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Dynamic contact problems in elasticity are dealt with in the framework of nonlinear finite element methods. A new energy-
momentum conserving time-stepping scheme for the mortar contact formulation is presented. The proposed method relies on
a reparametrization of the contact constraints in terms of specific invariants. For the time discretisation of the contact forces
emanating from the mortar formulation the notion of a discrete gradient is applied.

1 Hamiltonian formulation of discrete elastodynamics

We start with the space finite element discretisation of nonlinear elastodynamics, which gives rise to a discrete strain energy
function, given by

V int(q) =

∫
B

W (C) d V (1)

where q represents a possible discrete configuration and C the discrete version of the deformation tensor (right Cauchy-Green
tensor). Furthermore, we assume, that the external forces can be derived from an energy potential

V ext(q) = −

∫
B

ρ0b · ϕ d V −

∫
∂Bσ

t · ϕ d A (2)

where ρ0 denotes the reference mass density, b the applied body force, ϕ the actual configuration and t the prescribed traction
boundary condition. Due to the presence of contact constraints, the equations of motion pertaining to the fully discrete system
can be written by using a mid-point-type discretisation of the underlying system of differential algebraic equations:

qn+1 − qn =
∆t

2
(vn + vn+1)

M(vn+1 − vn) = −∆t∇qV (qn,qn+1) − ∆t

m∑
l=1

(λl)n+1∇qΦl(qn,qn+1)

0 = Φ(qn+1)

(3)

Here, the discrete gradient is defined as

∇qV (qn,qn+1) = Dπ(qn+q)
T∇qV (π(qn), π(qn+1)) (4)

with

∇qV (π(qn), π(qn+1)) = ∇πV (πn+ 1

2

) +
V (πn+1) − V (πn) −∇πV (πn+ 1

2

) · (πn+1 − πn)

‖πn+1 − πn‖2
(πn+1 − πn) (5)

using a reparametrisation with possible invariants π, which have to be members of either the set
�

or �
�
(q) = {qA · qB, 1 ≤ A ≤ B ≤ nnodes}

� (q) = {det([qA,qB]), 1 ≤ A ≤ B ≤ nnodes}
(6)

Possible invariants of the strain energy function can be identified as the components of the deformation tensor C. The same
approach can be applied to the contact constraint functions, as shown next.
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2 Mortar method

The reparametrisation of the mortar constraints can be carried out with at least five invariants, three out of
�

and two out of �

π1(qseg) = (x
(1)
2 − x

(1)
1 ) · (x

(1)
2 − x

(1)
1 )

π2(qseg) = (x
(1)
2 − x

(1)
1 ) · (x

(2)
1 − x

(1)
1 )

π3(qseg) = (x
(1)
2 − x

(1)
1 ) · (x

(2)
2 − x

(1)
1 )

π4(qseg) = (x
(1)
2 − x

(1)
1 ) ·Λ(−2x

(1)
1 + x

(2)
1 + x

(2)
2 )

π5(qseg) = (x
(1)
2 − x

(1)
1 ) ·Λ(x

(2)
1 − x

(2)
2 )

(7)

where x
(B)
A denotes the four element nodes, defining a mortar segment (see Betsch & Hesch [1]) and Λ is a constant skew-

symmetric matrix with

Λ =

[
0 1

−1 0

]
(8)

A straightforward calculation shows, that the contact constraint functions can be recast as

Φseq
1

(
π(qseg)

)
=

1

16

(
ξ
(1)
b − ξ(1)

a

) {
π4

∫ 1

−1

(
ξ(1) − 1

)
dη + π5

∫ 1

−1

(
ξ(2) − ξ(1)ξ(2)

)
dη

}
(9)

and

Φseq
2

(
π(qseg)

)
=

1

16

(
ξ
(1)
b − ξ(1)

a

) {
π5

∫ 1

−1

(
ξ(2) + ξ(1)ξ(2)

)
dη − π4

∫ 1

−1

(
ξ(1) + 1

)
dη

}
(10)

again defined for one specific mortar segment, restricted by the local parametrisation ξ. A similar approach can be applied to
the node-to-segment contact formulation (see Betsch & Hesch [2]).

3 Numerical example

The numerical example deals with the planar model of a bearing depicted in Fig. 1. The bearing consists of two rings (Youngs’s
modulus E = 105, Poissons’s ratio ν = 0.1 and mass density �R = 0.001), which are discretized by 4-node isoparametric
displacement-based plain strain elements. The discretization of the outer ring relies on 10x48 elements, for the inner ring
10x40 have been used.
For t ∈ [0, 0.5], a torque acts on the inner ring in form of a hat function over time. Then, for t ∈ (0.5, 2], no external loads are
acting on the bearing anymore. Fig. 2 shows that for t ≥ 0.5 the present scheme does indeed conserve the total energy for the
frictionless contact problem under consideration.
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Fig. 1: Discretized bearing
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Fig. 2: Energy versus time
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