Computational Science & Engineering Building a Community (SIAM SIAG for CSE)

Kirk E. Jordan Emerging Solutions Exec. & Assoc. Prog. Director Computational Science Center IBM T.J. Watson Research

& SIAM SIAG CSE Chair kjordan@us.ibm.com

Outline

- Brief background why CSE is important
- Comment on Computational Scientists
- Overview of the SIAM SIAG CSE Organization
- Comments on CSE and its implications wrt to changing HPC landscape
- Closing Remarks

Simulation & Modeling

The Emerging Framework for XXI Century Science & Technology Innovation

Computational Science and Engineering Simulation Based Engineering Sciences (SBES)

- Apply computational science techniques in various areas – multiscale & multi-"physics" to advance the next generations of computing
 - Computational and Systems Biology
 - Tumor & heart modeling
 - Transcription factor binding site id
 - Imaging medical (& other)
 - Geoscience
 - Reservoir & groundwater
 - Wave propagation
 - Atmospheric & ocean modeling
 - Computational Fluids & Structures
 - Reactive flows
 - · Convective flows
 - Advanced numerical techniques, Highend visualization, combined systems
 - Multi-resolution Wavelets
 - High order splines
 - Multi-Grid
 - Hybrid computing

SIAG/CSE OFFICERS 2011-2012 CONTACTS (Elections to be held this Fall – new Officers 2013)	
Chair:	Kirk Jordan
	kjordan@us.ibm.com
Vice Chair:	Carol Woodward
	cswoodward@llnl.gov
Program Director:	Karen Willcox
	kwillcox@mit.edu
Secretary/Treasurer:	Luke Olson
	lukeo@illinois.edu

ACTIVITY GROUP MEMBERSHIP 12/31/10 47% non-students and 66% students belong to a SIAG

Membership History as reported at the last CSE Business Meeting - 2011

Students membership is free – accounts for large number Need to convert student members to full members

SIAG/CSE MEMBERS BY EMPLOYER TYPE not including students

SIAG/CSE MEMBERS BY GEOGRAPHY

GAMM CSE could help increase the non-US members – goal of 65-35 %

SIAG/CSE MEMBERSHIP BY GENDER MALE 85% FEMALE 15%

MEMBER TYPE

Female membership remains at around 11%, however over 18% of the students are female.

Break down by Departments

 SIAG Charter renewed through 2014 – Charter renewed at Annual Meeting – July 2012.

SIAG Elections in 2012:

- Nominating committee put together list of 8 excellent candidates 2 per office.
- SIAG CSE members vote this fall.

Electronic Resources

- Moderated Mailing List:
- Wiki:
- SIAG/CSE website:

siam-cse@siam.org http://wiki.siam.org/siag-cse/ http://www.siam.org/activity/cse/

CONFERENCES

- SIAG CSE officers helped organize a series of Industrial Minisymposia
- 14 minisymposia partially organized by the CSE SIAG
 - Finance and Risk Management 6
 - Imaging and Inverse Problems- 6
 - Graduate Research Internships with Industry 2

SIAM CSE 13, Boston, USA - February 25 – March 1, 2013

- Co-Chairs Karen Willcox & Hans Petter Langtangen
- Themes:
 - Multiphysics and Multiscale Computations
 - > Identification, Design, and Control
 - Surrogate and Reduced-order Modeling
 - > Verification, Validation, Uncertainty Quantification
 - Discrete Simulations
 - Scientific Data Mining
 - Scalable Algorithms for Big Data
 - Simulations on Emerging Architectures
 - Exascale Challenges
 - > Scientific Software and High-Performance Computing
 - > Applications in Science, Engineering, and Industry
 - > Computational Mathematics of Planet Earth
 - CSE Education

Computational Science Fure courtesy Thomas A. Brunner and Tzanio Y. Koley, SISC. Vol.33, 56

SIAM Conference on

February 25-March 1, 2013 The Westin Boston Waterfront Boston, Massachusetts, USA

- Organize CS&E tracks or minisymposia at 2014 SIAM Annual Meeting
 - Ideas on topics & Opportunity for GAMM-FA CSE

15 9/21/12 GAMM-FA CSE

Trends in Computing Performance

- · This data was obtained on a prototype Blue Gene / Q rack.
 - AMG, LAMMPS, SPHOT, UMT are NNSA (Sequoia) benchmarks
 - DNS3D, FLASH, GFMC, GTC, MILC and NEK are Office of Science (ANL) applications.
 - · CM1 is a weather / climate app from NCAR
- Even within these three simple metrics, balances are significantly different for different applications.
 - · Linpack is a clear outlier
 - Apps except Linpack have low fraction of floating point peak
 - · Apps except Linpack have many integer instruction for each floating point operation
 - Main memory bandwidth requirements differ significantly between apps.

- Need for scalable, parallel, robust, optimal methods for:
 - -Advanced discretization in time & space
 - -Adaptive mesh/order refinement/coarsening methods
 - Fast solvers that address nonlinearities, multiphysics couplings, anisotropies, heterogeneities
 - Inverse problem & data assimilation
 - Uncertainty quantification forward propagation and inverse estimation
 - Optimization under uncertainty
- At this point fair to say:
 - Some limited progress in designing/implementing optimal methods for 1st three that scale to O(10⁴) to O(10⁵) cores
 - Last three in infancy, even for model problems
 - Many current methods intractable for last 2 for peta/exascale applications
- Need for good Computational Science & Engineering skills

Courtesy Omar Ghattas

Smarter Planet

- Next 10 years:
 - HPC Capability evolving will impact CSE and vice versa
 - Fidelity and time to solution relevant for industrial / commercial use
 - Hardware costs continue to fall
 - Focus shifting from Hardware to Solutions
 - Expertise now critical CSE expertise will drive the solutions
 - Economic opportunity is in development and delivery of robust solutions and services
- Opportunity for many but CSE in particular
 - -Brand New, Green Field Landscape!
 - Focus shifts from single applications to solutions and services
 - Significant opportunities for entry of new players
 - Economic impact is critical

Summary – Cont.

- A time of significant challenge
 - Just as HPC starts to have real scientific and industrial impact - it gets extraordinarily hard.
 - Algorithmic development needed i.e. Math, and CSE play important roles
 - Validation & Verification and Uncertainty Quantification required – i.e. More Math & CSE
- A radical research and development approach required – CSE major role
 - Multidisciplinary from domain science, math formulation, algorithms to system design
 - Collaboration essential from systems to applications
 - Collaboration on industrial / commercial workflows
- We will have succeeded when
 - we stop talking about architecture
 - we focus on real impact: Research, Industry, Business
- The answers remains left to the audience/the reader/the users - US!!

"OUR SUPERCOMPUTER IS CAPABLE OF PERFORMING TRILLIONS OF COMPUTATIONS PER SECOND, BUT WE PRIMARILY USE IT FOR BIT TORRENT AND GAMING."

In the end, it's not about the technology; It's what you do with it that counts (Computational Science & Engineering will Impact)

- Join us as we
- Continue to innovate across the whole systems stack to deliver leadership in performance and usability
- Make HPC Consumable easier to use
- Help solve problems that are currently intractable or not cost-effective in an accessible way
- Accelerate discovery in science, engineering, and business