

Computational homogenization of higher-order continua

F. Schmidt, M. Krüger, M.-A. Keip and C. Hesch

Introduction

Additive manufacturing allows for lightweight construction of sophisticated geometries using complex micro-morphologies, changing the macro-properties of the produced parts. To simulate such materials, multiscale methods are

Boundary conditions

Dirichlet boundary conditions

$$\bar{\boldsymbol{F}}\boldsymbol{X} + \frac{1}{2}\bar{\boldsymbol{\mathfrak{F}}}: (\boldsymbol{X}\otimes\boldsymbol{X}) + \frac{1}{6}\bar{\mathbb{F}}\stackrel{!}{:} (\boldsymbol{X}\otimes\boldsymbol{X}\otimes\boldsymbol{X}) - \boldsymbol{\varphi} = \boldsymbol{0},$$

required. Here, we introduce a novel computational framework for the multiscale simulation of higher-order continua that allows for the considerationof first-, second-, and third-order effects at micro- and macro-level. In line with classical two-scale approaches, we describe the microstructure via representative volume elements that are attached to each integration point of the macroscopic problem.

Mesoscopic boundary value problem for second-gradient media

We start with the mapping for the microscopic relative position of the material points $m{x}=m{arphi}(m{X})$ using the macro values $ar{m{F}}=
ablaar{m{arphi}}$ and $ar{m{\mathfrak{F}}}=
abla^2ar{m{arphi}}$ and obtain $\boldsymbol{\varphi}(\boldsymbol{X}) = \bar{\boldsymbol{F}} \boldsymbol{X} + \frac{1}{2} \, \bar{\boldsymbol{\mathfrak{F}}} : (\boldsymbol{X} \otimes \boldsymbol{X}) + \tilde{\boldsymbol{w}} \, .$

Here, \tilde{w} describes the unknown microscopic fluctuation field, which includes all higher-order terms of the Taylor series expansion.

 $\bar{F} + \bar{\mathfrak{F}} X + \frac{1}{2} \bar{\mathbb{F}} : (X \otimes X) - F = 0,$

Periodic boundary conditions

Figure: Mesoscopic boundary value problem, periodic boundary conditions on $\partial \mathcal{RVE}$, here only displayed for top and bottom for better understanding.

Cook's membrane

We examine Cook's membrane as macroscopic system, using a secondgradient model for the microscopic system inheriting a void.

Figure: Meso-macro transition of the mechanical boundary value problem, left: boundary decomposition of the macroscopic continuum in Dirichlet boundaries Γ^{φ} and Neumann boundaries $\overline{\Gamma}^{\sigma}$, $\overline{\Gamma}^{\nabla\sigma}$ of the traction force and the hyperstress traction force, right: \mathcal{RVE} as defined for every macroscopic point.

Third-gradient media

Energetic criterion for equal virtual work of the macro- and microscale

$$\frac{1}{V} \int_{\mathcal{RVE}} \left(\boldsymbol{P} : \nabla \delta \boldsymbol{\varphi} + \mathfrak{P} \stackrel{:}{:} \nabla^2 \delta \boldsymbol{\varphi} \right) \, \mathrm{d}V = \bar{\boldsymbol{P}} : \delta \bar{\boldsymbol{F}} + \bar{\mathfrak{P}} \stackrel{:}{:} \delta \bar{\mathfrak{F}} + \bar{\mathbb{P}} :: \delta \bar{\mathbb{F}} \, .$$

where $\overline{\mathbb{F}} =
abla^3 arphi$. The mapping of the microscopic position reads

$$\boldsymbol{\varphi}(\boldsymbol{X}) = \bar{\boldsymbol{F}}\boldsymbol{X} + \frac{1}{2}\bar{\boldsymbol{\mathfrak{F}}}: (\boldsymbol{X}\otimes\boldsymbol{X}) + \frac{1}{6}\bar{\mathbb{F}}\stackrel{\cdot}{:} (\boldsymbol{X}\otimes\boldsymbol{X}\otimes\boldsymbol{X}) + \tilde{\boldsymbol{w}}.$$

Insertion yields the relations

Figure: Left: Cook's membrane with boundary conditions, right: Fiber-reinforced polymers surrounding a void with applied Dirichlet conditions for the \mathcal{RVE} .

Figure: Exemplary deformed \mathcal{RVE} with second-gradient material, sliced at the midplane. Left: Von Mises stress distribution, right: $||\mathfrak{P}||$ distribution.

 $0.001 \,\mathrm{MPa}\,\mathrm{mm}^{-1}$ $0.119 \,\mathrm{MPa}\,\mathrm{mm}^{-1}$ $-22 \,\mathrm{MPa}$ $765 \mathrm{MPa}$ Figure: Cook's membrane. Stresses at different resolutions with a scaled displacement using the factor 5. Left: Von Mises stress distribution, right: $\|\mathfrak{P}\|$ distribution.

References:

[1] F. Schmidt, M. Krüger, M.-A. Keip and C. Hesch. *Computational homogenization of* higher-order continua. International Journal for Numerical Methods in Engineering, 123:2499-2529, 2022.

University of Siegen Chair of Computational Mechanics

Prof. Dr.-Ing. habil. C. Hesch