
Computational homogenization of higher-order continua

F. Schmidt, M. Krüger, M.-A. Keip and C. Hesch

Introduction

Additive manufacturing allows for lightweight construction of sophisticated ge-

ometries using complex micro-morphologies, changing the macro-properties

of the produced parts. To simulate such materials, multiscale methods are

required. Here, we introduce a novel computational framework for the mul-

tiscale simulation of higher-order continua that allows for the consideration

of first-, second-, and third-order effects at micro- and macro-level. In line

with classical two-scale approaches, we describe the microstructure via rep-

resentative volume elements that are attached to each integration point of the

macroscopic problem.

Mesoscopic boundary value problem for second-gradient media

We start with the mapping for the microscopic relative position of the material

points xxx = ϕϕϕ(XXX) using the macro values F̄FF = ∇ϕ̄ϕϕ and F̄ = ∇2ϕ̄ϕϕ and obtain

ϕϕϕ(XXX) = F̄FF XXX +
1

2
F̄ : (XXX ⊗XXX) + w̃ww .

Here, w̃ww describes the unknown microscopic fluctuation field, which includes

all higher-order terms of the Taylor series expansion.
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Figure: Meso-macro transition of the mechanical boundary value problem, left: boundary de-

composition of the macroscopic continuum in Dirichlet boundaries Γ̄ϕ and Neumann bound-

aries Γ̄σ, Γ̄∇σ of the traction force and the hyperstress traction force, right: RVE as defined

for every macroscopic point.

Third-gradient media

Energetic criterion for equal virtual work of the macro- and microscale

1

V

∫

RVE

(
PPP : ∇δϕϕϕ +P

... ∇2δϕϕϕ
)
dV = P̄PP : δF̄FF + P̄

... δF̄ + P̄ :: δF̄ .

where F̄ = ∇3ϕϕϕ. The mapping of the microscopic position reads

ϕϕϕ(XXX) = F̄FF XXX +
1

2
F̄ : (XXX ⊗XXX) +

1

6
F̄
... (XXX ⊗XXX ⊗XXX) + w̃ww .

Insertion yields the relations

P̄PP =
1

V

∫

RVE

PPP dV, P̄ =
1

V

∫

RVE

PPP ⊗XXX dV

︸ ︷︷ ︸

P̄PPP

+
1

V

∫

RVE

P dV

︸ ︷︷ ︸

P̄P

,

P̄ =
1

V

∫

RVE

1

2
PPP ⊗XXX ⊗XXX dV

︸ ︷︷ ︸

P̄PPP

+
1

V

∫

RVE

P⊗XXX dV

︸ ︷︷ ︸

P̄P

,

where we have made use of
∫

RVE

XXX dV = 000.

Boundary conditions

Dirichlet boundary conditions

F̄FF XXX +
1

2
F̄ : (XXX ⊗XXX) +

1

6
F̄
... (XXX ⊗XXX ⊗XXX)−ϕϕϕ = 000,

F̄FF + F̄XXX +
1

2
F̄ : (XXX ⊗XXX)−FFF = 000,

Periodic boundary conditions
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Figure: Mesoscopic boundary value problem, periodic boundary conditions on ∂RVE , here

only displayed for top and bottom for better understanding.

Cook’s membrane

We examine Cook’s membrane as macroscopic system, using a second-

gradient model for the microscopic system inheriting a void.
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Figure: Left: Cook’s membrane with boundary conditions, right: Fiber-reinforced polymers

surrounding a void with applied Dirichlet conditions for the RVE .

Figure: Exemplary deformed RVE with second-gradient material, sliced at the midplane.

Left: Von Mises stress distribution, right: ||P|| distribution.
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Figure: Cook’s membrane. Stresses at different resolutions with a scaled displacement using

the factor 5. Left: Von Mises stress distribution, right: ‖P‖ distribution.
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