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Introduction

Fiber reinforced materials are subjected to various physical mechanisms on

different scales, depending on the size, orientation and distribution within a

suitable matrix material. Applications contain, e.g. steel reinforced ultra-high

performance concrete or fiber reinforced polymers. Besides such technical

materials, many biological tissues are reinforced by certain types of fibers. A

model containing fibers fully resolved as a discretized continua, subsequently

referred to as Cauchy continuum approach, is far out of the range of today’s

computational capabilities. Therefore, we develop a model containing the

fibers as continuum degenerated 1D beams within the matrix material in the

sense of an overlapping domain decomposition method.

Solid mechanics

The matrix material is described by the 3D non-linear continuum mechanics.

Here, Ω0 is the reference configuration and Ω the current configuration with

boundaries ∂Ω0 and ∂Ω, respectively. The derivative of the mapping ϕϕϕ yields

the deformation gradient FFF = ∇ϕϕϕ. The strain energy function is given by

Ψ := Ψ(FFF , cofFFF , detFFF ). The virtual work of the matrix material is:

δΠint + δΠext =

∫

Ω0

PPP : ∇δϕϕϕ dV −

∫

Ω0

BBBext · δϕϕϕ dV −

∫

Γσ

TTT ext · δϕϕϕ dA .

Continuum degenerated beam formulation

For the fiber material we degenerate the general continuum mechanical frame-

work as introduced above to a beam formulation. As we intend to embed fibers

with a length-to-diameter ratio of 20 as standard for e.g. fiber reinforced poly-

mers, it is reasonable that we restrict the kinematics of the 3D continuum along

the fiber direction to a beam-like kinematic. In particular, we use the theory of

geometrically exact beams, also known as Cosserat beams.
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The reference and current configuration are Ω̃0 and Ω̃, respectively. The mo-

tion of the beam is given by x̃xx(θα, s) = ϕ̃ϕϕ(s) + θαdddα(s) and the deformation

gradient reads F̃FF = ∇x̃xx. The strain energy function is given byΨ := Ψ(ΓΓΓ,KKK)

with the axial shear ΓΓΓ and the torsional-bending strain KKK . The virtual work of

the fiber material is:

δΠ̃int =

∫

C0

(

R̃RRÑNN
)

· δϕ̃ϕϕ′ −
(

ϕ̃ϕϕ′ × R̃RRÑNN
)

· δφφφ +
(

R̃RRM̃MM
)

· δφφφ′ ds,

δΠ̃ext = −

∫

C0

(

¯̃nnn · δϕ̃ϕϕ + ¯̃mmm · δφφφ
)

ds− [[nnne
ext · δϕ̃ϕϕ +mmme

ext · δφφφ ]]|
L
0 .

Multidimensional coupling model

Starting from a surface-to-volume coupling formulation for the matrix/beam

system, we derive a reduced surrogate model, where the new coupling con-

straints defined on the beam centerline involve the deformation gradient and

transfer both the linear forces and moments of the beam to the matrix. The

Lagrange multiplier µµµ, physically interpreted as the interface load, is defined

on the beam mantle µµµ(θ, s) = µ̄µµ(s) +ΣΣΣ(s)NNN (θ) with the mean

to the resulting force in the cross-section and, therefore, couples position

of the beam center-line to the matrix, ΣΣΣNNN contains the coupled stresses,

shears and hydrostatic pressure, and is thus responsible for transition of

the beam bending and torsion to the matrix. The virtual work of the

coupling constraints is:

δΠC =

∫

C0

[

δµ̄µµ · (ϕϕϕc − ϕ̃ϕϕ) + µ̄µµ · (δϕϕϕ− δϕ̃ϕϕ)
]

|C| ds

+

∫

C0

[

ΣΣΣ :
(

δFFF c − [δφφφ]× R̃RR
)

+ δΣΣΣ :
(

FFF c − R̃RR
)

]

|A| ds,

δΠA = [[ δµ̄µµe · (ϕϕϕe − ϕ̃ϕϕ) |Ae| + µ̄µµe · (δϕϕϕe − δϕ̃ϕϕ) |Ae| ]]|
L
0 ,

with circular meansϕϕϕc, FFF c and endface means µ̄µµe, µ̄µµe.

Beam/matrix system

Finally, we add all virtual works for the coupled matrix/beam system:

δΠtotal(ϕϕϕ, ϕ̃ϕϕ, R̃RR, n,m, µ̄µµ, µ̄µµe, µ̃µµτ , µ̃µµn) = 0 ,

where a Hu-Washizu type method yields n and m. This system is large, as we

have to deal with the degrees of freedom of the matrix material (3 per node in

the 3D continuum), and the 21 unknowns including 9 Lagrange multipliers per

node along the beam center line. Thus, we aim at a two step static conden-

sation procedure: first, we condense the beam equations and eliminate the

corresponding Lagrange multipliers in the continuous system. The remain-

ing equations for the constraints and the constitutive laws for the beam are

condensed in the discrete setting, such that finally only the matrix degrees of

freedom remain and the beam is fully condensed and yields a second gradient

model.

Torsion test

Matrix - Mooney-Rivlin material, beam - Saint-Venant-Kirchhoff material

Geometrical data via second moment of inertia of the 1D Beam is visible

External moment on beam applied

Figure: Torsion Test: Von Mises stress distribution.
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