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Abstract
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1 | INTRODUCTION

Complex materials with dedicated morphological features like fibers or additive manufactured microstructures are nowa-
days used throughout the industry. To obtain a suitable model, continuum mechanical or thermomechanical formulations
are often used. Using infinitesimal defined strain measures, we can always resolve finite inhomogenities, however, the
computational costs of such a large scale approximative solution may economically not affordable or in certain cases
technically not possible. Additionally, a material may appear perfectly homogeneous on the considered scale of approx-
imations, whereas the microstructural information has been lost and often we are only interested in the macroscale
solution. Therefore, two different approaches are common to include this information. First, the microstructure can be
taken into account in a phenomenological way. The resulting constitutive relations can also incorporate size effects,
leading to generalized theories for materials, see References 1-3 for a general overview of gradient extended continua.
In contrast, microstructural information about morphology and material properties can be accounted for in a more
explicit manner by means of homogenization methods, assuming that the scales of the finite approximation and the
morphological features on the microscale are clearly separated.
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In the context of first-order homogenization schemes, we refer to References 4-8 for fundamental analytical
approaches and to References 9-12 for seminal contributions to two-scale finite-element (FE) simulations. For compu-
tational multiscale techniques using the well-known FE?-methods we refer to the review article in Reference 13 and to
Reference 14 for a general overview of computational multiscale techniques. The application to solids at finite strains
including physically coupled problems in thermo-elasticity are presented in References 15 and 16 and for electro-elasticity
in Reference 17. The general extension on computational homogenization of strain gradient materials using Isogeomet-
ric Analysis, labeled IGA?-method, is presented in our preliminary work in Reference 18. We remark, that there exists a
wide range of different homogenization methods like the “variational multiscale method”, see References 19 and 20, and
derivatives thereof like the “variational consistent homogenization” method as proposed in Reference 21. In this work,
we refer to the terminus “variational” in the sense of a Galerkin type method, applied on a higher dimensional space for
the microscale fluctuations.

Traditional methods like FE? and IGA? consider a representative volume element (RVE) at every Gauss point. Since
the primary idea was to utilize the RVE and the corresponding set of partial differential equations representing the static
equilibrium of some kind of a microstructure in exchange of a constitutive law. However, we already know from concepts
like the Hu-Washizu functional (see Zienkiewicz et al.?>23) that the relation between the strain energy function and the
stress tensor can be considered as an independent equation in a weak form to be solved using again a finite element
framework. To this end, the stress tensor is not evaluated at every Gauss point but rather interpolated using the applied
shape functions for the solution of the weak form, see Bonet et al.?* for details on the implementation of Hu-Washizu and
Hellinger-Reissner type formulations.

In this work, we propose a dimensional expansion of the macroscopic system for the calculations within the RVE.
The arising microscopical fluctuations are interpolated in the expanded, higher-dimensional framework using continu-
ous shape functions on the microscale and discontinuous shape functions on the macroscale to allow again for a static
condensation procedure, written here in the form of a null-space reduction scheme. With this monolithic framework,
we can reconstruct traditional methods like FE? and IGA? by using Delta Dirac on the Gauss points and the application
of a staggered scheme between the dimensions. However, based on the variational formulation we can now make use of
sophisticated methods for the solution of the arising large scale algebraic system of equations. As already shown in Lange
et al.,>> monolithic solution techniques using static condensation procedures are by far superior to the original staggered
scheme. Both, suitable choices of the macroscale shape functions and the application of sophisticated solution techniques
lead to a dramatic reduction of the computational cost preserving the accuracy of the solution. Additionally, this most
general approach allows for the application of highly efficient methods like recursive trust-region multigrid formulations,
see, among others, Gross and Krause.?®

The manuscript is organized as follows. First, the governing equations are presented in Section 2 including the vari-
ational form of the multiscale problem. The discretization and the arising algebraic system of the multiscale boundary
value problem are shown in Section 3, followed by the different solution procedures in Section 4. Representative examples
are given in Section 5 and conclusions are drawn in Section 6.

2 | GOVERNING EQUATIONS

We start with a short summary of the governing equations for the macro- and afterwards for the microscale. At the end
of this section, we will introduce a common variational formulation for both scales. With regard to notation, Einstein’s
summation convention is used in the following for clearer presentation.

2.1 | Macro-continuum

Consider a Lipschitz bounded continuum body in its reference configuration B, C R"” with n € {1, 2, 3}, undergoing a
motion characterized by a deformation mapping ¢ : By, - R", X — x = @(X), which maps material points X € By of the
reference configuration /3y onto points x € B3, of the current configuration 3, = @(/8)). The material deformation gradient
is defined by F : By —» R™" F = Vx(x), which maps infinitesimal vectors dX at the material point X to the infinitesimal
vector dx at x in the deformed configuration. An infinitesimal area element, oriented at the material point X with the
outward, reference normal vector N can be defined by two linearly independent vectors via dX x dX® = NdA. The
well-known Nanson’s formula reads nda = cof(F)NdA, where cof(F) = H is the co-factor, given by
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H::1<FXF>. )
2 X

Here, we apply the cross product of two second-order tensors A and B with [A zB]u = ejremn[Aljm[Blry, using the

third-order Levi-Civita permutation symbol €. The infinitesimal volume element dV in the material configuration is
related to the deformed counterpart via the JacobianJ := det[F] > 0, where the determinant is defined by

det(F) := %F : (F z F) 2)

A graphical representation of the different kinematical values is given in Figure 1, see Reference 27 for further details.
Introducing the space of virtual or admissible test functions for the deformation

VO® = (5 € H'(By) | 6¢ =0 0on T}, )

where I'Y C 09, refers to the Dirichlet boundary, the internal virtual work reads
SIInte = / P : Vx(¢) dV, 4)
BO

where P denotes the first Piola-Kirchhoff stress tensor. Applying integration by parts and equating the resulting terms
with external contributions yields

Vx-P'+B=0,
PN-T=0, (5)
Q@ — 6 = 0’
A I3, X3
J
dv — dv ="Jdia
7 . 7
NdATg = @ nda=H dA
By B B

<G dx=F dX

oB

z1, X1

FIGURE 1 Graphical representation kinematical values ¢, F, H and J, taken from Reference 27.
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where B is a body load, T the Neumann surface load on I' C 053y and @ the predefined deformation on the Dirichlet
boundary I'’. Note that '’ N I'° =  and I uT =9B,.

Without loss of generality of the chosen approach, we restrict ourselves here to elastic materials, assuming that ductile
and general inelastic models can be applied as well. To describe elastic materials in the large strain regime, the concept
of polyconvexity as a mathematically well-accepted requirement must be satisfied by the strain energy density function,
see Reference 24 for details. In particular, we require the strain energy density function ¥ to be a convex multi-valued
and inhomogeneous function given by

¥ :=¥(F) = ¥(F,H,J,X), (6)

where ¥ is convex with respect to the 2n? + 1 values of F, H and J. For isotropic materials such as a compressible
Moonley-Rivlin material we can assume the constitutive relation to take the form

Yyr 1= aX)F : F+ B(X)H : H+f(J,X), (7)

where a and g are positive material parameters locally defined at X and f is a convex function of J and X. The first
Piola—Kirchhoff stress tensor follows immediately from

0¥ ¥ 0¥ X o
p=2=-2",22 " 2 8
oF 0F+0Hx Y ®)

With regard to (5), we obtain for the virtual work of the internal and external contributions

G® ;:/P:VX(5¢)dV—/5(p-BdV—/5q)-TdA, 9

By By Ind

and require G? = 0 for all 6¢ € V°¢.

2.2 | Micro-continuum

To account for the influence of the underlying microstructure on the material behavior, we introduce a representative
elementary volume (RVE) ©, C R", link it to each point X € 3, via a first-order Taylor approximation*

PX.X) = FX)X+ WX, X), Xe By, XeQ, (10)

and interpret ¢(X,-) : Qy — R" as a deformation map on €. The associated quantities like the corresponding defor-
mation gradient are derived analogous to the previous section. To distinguish between macro- and micro-entities, all
quantities of the micro-continuum will be marked with a superimposed tilde.

Per definition, the micro deformation consists of a homogeneous part F(X)X and a nonhomogeneous field
W ByxQy— R" referred to as microscopic fluctuations. We point out, that this is the most important
definition, as the fluctuations W are defined in the higher dimensional space By X €y. This has dramatic conse-
quences for the approximation, as we will show subsequently for the spatial discretization and in the example
section.

According to Eq. (10), we obtain

F=Vy(@ =FX +F, F :=VxW), an
so that for homogeneous materials with zero fluctuations, F(X) is recovered for the micro deformation gradient.

The material of Q is described by a polyconvex strain energy density function ¥ and we assume that the macroscopic
and microscopic gradients, F and F, as well as the elastic potentials, ¥ and P, are related via the volume averages
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F—L/Fdf/ and T—L/\i‘df/ 12)
|€20] / [0l / ’

where || is the volume of €. In addition, insertion of (11) into (12); yields the constraint

1

F=F+ —
1] Jq,

Vi) dV < / V() dV =0 (13)

Q)

for the superimposed deformation field w. Applying Gauss divergence theorem, the constraint (13) can be alternatively
expressed as

/ﬂJ@NdA:o, 14)

showing that (13) is satisfied by the alternative conditions
(HWw=0 in Q, (i)w=0 on 9Q, (iii) wr =w~  on 0Qy, (15)

cf. Miehe .!° The trivial condition (i) enforces a homogeneous deformation of the entire domain and represents the basic
assumption of a Voight-type homogenization (see Taylor?®). Condition (ii) demands homogeneous deformations on the
boundary and (iii) addresses periodic boundary conditions. Assuming a static equilibrium state of the micro-continuum
governed by the field equation

Vg-P'=0, in Qo (16)
with Equation (12), we obtain a relationship between macro- and micro-stress as follows

o 1 [oP o 1 [oPoF - 1[5 o
oF  |Q|/) oF ||/ oF oF €20 / an

Q) Q

where we have utilized in the last equation that according to (11), dF/0F is the identity.

Remark 1. Each of the three conditions (15), together with (16), ensures that the macro-homogeneity
condition

1 P:S6FdV =P : 6F, (18)
|€20] /

0

also known as Hill-Mandel criterion, is fulfilled. The virtual work applied in a specific point X € B, to
the system thus corresponds to the volumetric average of the virtual work in Q. In a different interpreta-
tion, the Hill-Mandel criterion along with the kinematic constraint in (13) justifies the use of the volume
averages of the strain energy function (12), and subsequently the volume averages of the micro stresses in
(17). Hence, using the virtual work instead of the strain energy function in (12), as basic assumption is
more general, as it allows for nonelastic materials as well, see Miehe et al.! for the application on crystal
plasticity.

2.3 | Variational formulation
Taking into account relations (12), and (11) between the elastic potentials, ¥ and P, and the gradients, F, F, and F , the

macro-deformation and micro-fluctuation are determined as minimizer of the system’s total energy, that is, ¢ and W have
to fulfil the condition
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(p.W) = arginf {IT™(u,v)—™W)}, (19)

(WV)EVP XYW

where V® and V" are suitable spaces of admissible solutions. The internal and external energy contributions are
given by

1" (u, v) = / ﬁ / PIE(Fu), Fv])] dV dV, TI%®w) = / B-udv+ / T u dA. (20)

B, Q B, r°

It should be noted that according to the assumptions in the previous section, no external contributions from the
micro-continuum need to be considered. Furthermore, it is assumed here that both the body load and the Neumann sur-
face load are independent of the deformation for the ease of presentation. Introducing the spaces of virtual deformations
and fluctuations

VO® = (5¢p € H'(By) | ¢ =00on T},

i (21
VW = (5w € Ly(Bo; H'(Q)) | W = 0 on 6Q},
standard variational calculus finally yields the variational problem:
Find (@, W) € V? X V™, so that for all (5¢, 6W) € VP x VoW
1 = . 1 - i~
/—/P 2 Vx(6p) dVdV+/—/P: Vi (éw) dV dV =
A 1€ / A 1€} /
0 0 0 0 (22)
/B-acp dV+/T-5¢ dA, V (5@,5W) € VP x PO,
By e
or equivalently
L [H i -
,{m_ag{PdV : Vx(69) deléB-b‘(p dV+Ff5T-6(p dA, Vép e Ve, (23)
1L Ip- SN AT ~ W
Iém—ols{P.Vx(&w)dVdV:O v 6w € VoW, (24)

Note, that the last equation (24) automatically fulfils the required field equation in (16) with regard to the boundary
conditions (15), that is, we obtain a static equilibrium of the micro-continuum.

3 | DISCRETE MULTISCALE BOUNDARY VALUE PROBLEM

To achieve a numerical solution for the problem, we apply a finite element framework to solve for ¢ and w. In partic-
ular, we consider a standard displacement-based finite element approach, where we first introduce finite dimensional
approximations of @ and ¢, so that

P"X) = D) N*(X)g, and s9"X)= ) N*(X)éq,, with Xe B}, (25)

A€w Acw

where Bg represents a (possibly approximate) parameterization of 3y according to the isoparametric concept. Here, w =
{1, ..., Mnode}, such that g, € R" denotes the position vector of node A and N : Bg — R are global shape functions.
Inserting the discrete approximation in (9) gives

5, - / P'X,X)Vx(N*X))dV = 6q,, - F**4, (26)

h
BO
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WILEY—L721%
which has to hold for every 6q,,A =1, ... , Bnoge. Here, F**4 5 the nodal force vector of the external contributions, given
by

FA = / NABdV + / N2 TdA. (27)
By reh

Applying a suitable quadrature formula yields for every 6q ,

quad’

ink |Phxs, OVaNAGK)| = Fo (28)
k=1

where FZ’;Z‘; represents the quadrature of the external contributions and 7 the integration weights.

To obtain Ph(Xfp,X), a suitable discretization of the microscopic fluctuations w, defined on Bg X Qp, is required.
Therefore, we introduce the tensor product of macro- and microscale shape functions as follows

WX =Y Y REOR @, = Y R XXy and

be®, cE®D, Bea (29)
- e = —B __ . .
XX = ) Y RXOR s, = ) R (X.X)ows, X € Bh, XeQf,
bed, cE®, Bed
where the sets @; = {1, ..., nin ol E= 1.2, summarize the tensor indices describing the position in the tensor product

structure and the natural scheme B(b,c) = (c — 1)n11nicro + b is used for the global numbering & = {1, ... , Bmicro }, With

Amicro = nrlmcmnfn oro- A example of such a construction in the case of one-dimensional macro- and microscales is shown

in Figure 2.

1 o 5 1 o - p
R2 R R2
0.5
0.5 i ®
0
0
B() / Q0

0.5

BO Q0

FIGURE 2 Example of a tensor product basis on a two-dimensional product space B, X €,. The upper images show the basis
functions on the macro and micro level, respectively, and the lower image shows the resulting basis on 5B, X €,. A polynomial degree of 1 was
selected at the macro level and a polynomial degree of 2 at the micro level.

85U8017 SUOWILWOD 8A1Ea1D 3|qedljdde au Aq peusenob afe sajoie VO ‘8sn JO Se|n Joy AkeiqiTauljuo A8|1/W UO (SUONIPUOD-pUe-SLLBI/W0D S| IM Alelq 1 pul|uoy//:Sdny) SUOIIPUOD pue sWie | 8y 8eS *[7202/20/T] Uo Ariqiaulluo A8|IM ‘29G/ BWU/Z00T OT/I0p/Wod A8 |Im Arid 1 jeut|uo//:sdny wou) pepeojumod ‘0 '2020260T



8of18 Wl LEY HESCH ET AL.

1
As usual in multiscale techniques, we apply for the macroscale basis {Rb}Z:‘fm a Delta Dirac, that can be formally
constructed as the limit of a sequence of smooth functions with compact support converging to a distribution and satisfying
the so-called shifting property, that is,

/f(X)cS(X - X)dV = f(X), (30)
G

for every function f continuous at X; € G. In particular, computational multiscale methods like FE? evaluate the micro-
scopic fluctuations at the integration points Xb which is achieved by formally setting R?(X) = 6(X — Xfp), b=1, ... np

(i.e., nmlcro = njp), such that we obtain virtual ﬂuctuatlons of the form
Nip
W XX = Y Y 6K~ X R X)5w (31)
b=1ced,
Hence, (24) reads now
Ny
> by | P X)VRR'K) AV =0, Véib, € R", (32)
b=1 I
0

where we multiplied the equation by the factor |£2£1 |. Note, that the last statement explicitly reproduces a static equilibrium
with regard to the boundary conditions presented in (15) on the microscale at each macroscale integration point.

According to the choice of the virtual fluctuations, we use Kronecker delta functions, the discrete analogs of the
Delta-Dirac pulses, to interpolate the solutions, that is, we introduce interpolations of the form

_ nip oo 1, fX — 0’
WX =YY 65X - X R Xy, 5(X) 1= ! (33)
b=1cE€d, P 0, otherwise,

see Figure 3 for illustration.
Insertion in (28) and (32) along with a suitable quadrature on the microscale yields

micro
l’l

Bl e P03, ) () <. o

b=1 =1

By X2 D

FIGURE 3 Example of a tensor product basis on a two-dimensional product space B, x Qq using Kronecker delta functions with two
integration points on the macroscale and piecewise polynomials of degree 2 on the microscale. The six global functions are numbered
according to the global numbering scheme introduced in Equation (29).
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nmlcru
ip

Zﬁl[i’h<Fh< ip),ﬁ”h( ip,Xﬁp))vXRC(Xfp)] =0, (b.c) €@y X @, (35)

=1

where 7j; are the quadrature weights at the ni'gi"" integration point to evaluate the integral on Qg.

Remark 2. Equations (34) and (35) represent the classical FE?> method, evaluated in a staggered solution
process to be discussed in the next section.

Other choices to approximate w and 6w within 53 using suitable interpolation functions are certainly possible.
We refer to Reference 24 among others, where discontinuous interpolation functions are introduced in the context of
Hu-Washizu and Hellinger-Reissner formulations. As the microscopic fluctuations are applied to calculate the stresses,
we obtain similar continuity requirements for both. The next step after the Dirac approach described above may be
the use of piecewise constant approximation functions on the macroscale. In particular, the construction of suitable
bases no longer has to be based on the quadrature formula used and the underlying system of equations generally has
the form

/ Lh / PPX), F"(X, X)) dV VxNAX) dV = F*4 A € o,
1/ (36)

1 = srhoo oo SBo o o _ .
/ _I o / PF'X), F'X,X)VR X, X)dVdV =0, Bea. @)
Bh h

Using linear or even higher-order shape functions for {R? }lelc’“ can be done in a straight-forward manner; however, we
have to ensure that the shape functions are discontinuous at the element boundaries to allow for a block diagonal sub-
matrix of the Hessian to be used within the following null-space reduction scheme. Moreover, we have to ensure that we
do not obtain stability issues, as a higher-order interpolation of the micro-fluctuations (and thus, of the stresses to be cal-
culated) may conflict with a lower-order interpolation of the macroscale deformation map. Both equations (36) and (37)
can be rewritten as 6q , - Ri.cro = 0 and 6Wwg - RE. =0, where R, and RZ. _are the corresponding residual vector,

micro micro
to be used within a Newton-Raphson iteration as shown in the next section.

4 | SOLUTION OF THE MULTISCALE PROBLEM

The nonlinear multiscale framework at hand is solved by introducing a Newton-Raphson iteration, noting that further
enhancement like line-search or trust-region methods can be applied as well, see Reference 30 for details. In particular,
we solve

KAC DAD ch ~ Rﬁlacro
(694, 6Wg] - g5C e - = —[6q,, 6Wg] - R? . (38)

Awp micro

Afterwards, both values are updated via q, < q, + Aq, and W4 < W4 + AW, and the iteration restarts until

IIRE acros RrTm Cro]T || < eng With a predefined stop criterion eng. The tangent matrix is composed of four terms, given by

2
KA = /V N4y, L ‘”’dvv NEdv 39
(N?) - ] ORoF x(N®) (39)
and
DAP /V NA /—V R)dvdv. 40
x(N?) - |Qh JFoF %R ) (40)
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As the tangent matrix is the Hessian resulting from the condition in (19), the matrix is symmetric and E = D. Eventually,
the last term is given by

1 N 4 —D_ .
LBD=/—/V~R . —— V(R )dVdv 41
| %R ) JFoF xR ) (41)
By Qg

and the corresponding global algebraic system reads

K D Aq - _ Rmacro , (42)
E L Aw Rmicro
where Ag, AW summarize the unknown node data Aq,, Awg and the individual blocks are composed according to
Equations (38)-(41). Note, that the matrix in (42) is in general smaller than in (38), as the Dirichlet boundary conditions
on both scales are now incorporated by removing the corresponding rows and columns.
4.1 | Classical solution strategy
In classical FE? methods as presented in, for example, Reference 17 for nonlinear electromechanical multiscale problems,

a staggered scheme is applied. First, (42) is solved using fixed ¢*, until ||Rpicro|| < eﬁlif“’. Then, the second line of (42)
reads

EAq+ LAW = 0. (43)
Since the matrix L contains all tangent matrices of all RVEs, which are strictly separated, the matrix is block-wise diagonal.

As we have to solve the linear system in the second line of (42) (either using direct or iterative solver), we can write for
this step in the solution procedure$

AW = —L'EAgq, (44)

and insert this in the first line of (42), such that

[K — DL™"E| Aq = —Rpngero, (45)

update g with Aq, update W using (44) and restart the staggered scheme again until ||Rpacro|| < €macro-

4.2 | Generalization of the solution strategy

The solution strategy introduced in the previous section can be rewritten as premultiplication with the rectangular
null-space matrix

P= [1, —DL—l]T, (46)

where I is the unity matrix of dimension #,04e X Mnode- NOW, instead of applying a staggered scheme, we multiply the
linear system composed of both scales using the null-space matrix

pr. K D Aq —_pT. Rmacro i (47)
E L||Aw Ruicro

which yields

|[K = DL™'E|Aq = = [Rmacro — DL™" Rujcro) - (48)
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Finally, we need to calculate Aw via

AW = —L™" [Rnicro + EAq|, (49)

and update both values q and w within the Newton-Raphson iteration.

Remark 3. For the nonlinear case, ||Ruicro|| iS usually unequal zero due to numerical issues, hence (43) is
never valid and may affect the quadratic convergence of the Newton-Raphson iteration. Thus, the proposed
approach is in general advantageous as we can apply the staggered scheme to (48). In comparison to classical
(staggered) schemes, the term —DL 'Ryicro On the right-hand side of (48) is introduced, noting again, that
Ricro 1S never exact zero.

5 | NUMERICAL EXAMPLES

In this section, we demonstrate the advantages of the proposed formulation. In particular, we start with a convergence
study using an analytical solution of a 1 + 1 dimensional problem, followed by a typical problem emanating from
nonlinear elasticity.

5.1 | Convergence studies

In the following, some numerical convergence analyses are presented using a one-dimensional benchmark problem on
the macroscale and a one-dimensional microscale. The macro- and micro-continuum are given by B, = (0,1000) and
Qo = (0, 1), respectively, where the lengths here and in the remainder of this example are given in millimeters unless
stated otherwise. The material is defined by the strain energy density

- o 5 B -1

YE.X) = AK)E—1), X)) =20 [cos(z?ﬂX - %)] , (50)
where A is given in the unit Jmm~! and represents a location-dependent material property, cf. Figure 4. It should be noted
that W is selected so that an analytical solution of the system can be specified. Due to the simple shape, however, residual
stresses occur, so the reference configuration is not stress-free. Assuming the body load and boundary conditions

B=1Jmm™, ¢@0)=0, ¢(1000)=

37,5751/3
SRR B 51
2 1)

for the macro-deformation and homogeneous Dirichlet conditions in accordance with Eq. (15); for the micro-fluctuation,
the solutions ¢® : By — Rand w* : By X Qy — R of the coupled boundary value problems (5), (16) are given by

e 3V3 _, 3003y/3 (52)
¢ ="Te0r Xt TRor

o 5 = 00| Lsin(ZE %7} x4 L

w(X,X)—F(X)l\/gsm(sX 3) X+2], (53)

where F* = dg®/dX, see Figure 4 for illustration.
Taking into account the given data, the two functions are characterized according to Equation(22) by the conditions

1000 1 1000
dp ow\ dégp . 1/ 5

AMEL LW 0P 4kdx == [ spdX. V6 v 54
// <dX+aX> ax 2/ °° ¢EV (54)
0 o0 0

1000 1

//A(d—(”+a—‘f’> W 4kdx =0, Vowe Y, (55)

X T ox) ox
0 0
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FIGURE 4 Upper left: material parameter A, upper right: macro-deformation ¢, lower left: micro-fluctuation w, lower right:
micro-deformation .

where the various carried out finite element analyses are based on. In the following, a total of six settings is considered,
each of which differs in the choice of approximation functions. In detail, bilinear (p = [1, 1]), biquadratic (p = [2, 2]) and
mixed approaches of the form p = [0, 1], p = [0, 2] are used for the fluctuation field, whereby in the last two cases W is
approximated by piecewise constant functions in X-direction. In addition, approaches of the form p = [§,1],and p = [4, 2]
are considered, that is, two classical approaches in which Dirac pulses are used in X-direction of W, compare Equations
(31) and (33). Regarding the macro deformation, shape-functions of the same order as in X-direction of W are used in each
case.
Figure 5 shows the results of a convergence study where the relative L, errors

o™ — 0%l 0" — 7|1, 5,xe
err, 1= — = 0 erry 1= - 2B Q) (56)
P a a
lo®|z,05,) (W7 ]| £, (3yx2)

corresponding to each setting are plotted as functions of the mesh size h which is defined as the maximal diame-
ter of the elements in the reference configuration. Moreover, we denote by || @ ||, the usual L, norm on a domain
B. For the calculations, resolutions of 2* elements are used for the macro-domain 5B, and corresponding resolutions
of 2% x 2% elements are used for the extended region By X Qp, where k =4, ... ,9. As can be seen in the left-hand
image of Figure 5, err, reduces according to an order greater than 2 in the case of linear elements regardless of which
approach is used for w in X-direction. The situation is different when using quadratic approaches. While with an
approximation of W with p = [2,2], [6,2] the error decreases with an order of 3.5, an order of 2 can be observed using
the piecewise constant/quadratic approach p = [0, 2]. Eventually, the behavior of the error erry is shown in Figure 5
on the right. There it can be seen that a convergence order of 1.6 is achieved with the bilinear approach, while an
order of 3 is achieved with both the biquadratic and the quadratic Dirac approach p = [§,2]. In addition, the mixed
approaches p = [0, 1], [0, 2] and the linear Dirac approach p = [6, 1] each achieve a convergence order of 1. We point
out, that the corresponding error curves overlap in the graphic so that only one curve can be recognized for these
three cases.
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=2l
1070} v o —o—p— 221
2 p=1[01]
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10-15 ] 108 ,’/ B =162
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FIGURE 5 Left: err, as a function of the mesh-size h. The two cases in which piecewise constant shape-functions where used in
X-direction of W are labeled witch “c”, and the cases in which Dirac pulses were used are labeled with “6” accordingly. Right: erry, as a function
of the mesh-size h. The error curves of p = [0, 1], [0,2] and p = [, 1] overlap so that only one curve for these three cases is recognizable.

5.2 | Cook’s membrane

Finally, we compare the two solution strategies presented in Section 4 on the basis of a two-dimensional Cook’s membrane.
The reference configuration of the macro-continuum is defined by the four points P; = (0,0)T, P, = (480,440)T, P; =
(480,600)T, P, = (0,440)T, where P; denotes the lower left, P, the lower right, P; the upper right and P, the upper left
corner of the membrane. Consequently, the computational macro-domain is given by

By = {X: (X1, X,) € R? | X; € (0,480), % X, <X, < % X +44o} (57)

while we use a square area of the form Qy = (-3,3)?> to represent the micro-scale. Here and in the following,
all length specifications referring to the macro-scale are given in meters and length specifications referring to the
micro-scale are given in millimeters. Regarding the boundary conditions, we assume that the left edge ['¥ = {X €
R?2 | X; =0, 0 < X, < 440} of the membrane is fixed, whereas the remaining boundary I'” = a8, \ I'? is exposed to the
surface load

(=5,10)T ifXer?,

0,0)T otherwise,

T: I°>R% TX) = { (58)

acting on the rightedge I'? := {X € R? | X; = 480, 440 < X, < 600} of By, see the left picture in Figure 6 for illustration.
Moreover, we assume a zero body load (B = 0) and the membrane to consist of two materials described by the strain
energy densities

VP =aF: F-2)+pF: F+T77-3)+ %(7 —1)* — 2(a; + 2 log(), (59)

i = 1,2, with the material parameters (a1, f1, k1) = (27,18,60) Imm~2 and (as, 2, k2) = (13.5, 6.5,30) Jmm~2, respec-
tively. The two materials are distributed within the RVE in such a way that a cross-shaped area of width 2 mm consists
of the second material, while the remaining area consists of the first material, see the right picture in Figure 6 for
illustration.

To approximate the micro-fluctuation, we apply a classical approach using Dirac pulses for the X-direction according
to Equations (31), (33) and interpolate both w in X-direction and ¢ with bilinear four-node elements. Thereby, the macro
continuum is resolved with 20 x 20, while the RVE is resolved with 30 x 30 elements, cf. Figure 6. Additionally, we pos-
tulate periodic conditions on 0€, via a nodal coupling and set W = 0 on B, x 69, where 6Q; consist of the four corners
P =(=3,-3)T, P, =(3,-3)T, P; = (3,3)T and P, = (-3, 3)" of the RVE, to restrict rigid body movements.T For the load
application, we use an incremental scheme with a total of n; € {2,12,22, 32,42} load steps so that in each case a reduced
load of the form T} := kT/n; is applied in the kth step. The degrees of freedom of the respecting results are subsequently
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FIGURE 6 Left: reference configuration and computational mesh of the macro-system. The red arrows indicate the impact of the
surface load defined in Equation (58). Right: reference configuration and computational mesh of an RVE. The green regions consist of the
material defined by ¥, and the blue one consist of the material defined by ‘¥,.
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FIGURE 7 Left: von Mises stress distribution at the actual configuration of Cook’s membrane. Right: von Mises stress distribution
actual configuration of an RVE located in the vicinity of the upper left corner P, of the membrane.

TABLE 1 Number of global Newton iterations for different numbers n; of total load steps.

n 2 12 22 32 42
Generalized 6 4 4 4 4
Classical / / 4 4 4

used as the starting value for the (k + 1)th load step to ensure the convergence of the Newton iteration. Corresponding
results are shown in Figure 7.

In the following, we consider two different settings, wherein the first one we employ the classical solution strategy
from Section 4.1. On the micro-level, we utilize the termination criterion e = 1073, and on the macro-level, we implement
the criterion émacro = 107°. In the second scenario, we opt for the generalized solution strategy outlined in Section 4.2
and set the termination criterion to epaero = 107°. A comparison of the number of Newton iterations required in the two
approaches as a function of the number of load steps is shown in Table 1. We remark that the number of iterations remains
the same from step to step so that the values represent the number of iterations in each load step. In addition, the cases
in which the Newton method was aborted unsuccessfully are indicated by a slash. Thereby, we define the procedure as
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TABLE 2 Convergence of the Newton method in different load steps for a load application with a total of 22 load steps. The residual
is specified in the unit Newton (N).

k Load-step 1

Generalized Classical
Macro RVE

0 1.54 - 10! 1.54 - 10! 2.07-10715

1 3.84 - 10 3.84 10! 7.00-107*
9.92-1077
1.20-10712
2.34-1075

2 1.92-1072 1.52-1072 2.06 - 1071
5.24.1072
7.57-1073
2.71-107*
3.97-1077
9.60- 10713
2251071

3 1.06 - 1077 7.61-1077 2.01-1071
4.92-1072
6.79 - 1073
2.14-107*
2.48-107°
3.70-10713
2.34-1071

4 4.61-10710 3.73-10710 2.01-107!
4.92-1072
6.79-1073
2.14-107*
2.49-1077
3.71-10713
2.40-1071

k Load-step 22

Generalized Classical
Macro RVE
0 1.54 - 10! 1.54 - 101 22910712
1 1.17 - 10 1.17 - 10 5.63-107*
6.11-1077
43810713
2.31-1071
2 8.97-1073 8.16-1073 5.19-107°
3.47 10712
243.1075
3 7.11-1077 5.24 -1077 2.66 - 1077
1.02-10713
2.65-1071
4 4.18-1071° 6.00 - 10710 1.75-10713
2.36 1071
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failed if the macro-residual ||Rpacro|| €xceeds the value 10'° during the iteration. As can be seen, the Newton method
terminates from n; = 22 using the classical solution method, while the generalized method terminates successfully from
n; = 2. It should be noted that the step numbers are minimal in the sense that the scheme does not converge for n; = 1
and n; = 21 using the generalized and the classical solution strategy, respectively. Eventually, Table 2 shows an example
of the convergence behavior of the Newton method for the two solution procedures to give an idea of the processes. The
value of the macro-residual in the kth iteration step is given under “generalized” and “classical,” respectively, while the
iteration progression for the classical staggered scheme at the micro level is given in the column “RVE.” The quantities
shown depict the course of convergence in relation to an exemplary integration point, whereby a point was selected in
each case for which the maximum number of iterations was required to achieve the termination criterion.

6 | CONCLUSIONS

The variational formulation of the multiscale system leads to a set of partial differential equations in a higher-dimensional
space. Even constant shape functions of the fluctuations in direction of the macroscale match the results of Delta Dirac
functions evaluated at every Gauss points, although the number of RVEs is dramatically reduced to one per element.
Using higher-order shape functions produces the expected convergence rates, noting that the absolute error for linear
shape functions for the fluctuations already surpasses the results of the traditional formulation.

With regard to (19), we can show that the discrete multiscale problem at hand can be considered as a
finite-dimensional and nonconvex minimization problem introducing a poly-convex strain energy function on the
microscale. Using this as a discrete objective function, sophisticated methods like the recursive trust-region multigrid for-
mulations as proposed in Gross and Krause?® can be adapted as well, such that state of the art parallelization techniques
can be applied instead of the usual “farming” on clusters to solve for the physical equilibrium condition on the microscale
within every macro Newton step.

Moreover, it is common to apply a staggered scheme for nonlinear multiscale problems, searching first for a phys-
ical equilibrium condition on the microscale within each Newton-Raphson step on the macroscale. However, as
long as the macroscale is not in equilibrium, the physical interpretation of the microscale is questionable. In par-
ticular, in the simple case of a purely mechanical, first order hyperelastic problem, the forces at the macroscale are
unbalanced and the converged solution of the corresponding microscale corresponds to the unbalanced forces. Due
to this issue, we observe the limits of the original staggered scheme as presented in Table 1, which clearly demon-
strates that the application of larger load steps is impossible in contrast to the monolithic solution. This leads to
the curious situation, that a huge amount of additional computational power is required for the microscale solu-
tions, without improving the solution on the macroscale. In the best case, we obtain quadratic convergence on the
macroscale, in the worst case, the staggered scheme prevents the solution of the macroscale system for larger external
load steps.

In contrast, the proposed null-space reduction scheme allows for a quadratic convergence simultaneously for both, the
micro- and the macroscale without using any additional step in a staggered scheme. This yields a massive reduction of the
computational effort for each iteration. Additionally, we could demonstrate that the monolithic solution is tremendously
more robust. For the Cook’s membrane, the Newton scheme does not converge for the staggered scheme until we apply the
external load in 22 load steps, whereas the monolithic scheme requires only two. Combined with the massive reduction
of RVEs to be evaluated using constant shape functions in direction of the macroscale, the computational power required
for the whole simulation is reduced to a fraction compared to the classical formulation.

Moreover, the applied methodology of null-space reduction schemes allows for a rather simple application on all kinds
of multiscale problems. The development of a consistent linearization for generalized materials in the context of IGAZ, for
example, for second or third-order materials is highly tedious, see the Appendix in our previous paper.'® The same holds
for multiphysical problems. For the proposed null-space reduction scheme, the construction of a consistent null-space
matrix can now be done in a straight-forward manner once the global stiffness matrix of the monolithic macro-micro
system has been generated.
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ENDNOTES

*As shown in Reference 18, we need a higher-order Taylor approximation in the case of higher-order problems.

TTaken from Reali and Hughes.?

fAnalogous to the introductory considerations, g € R and w € R""mie summarize in the following the node degrees of freedom g, and
W respectively.

$In particular, we compute for the direct solver the factorization of the block diagonal matrix L and solve afterwards L™ E. For an iterative
solver, an incomplete factorization can be applied.

IThrough periodicity, fixating one corner also fixates opposing corners and thus all corners at once.
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