. The next step to design an energy-momentum scheme is to apply
a discrete gradient in the sense of Gonzalez (see References[6, 4]). This creates an energy-momentum
scheme which besides the algorithmic consistency of both momentum maps is able to conserve the total
energy of the system. Finally we can write the completely discrete system within the concept of the discrete
gradient as follows:

ϕn+1 −ϕn − h vn+ 1
2
= 0 (61)

M (vn+1 − vn) + h∇ϕ V (ϕn,ϕn+1) (62)

+h

nc∑

s=1

(

D1 π(ϕs,n+ 1
2
,ds,n+ 1

2
,fs,n+ 1

2
)
)T

∇π g̃s(πn,πn+1) · λs,n+1 = 0 (63)

nc∑

s=1

(

D2 π(ϕs,n+ 1
2
,ds,n+ 1

2
,fs,n+ 1

2
)
)T

∇π g̃s(πn,πn+1) · λs,n+1 = 0 (64)

nc∑

s=1

(

D3 π(ϕs,n+ 1
2
,ds,n+ 1

2
,fs,n+ 1

2
)
)T

∇π g̃s(πn,πn+1) · λs,n+1 = 0 (65)






g̃1(π(ϕ1,n+1,d1,n+1,f1,n+1))
...

g̃nc
(π(ϕnc,n+

1
2
,dnc,n+

1
2
,fnc,n+

1
2
))




 = 0 (66)



Here the discrete gradient∇ϕ V (ϕn,ϕn+1) applied to the internal energy is used (for more details see

Reference [2]). In addition, the discrete gradient∇π g̃(πn,πn+1) is defined as follows:

∇π g̃s(πn,πn+1) = ∇π g̃s

(

πn+ 1
2

)

+
g̃s(πn+1)− g̃s(πn) +∇π g̃s

(

πn+ 1
2

)

(πs,n+1 − πs,n)

‖πs,n+1 − πs,n‖2
(πs,n+1 − πs,n) (67)

The verification of the conservation of the angular momentumand the total energy of the discrete system can
be found in Reference [6]. In this connection we have to remark that the consistency condition is violated in
general by an inactive constraint, which gets active withina specific time step. Further details can be found
in References [3, 6].
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