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ABSTRACT

The development of complex simulation programs within ateéresearchers requires not only knowledge
of the underlying mechanics and the associated algoritboisalso a detailed planning of the interfaces
within the program. In particular, an object oriented fravoek, used for the implementation in Matlab
as well as in C++ and the combination thereof provide an g¥et¢ool for the requirements of a research
team. In addition, it enables researchers to focus on thiengpy interests. Various examples including
rigid bodies, deformable bodies and fluids demonstratedpatility of the implementation.

1 INTRODUCTION

We work with an object oriented framework within Matlab ugi@++ MEX files for the core function-
alities to speed up the calculations. The allows us to setnugaay to handle system for engineers from
different fields of research. This incorporation of vari@lements for rigid bodies (see Betsch & Uhlar
[6]), geometrically exact beams (see Betsch & Steinméahndeometric exact shells (see Betsch & Sanger
[4]), deformable bodies (see Hesch & Betsdh,[11]), thermoelastic systems (see Hesch & BetstH)|
thermoviscoelastic systems (see Kriiger et &6])| fluid-structure interaction problems (see Hesch et al.
[15]) and phase field models (see Anders et &J). [We will focus on rigid and deformable bodies as well
as on fluid-structure interaction problems in the presentrdaution.

2 Flexible multibody dynamics

In this and the subsequent sections we present in detail¢lcbanics of the chosen examples used within a
unified mechanical framework and implemented in a commoeatlgriented structure. First, we outline a
uniform framework for flexible multibody dynamics that whle applied in the present work (see Betsch et
al. [3]). In multibody dynamics it is common to use rotation paréengsuch as joint-angles, Euler angles,
Euler parameters or unit quaternions for the descriptioth@forientation of body-fixed frames. Here, we
focus on a rotationless formulation (cf. Bets@h§]) for all constraint systems.

2.1 Rigid body dynamics

Rather then using rotation variables for the parametoraif the nonlinear configuration manifold pertain-
ing to a specific multibody system we make use of redundantiaoates subject to geometric constraints.
Accordingly, we consider constrained finite dimensionathanical systems, whegge € R™ denotes the
vector of redundant coordinates akd= R™ the vector of Lagrange multipliers for the enforcement ef th
vector of constraint® € R™. The uniform description of flexible multibody dynamics tsatacterized by
the Lagrangian

L(a.4) = 3d- Md~V(a) 1)

whereqg denotes the vector of redundant velocitid$,the symmetricland, more importantly, constant mass
matrix. Typically, the potential function is split as folls V' (q) = V"t + Vert whereV <*t s related to



external loads, antf** accounts for hyperelastic material behavior, vanishingpécase of rigid bodies.
Following the path of stationary action yields the set ofatiéntial-algebraic equations (DAES)

M= -VV(q) — G"(q)A

B(g) = 0 @)

The holonomic constraints are assumed to be independethiaisine constraint Jacobi@®(q) = V®(q)
has full row rank. Due to the presence of the holonomic cairds, the configuration space of the con-
strained mechanical system under consideration is given by

Q={q € R"|®(q) =0} 3)

Kinematics To describe the kinematics (cf. Betsch & Uhlat)[of the free rigid body, we assume that
X = X'e,; is a material point which belongs to the reference configamadd, ¢ R? of the rigid body. The
spatial position ofX at timet € I := [0, T is given by

x(X,t) = @(t) + X'd;(t) (4)

wherep(t) € R3 denotes the position of the center of mass dnd) € R? a body fixed director frame. It
is obvious that the configuration of the rigid body is speditig the vector of coordinates

q= [SoTv d?? dgv dij;] 5)
To enforce the rigidity of the body, we have to incorporate®homic constraints given by

%(d1 -dy — 1)
?(dg ~dy — 1)
@) = |21 h ©
dy - ds
dy - ds

One of the main distinguishing features of the rotationtégsl body formulation is the specific structure

of the mass matrix
MI O 0 0

0 &I o 0

0 0 &I O (7)
0 0 0 &I

wherel andO are the3 x 3 identity and zero matricesy! denotes the total mass of the rigid body &hd

the principal values of the convected Euler tensor. The eotion with the principal values of the convected
inertia tensor is given by

M =

E==(Ti+ T —T5) (8)

N =

for even permutations of the indicégj, k.

Equations of motion Following the above outlined structure of the DAEs ) e obtain the following
set equations

g="v
Mo = -VVi(q) — GT(q)\ 9)
®(q) =0

To solve the non-linear system using a Newton-Raphsontib@rave apply an implicit time-stepping
scheme. Accordingly, the full discrete equations read

At
qdn+1 — Q4n = 7(vn+1 + 'Un)

M(vn+1 - vn) - _Atvvemt(qn—&-l/Q) - GT(Qn+1/2))\n+l
(I)(Qn—‘rl) =0

(10)



This accomplish the rotationless formulation of rigid besli Within the object oriented framework each
rigid body is represented by a single object which knows &lieyposition and orientation as well as the
corresponding contributions to the residual vector. Witte follow up section we extend the system to
include deformable bodies, i.e. we insert an internal gakrepresenting the local strain energy of the
body.

2.2 Deformable continua

For deformable bodies within a Lagrangian framework we @m&s@a similar mapping as before using
e (X t) for each bodyi € [1...k], characterizing the current position at tie The correspond-
ing mapping of the surfacE® is denoted byy() = (T'(), ). Note that we require that the boundaries
satisfy

rOur® =r@® and TONTH =9 (11)

wherel'") andT'{) denote the Dirichlet and Neumann boundaries, respectilrethe sequel we make use
of the notation

/ (o) ()dBY =: (s, ) and / (o) (o) AT =: (o, 0)%) (12)
B @)

The contribution of bodys3) to the virtual work for a large deformation contact probleam be expressed
as follows

G (p,8¢) = (pr@, 59) D + (P, % (60)) D — (prB,op)) — (T.5)\) — (t,69)\)  (13)

where P denotes the first Piola-Kirchhoff tensor affithe external stresses at the Neumann boundary.
To achieve a feasible numerical solution for the nonlineabfem under consideration, we apply a spatial
discretization process to each ba8y’ by introducing a set of finite elementss E" via

B(i),h: U Béi)’h (14)
VecERr

Using a standard displacement-based finite element agpra&cintroduce finite dimensional approxima-
tions of o andde given by

et = 3" N4qY, and oo =Y NPiqy) (15)
AcB BeB
wherequ) = (ij), t),A,B e B=1{l,..., nwde are the nodal values of the configuration mapping

at timet. Furthermore N4 (X ®)) : B@):2 —5 R are the global shape functions associated with notdes
The coefficients of the discrete mass matrix
MAP = / prNANB AV I (16)
B

are now introduced together with the variatidigsof the discrete configuration. For the virtual work of the
internal forces, the discretized deformation gradient@efdrmation tensor have to be incorporated using

) S ) )
(1),h _ — (9) A (4)
FOM == ) afevN (X ) 17)
Acw®
and _ , . _ .
Ch _ Z g . g NA (X(”) 2 VNB (X(l)) (18)
A,Bew(®
Introducing the above mentioned inner potential function
v () = / w (cr) av (19)

B



using a local strain energy density functidn(C()-*) and assuming the existence of an external potential
energy function

Vet (g) = 3 4 / NAB® aV + / NAT dp (20)
Acw® ) Ffj)
the discrete virtual work expression can now be written as
GO (0, 5p00) = 3 5q) - qff /VNA (x9) s (cOm) N (x0) av (1)
A,BGUJ“) B()

whereS (C)'h) = 20W/0C " denotes the second Piola-Kirchhoff stress tensor. Theefeseirtual
work expression for the external contributions reads

(D) ext (<P<i>,h7&p<z‘>.,h) — yy()ext (qu)) - 5q® (22)

Equations of motion Once again, we have to solve the non-linear system using @addeRaphson iter-
ation and apply an implicit time-stepping scheme. Accagtlinthe full discrete equations read

t
dn+1 — g4n = 7(vn+l + vn)

M (Vi1 —vy) = —AHVV O (g, g, 1) — VV O (q, g,11)]

(23)

As before, each discrete bodys represented by a single object which knows its positiahitmncontribu-
tions to the residual vector. Since we use a unified reprasentof the equations of motion we can simply
assemble all contributions to the residual vector and adahedessary — additional holonomic constraints
to connect the bodies. Additional inequality constraiatg, contact constraints can be assembled similarly,
for details see Hesch & Betsch4, 13].

3 Fluid-structure interaction

As usual, we write the fluid system in terms of an Eulerian dp8on using the inverse mappiny =
¢~ (x(t),t). For the time differential of a physical quantifyx(t), t), it follows immediately that

. Of
f=pptv % f (24)
wherev(x(t),t) = dp/0t denotes the velocity at a specific point. Without loss of gality we restrict

ourself to the incompressible case and obtain for the coityicondition

1.
Ve  v=—=J=0 25
v=> (25)

whereJ = det(F) andF : B x [0, T] — R4 F = D¢ denotes the deformation gradient. For a
Newtonian fluid the Cauchy stress tensor B x [0, 7] — R?*4 is defined by

o=-—pl+ A% -v+pu(Vv+ V%ol (26)

Here, the pressure : B x [0,7] — R is a sufficient smooth function and can be regarded as Lagrang
multiplier to enforce 25). Note that for incompressible fluids the second term on itjet hand side
vanishes. Furthermore, denotes the dynamic viscosity andthe second coefficient of viscosity. The
Eulerian form of the balance of linear momentum reads

po =Ny -0+ pg (27)



wherep denotes the density argda prescribed body force. In weak form, the balance equatiads
<p(v - g)v 5’U> + <0'7 vx (5’0)> - <h'a 5U>Fh =0 (28)
supplemented by the constraints
(V- v,0p) =0 (29)

As usual, we introduce suitable spaces of test functionthfovelocity as well as for the pressure field

VY =: {0v € H(B)|6v = 0 onT"} (30)
VP =: {op € La2(B)}

where the Sobolev spad®' contains the set of square integrable functions and thaarsgntegrable first

derivative.

Immersed solids For the calculation of fluid-structure interactions we integea solid system within the
fluid (see Liu et al. 17]). To embed the resulting forces of the solid system, ocigpthe domains; at
time ¢ as volumetric forceF : B x [0, T] — R? within the balance of linear momentum of the fluid, we
reformulate 27) as follows

plo=v% ol +plg+F (31)
The force field of the immersed solid reads
_Jo in  B\B*
f‘{ (0 — )6 —g)+V-(0°—af) in B (32)

Next we postulate the existence of a hyperelastic conisttlaw for the calculation of the solid stress field
by introducing a scalar valued local strain energy funcliiC), whereC = FT F denotes the right
Cauchy-Green tensor. In general, additional internakaeis can be used as well for the immersed solid to
include plastic or viscoelastic behavior. We obtain thealcstress field of the solid via push forward of the
purely material derivative of the strain energy function
s 2 oW (C)

=3 "5¢
Due to its physical properties it is convenient to use a Liagian mapping for the immersed solid, whereas
the fluid uses an Eulerian mapping. This necessitates theittefiof an Euler-Lagrange mappirig: for
any given function) of the solid system, occupying ar&d C 5 such that)(xz,t) : B; x [0, T] maps to
Ip: (¢(X,t)) : By x [0, T]. This motivates the mapping

FT (33)

v(x(t),t) = Ip; (v(X, 1)) (34)
To complete the set of equations we define appropriate Datitloundary conditions for the immersed solid
z(X,t) =x9, on 0B} (35)

Since the immersed solid is surrounded by the fluid, additibieumann boundary conditions are not treated
explicitly. The corresponding weak form reads

(p! (v — g) — F,o0) + (67, % (6v)) — (h,00)pn =0 (36)
and for the constraints
(Vi -v,0p) =0 (37)

It is convenient to rewrite the solid system within the miatedomain. Using/® = det(F*) and the
notation

[ @av = (38)

55

*Contributions to the solid system are marked wigh®, whereas contributions to the fluid are marked v(ih/ .



in addition to the Euler-Lagrange mapping, we obtain forlihkance equations
(o’ (0 —g),00) + (o7, %k (6v)) — (h, dv)n

(0" = 0°) (3T (0(X.0) ~ ) Tig(60) ) (@)

—(o® — o',V Ip:(0v)J%)5 =0
As before we subdivide the area into finite elements and ambyopriate shape functions and obtain

ol = Z N4y, oot = Z NA4Sv 4

A€w Acw

Pt =Y MPpg; op"=> MPspp
Bew Bew

(40)

whereN4(z) : B" — R are quadratic shape functions associated with nedesw = {1,...,n} and
MPE(x) : B" — R are linear shape functions associated with nddles @ = {1,...,m}. This element
satisfies the LBB condition and provides optimal quadraticvergence of the velocity field (see Donea &
Huerta B]). The semi-discrete balance of momentum reads

(p! (0" — g"), 60™) + (o (v, 1), Y (d01)) — (BD, 60P)pn =0 (41)
whereas the constraints reads
(W 0", 6p") =0 (42)

Equations of motion At last, the full discrete equations of motions for the flubdds

"’1}%1 - "’2 h h h h
(p N (’Un+1/2 - Vi )’Un+1/2 “G9n+1/2 , 06U )+

<0(92+1/27P2+1)7Vx (5”h)> - <h}ﬁ+1/2a5vh>rh =0
(Ve "U7}1+1a5ph> =0

(43)

The additional contributions for the immersed contribngidnave to be discretized in time as well and we
obtain for the contributions of the balance equation
Th(vnmvn—&-lapn—&-l) -

s L (qu}}L ) — Los (’1}2) ~ s
- <(P(fJ — P5) < +1At - 97}14-1/2 , Zas (5vh)>0

— (8%, (F*(Zas (vn11/2)" V& Za: (60"))5
+ <5'f(IQS (")24-1/2)7193 (p2+1)), V Zos (5"~Jh)=]s (Za: (")7}:4-1/2)»(8)

For further details on immersed techniques see Hesch etl&]. [As before, the fluid as well as the
immersed solid are treated as separate objects. Note thabiiiributions for the residual vector of the
immersed object are distributed to the corresponding tmritons of the fluid nodes.

(44)

4 Examples
4.1 Rigid bodies

The first example deals with a three dimensional rotary cfige 1). The crane has five degrees of freedom
and has been originally formulated in terms of generalizentdinates. It is comprised of three rigid bodies.
In particular, the girder bridge (body 1) is connected tottb#ey (body 2) via a prismatic joint. A revolute
joint couples the trolley with the winch (body 3). A mass fddivody 4) is applied as load.

Accordingly, the present approach yields= 42 coordinates subject tow = 37 holonomic constraints.
The inertia properties of the multibody system at hand anensarized in Tabld.. Additionally, the initial



t=15

Figure 1. Rotary crane: Snapshots of the motion.

length of the rope, connecting the winch to the load maskyis- 1.2, and the winch radius is,, = 0.1.
Gravity is acting on the system wigh= 9.81. In the initial configuration the distance between the éyll
and the crane axis of rotationig = 1.5, and the rope is parallel to the crane axis of rotation. Tht&ln
velocity of the system is characterized by an angular velafiw, = 1.32 about the crane axis of rotation.

Table 1 Inertia data for the rotary crane.
body | mass & & Es
1 100 8.3 208.3 8.3
2 50  1.0417 1.0417 1.0417
3 3 0.01 0.01 0.25
4 10 - - -

The multibody system under consideration is conservatinehas a rotational symmetry about the crane
axis of rotation. Accordingly, the total energy as well ag Bacomponent of the total angular momentum
are conserved quantities (see Betsch et3). [

4.2 Deformable bodies

The next example deals with an impact simulation of two tdhe configurations after certain time-steps
are shown in Fig.2 Both tori are discretized using 8024 eight-node brick eletsavith overall 72216
degrees of freedom. The inner and outer radii are 52 and Bp@cévely, the wall thickness of each hollow
torus is 4.5. A standard Neo-Hookean hyperelastic matedithl £ = 2250 andv = 0.3 is used. The
initial densityp = 0.1 and the homogeneous, initial velocity of the left torus igegibyv = [30,0,23]. A
time-step size oAt = 0.01 has been used for this approach, using a mortar based segioeprocedure
to interpolate the stress field within the actual contachare



Figure 2. Configurations at timé = 2 andt = 5.

4.3 Fluid-structure interaction

The last example deals with the application of immersedrtegtes to cardiovascular problems. Therefore,
we consider blood as incompressible Newtonian viscous Witidl viscosity = 1 and density = 1-105.

Two flaps are inserted into the channel, see Bighe top and the bottom sides are fixed and a Poiseuille
inflow is applied to the left using the amplitude functidrit) = 5 - (sin(27t) + 1.1) and no boundary
conditions are imposed to the right hand side. The flaps ametad as Neo-Hookian solids using the
Lame parameters® = 8 - 10° andp® = 2 - 10° corresponding to a Young’s modulus B8f = 5.6 - 10°

and a Poisson ratio of = 0.4. They can be regarded as idealization of a human heart vapesed to
insufficiency modeled by the gap between both flaps, cf. Gil.g0]. The series of figures in Figt shows

0.02
[
/ u=o0

0.00161 u(t)

—»||l« 0.0000212

| \”20

0.08
Figure 3. Geometry and boundary conditions for two flapping memisane

the time evolution for the pulsatile flow using 256x64 Q1Q1dland 40x4 linear solid elements.

5 CONCLUSIONS

We have shown how to incorporate different mechanical syst&ithin a single theoretical as well as im-
plementation framework. Based on rotationless formutetior rigid bodies and finite element based dis-
cretizations of deformable bodies and fluid systems we ve@common structure of differential algebraic
equations. Although not shown, the same theoretical frasrlkewan be extended to geometrically exact



Figure 4. Time evolution of the membranes and streamlines of the.fluid

beams and shells. This common structure can be easily ingpia in a single object oriented framework
and allows us an efficient usage of the different objects.
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