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Consistent time integration for transient three-dimensional contact using

the NTS-method
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The present work aims to investigate stable time integrators for large deformation contact problems within the framework

of the well known node-to-segment (NTS)-method. For this kind of problem, standard time integrators fail to conserve the

total energy of the system. To remedy this drawback, we combine a mixed method with the concept of a discrete gradient

applied to the aforementioned NTS-method. In the context of nonlinear elastodynamics stable integrators for ordinary differ-

ential equations have been extensively developed and investigated during the last two decades. For contact problems, energy

consistent integrators have been developed for the NTS-method (see e.g. Ref. [1]).
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1 Continuum and contact mechanics

To describe large deformation contact problems, we consider k bodies B(i) ⊂ R
3, i ∈ [1, ..., k]. In Fig. 1 both the reference

and the current configuration are displayed, where we limit ourself to a two body contact problem without restricting the

generality. The surfaces of both bodies are subdivided into the Dirichlet boundary Γu, the Neumann boundary Γσ and the

contact surface Γc. We assume that the boundaries of each body satisfy the conditions:

∂B(i) = Γ(i)
σ ∪ Γ(i)

c ∪ Γ(i)
u and Γ(i)

σ ∩ Γ(i)
c = Γ(i)

σ ∩ Γ(i)
u = Γ(i)

c ∩ Γ(i)
u = ∅

For the virtual contact work of both bodies we obtain:

2
∑

i=1

G(i) (ϕ, δϕ) = 0 =

2
∑

i=1

(

G(i),dyn +G(i),int +G(i),ext +G(i),c
)

(1)

The first term in equation (1) on the right hand side is related to the dynamic virtual work, the second and third term represent

the virtual work of the internal and external forces and the last term denotes the contact contribution to the virtual work.

2 Discretization in space and time

The bodies are discretized using displacement-based finite elements. In this connection we use isoparametric finite element

interpolations with shape functions for an eight-node tri-linear brick element. For the description of the virtual contact work
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Fig. 1 Configurations due to two body contact.
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Fig. 2 Five node NTS-element.

we use the well known NTS-method (see e.g. the textbooks Ref. [4, 5]). The discrete gap function gNs denotes the

closest point projection from the slave point x(1) to the corresponding master surface x(2)(ξ̄) =
∑4

K=1 N̂K(ξ̄)x
(2)
K . For
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210 Section 4: Structural mechanics

0 0.5 1 1.5 2 2.5 3
39

40

41

42

43

44

45

46

47

h
am

il
to

n
ia

n

time

0 0.5 1 1.5 2 2.5 3
−1

−0.5

0

0.5

1

0 0.5 1 1.5 2 2.5 3
−10

−8

−6

−4

−2

0

 

 
L

x

L
y

L
z

to
ta

l
li

n
ea

r
m

.
an

g
u
la

r
m

.

time

time

0 0.5 1 1.5 2 2.5 3
39

40

41

42

43

44

45

46

47

h
am

il
to

n
ia

n

time

0 0.5 1 1.5 2 2.5 3
−1

−0.5

0

0.5

1

0 0.5 1 1.5 2 2.5 3
−10

−8

−6

−4

−2

0

 

 
L

x

L
y

L
z

to
ta

l
li

n
ea

r
m

.
an

g
u
la

r
m

.

time

time

Fig. 3 Energy, total linear momentum and angular momentum due to midpoint rule (three figures on the left) and energy-momentum

scheme (three figures on the right), respectively.

the frictionless case we need to fulfill the Kuhn Tucker complementary conditions for the normal direction. To enforce the

Kuhn-Tucker conditions, there exist different methods. We focus here on the Lagrange multiplier method where we use an

active-set strategy in order to incorporate the inequalities due to the Kuhn-Tucker complementary conditions. To remedy the

drawback of standard integrators, which fail to conserve the energy of a conservative system and consequently get unstable,

we combine a mixed method with the concept of a discrete gradient applied to the aforementioned NTS-method. To facilitate

the design of such energy-momentum schemes we introduce a mixed formulation and apply the concept of a discrete gradient.

Finally we obtain the completely discrete differential-algebraic equations (DAE):

xn+1 − xn − hvn+ 1

2

= 0

M (vn+1 − vn) + h∇
x
V (xn,xn+1)

+h

nc
∑

s=1

(

D1 π(xs,n+ 1

2

,ds,n+ 1

2

, fs,n+ 1

2

)
)T

∇
π
g̃s(πn,πn+1) · λs,n+1 = 0

nc
∑

s=1

(

D2 π(xs,n+ 1

2

,ds,n+ 1

2

, fs,n+ 1

2

)
)T

∇
π
g̃s(πn,πn+1) · λs,n+1 = 0

nc
∑

s=1

(

D3 π(xs,n+ 1

2

,ds,n+ 1

2

, fs,n+ 1

2

)
)T

∇
π
g̃s(πn,πn+1) · λs,n+1 = 0







g̃1(π(x1,n+1,d1,n+1, f1,n+1))
...

g̃nc

(π(xnc,n+
1

2

,dnc,n+
1

2

, fnc,n+
1

2

))






= 0

where s = 1, ..., nc denotes the sth contact element (see Fig. 2). Here a discrete gradient applied to the internal energy is used

(for further informations see Ref. [2]). In addition, a discrete gradient applied on the contact constraints is used (see Ref. [3]).

The advantage of this energy-momentum scheme is that besides the algorithmic consistency of the angular-momentum the

total energy of the system is conserved, leading to a remarkably stable time integration scheme.

3 Numerical example

We compare the midpoint rule with the proposed energy-momentum scheme with a time step size of h = 0.1. No external

forces and torques are acting on the bodies, so we are dealing with a conservative system, which means that the basic properties

of the bodies are conserved. But as illustrated in Fig. 3, it becomes obvious that the energy-momentum scheme conserves all

quantities whereas the midpoint rule fails to conserve the total energy of the system.
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