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Introduction

Classical time stepping schemes for dynamic simulations are highly inefficient

on modern cluster architectures and thus, waste of energy. Here, we introduce

a novel space-time formulations, able to calculate large deformations and dis-

placements with high efficiency using structured and unstructured meshes.

Therefore, we introduce tesseract elements for 4-dimensional calculations,

removing one of the major bottlenecks in parallel computations. Moreover,

stability of time-stepping schemes depend on the accumulation of local ap-

proximation errors in each time-step, in contrast to space-time formulation,

characterized by enhanced stability and robustness.

General formulation

Starting point is always Hamilton’s law of varying action

δL = 0,

where L the Lagrangian defined as action integral of the kinetic minus the

strain energy. This general formula includes in general all kind of multibody

systems, i.e. rigid bodies, beams, shells and continua. Integration by parts in

space and time provide all necessary information on the boundaries, including

initial and end points in temporal direction. Assuming that the kinetic energy

T (vvv) is convex and differentiable, we can introduce the conjugate function

T ∗(πππ), where πππ refers to the linear momentum. The Legendre transformed

Lagrangian reads now

L∗(ϕϕϕ,πππ) =

∫

B0

πππ · ∇t(ϕϕϕ)−
1

2
ρ−1
0 ‖πππ‖2 − Ψ(FFF ) dW − Aext,

where ϕϕϕ denotes the deformation map, ρ0 the material density, Ψ(FFF ) the

strain energy function in terms of the deformation gradient FFF and Aext all ex-

ternal contributions.

Stabilization and discretization

Continuous hyperbolic systems have a unique solution ϕϕϕ ∈ H1,1
0;0,(B0), if

H1,1
0;0, = L2([0, T ];H1

0(Ω0)) ∩H1
0,([0, T ];L

2(Ω0)),

where H1
0,([0, T ];L

2(Ω0)) refers to zero initial conditions, and if the space of

admissible or trial functions δu ∈ H1,1
0;,0(B0) with

H1,1
0;,0 = L2([0, T ];H1

0(Ω0)) ∩H1
,0([0, T ];L

2(Ω0)),

where H1
,0([0, T ];L

2(Ω0)) denotes zero terminal conditions. This has already

been shown in the fundamental work of Ladyzhenskaya [2]. To fulfill this con-

dition, a stabilization using a time upwind formulation in the discrete setting

ϕϕϕh
st(XXX, t) =

n(n+1)
∑

s=1

ϕst
sRRR

s
st(XXX, t), πππh

st(XXX, t) =

n(n+1)
∑

s=1

πst
sRRR

s
st(XXX, t),

is required, using variations δϕϕϕh + θh∇t(δϕϕϕ
h) and δπππh + θh∇t(δπππ

h), where

θ is a positive constant. Introducing the functionals Aij
h , i, j = 1, 2, given by

A11
h (ϕϕϕ

h, δϕϕϕh) =

∫

B0

PPP h : ∇XXX(δϕϕϕ
h + θh∇t(δϕϕϕ

h)) dW,

A12
h (πππ

h, δϕϕϕh) =

∫

B0

∇t(πππ
h) · (δϕϕϕh + θh∇t(δϕϕϕ

h)) dW,

A21
h (ϕϕϕ

h, δπππh) =

∫

B0

∇t(ϕϕϕ
h) · (δπππh + θh∇t(δπππ

h)) dW,

A22
h (πππ

h, δπππh) = −

∫

B0

ρ−1
0 πππh · (δπππh + θh∇t(δπππ

h)) dW

and the linear form lh as discrete external contributions, the discrete form of

the space-time problem reads

Ah(ϕϕϕ
h,πππh, δϕϕϕh, δπππh) =

(

A11
h (ϕϕϕ

h, δϕϕϕh) + A12
h (πππ

h, δϕϕϕh)

A21
h (ϕϕϕ

h, δπππh) + A22
h (πππ

h, δπππh)

)

=

(

lh(δuuu
h)

0

)

.

Modified Newton iteration

Introducing the residual vector RRR(zzz), where zzz = (ϕ̃ϕϕT, π̃ππT)T ∈ R
nϕϕϕ+nπππ con-

tains the degrees of freedom, we finally obtain the corresponding algebraic

problem which reads as follows: find zzz ∈ R
nϕϕϕ+nπππ such that

RRR(zzz) = 000.

Among the wide range of algorithms for the solution of root-finding problems,

Newton’s method remains unquestionable one of the most powerful tools.

However, it requires an initial guess zzz0 sufficiently close to the searched root

to ensure convergence. Especially for space-time systems, this information is

in general not available in advance. To overcome this problem, modified (or

damped) Newton iterations of the form

zzzk+1 = zzzk + λkdddk, k = 0, 1, . . . ,

are applied, where λk is a suitable step-size and dddk = −(∂zzzRRR(zzzk))
−1RRR(zzzk)

the Newton direction.

Tesseract elements: Torus example

In order to exactly represent the torus, we use for the parametrization and the

approximation NURBS shape-functions of order qqq = (2, 1, 2, 2) such that it

is resolved by 34 elements along the torus azimuth, 18 elements along the

perimeter of the tube, 2 elements along the thickness direction and 10 ele-

ments along the time direction, obtaining a resolution of the space-time cylin-

der from a total of 12240 tesseracts.

Figure: Three dimensional configuration (left) and spatial computational mesh (right).

Figure: Von Mises stress distribution, configurations at time t = 0, 1/3, 2/3, 1 (left to right).

The modified Newton algorithm used to solve the non-linear system, achieved

within 13 iteration steps the termination criterion ‖RRR(zzzk)‖ ≤ 10−10.
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