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OUTLINE

INTRODUCTION
Particles for Continuum Flows

Particle Methods + Grids

Multi-Resolution for Grids/Particles

Multi/Many core Implementations

Particles for Atomistic Flows
Uncertainty Quantification + Propagation

SUMMARY 
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• No aircraft  is 
flown without 
having been 
designed with 
complex, 
mechanistic 
simulations

Simulation and Technology
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• Heuristics and Data
• Models ?

Simulation and Medicine

Dreamstime.com
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25 years DINFKCSE  Lab

Runs at IBM Watson Center - BLue Gene/L 

The Flow and Growth of  Aircraft Wakes16384 Cores  - 10 Billion  Particles - 60% efficiency

Chatelain P., Curioni A., Bergdorf M., Rossinelli D., Andreoni W., Koumoutsakos P., Billion Vortex Particle Direct Numerical Simulations of Aircraft Wakes, Computer Methods in Applied Mech. and Eng. 197/13-16, 1296-1304, 2008 
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Tumor Induced Angiogenesis

credit : Roche
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Multi-scale Modeling of Angiogenesis

Scale

[1] H. GERHARDT, M. GOLDING, M.FRUTTIGER, C. RUHRBERG, A. LUNDKVIST A. ABRAMSSON, M. JELTSCH C. MICHELL, . ALITALO, D. SHIMA AND C. BETSHOLTZ, VEGF GUIDES ANGIOGENIC SPROUTING UTILIZING ENDOTHELIAL TIP CELL FILOPODIA, J. CELL. BIOL., 2003

Vasculature

Tip Cell

ECM

Growth 
Factors

Milde F., Bergdorf M., 
Koumoutsakos P., A Hybrid 
Model for 3D Simulations 
of Sprouting Angiogenesis,  
Biophysical J.,2008 
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Angiogenesis : 	
  in	
  silico

Milde F.,  Bergdorf M.,  Koumoutsakos P., A hybrid model of sprouting angiogenesis, Biophysical J.. 2008 Milde F.,et al., A hybrid model of sprouting angiogenesis, Biophysical J.. 2008 

Koumoutsakos et al., The fluid Mechanics of Cancer and its Therapy, Ann. Rev. Fluid Mech. , 2013
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Vortex Dynamics 
Koumoutsakos  Lab, ETHZ

Growth of Black Holes
Springel, MPI - Hernquist, Harvard

Transport in aquaporins
Schulten Lab, UIUC

PARTICLE  METHODS 

-9 0 +9

Molecular 
Dynamics

Vortex
Methods

Smoothed  Particle
Hydrodynamics
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PARTICLES : Lagrangian, Conservation and Other Laws

m
dup

dt
= Fp

MD, DPD, CGMD

SPH, Vortex Methods

�p
Dup

Dt
= (� · ⇥)p

dxp

dt
= up

P. Koumoutsakos, Ann. Rev. Fluid Mech., 2005
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PARTICLE  SIMULATIONS ACROSS SCALES

1. TIME INTEGRATORS
2. NEIGHBOR LISTS : FAR/CLOSE PARTICLES
3. POISSON SOLVERS
4. FAST SUMMATION ALGORITHMS
5. PARTICLE - MESH
6. DERIVATIVES ON GRIDS AND PARTICLES

COMMON MODULES
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PART 1 : 

Particles for Continuum Flows 

van Rees, W.M., Hussain, F. and Koumoutsakos, P., Vortex tube reconnection at Re=104. Physics of Fluids, 24(7):075105, 2012.

VORTEX DYNAMICS at Re = 10,000
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FUNCTIONS and PARTICLES

h

ε

�(x) =
�

�(y) �(x� y) dy

Integral Function Representation Point Particle Quadrature

�h(x, t) =
Np�

p=1

hd
p �p(t) �(x� xp(t))

�h
� (x, t) =

Np�

p=1

hd
p �p(t) ��(x� xp(t))��(x) =

�
�(y) ��(x� y) dy

Function Mollification Smooth Particle Quadrature

||� � �h
� || ⇥ ||� � ��|| + ||�� � �h

� ||

� (C1 �r + C2 (
h

�
)m) ||�||�

TOTAL ERROR 

Hald, Beale and Majda, (80‘s) Anderson, Cottet (90’s)
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LAGRANGIAN  DISTORTION

EXAMPLE :  Incompressible 2D Euler Equations  � = ⇥� u

D�

Dt
= 0

Circular Patch = EXACT soln.

•particles location distortion -> loss of overlap -> no convergence

 Need h/ε < 1 for accuracy 

  PARTICLES MUST OVERLAP

Exact Particles/SPH
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Particle Remeshing

Rossinelli D., Conti C., Koumoutsakos P., Mesh-particle interpolations on GPUs and multicore CPUs, Phil. Trans. R. Soc. A, 369, pp. 2164-2175, 2011

Moment Conserving Interpolation

Qj =
MX

j=1

Qp ⇤(j h� xp)

1D : #grid points = # Moments

2/3D : CARTESIAN GRIDS
 + 

Tensorial products

Finite Differences are a Subset of Remeshed Particle Methods

P. Koumoutsakos, Inviscid axisymmetrization of an elliptical vortex, J. Comput. Phys., 1997
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remeshed PARTICLE METHODS (rPM)

1.ADVECT :  Particles ->Large CFL

2.REMESH :  Particles  to  Mesh -> Gather/Scatter

3.SOLVE:Poisson/Derivatives on Mesh ->FFTw/Ghosts

4:RESAMPLE: Mesh Nodes  BECOME  Particles 
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VALIDATION/VERIFICATION

vortex method
pseudospectral

Re = 1600

dE
dt
¼ "mE; ð14Þ

where E ¼
R
x %xdx is the enstrophy and E is the kinetic energy. The effective viscosity can then be defined by

meffective ¼ "
dE
dt
=E: ð15Þ

The energy and enstrophy are computed from the velocity and vorticity on the mesh, respectively. We compare the effec-
tive viscosity to the actual viscosity in the flow to measure the error.

The results for the computations are given in Fig. 10(a), where we divided the effective viscosity by the physical viscosity
m = 0.001 to study the relative differences. The maximum error in effective viscosity is about 4% and 2.5% for the rVM-M0

4 and
the rVM-M&

6, respectively, and about 1% for the pseudo-spectral method. An interesting element of this plot is that the vortex
method, with both the M0

4 and the M&
6 kernels, gives a relative effective viscosity smaller than 1 during some parts of the flow

evolution. This means that our method is less dissipative than it should be according to the physical viscosity of the flow in
these parts of the computation, and that we are actually computing at a slightly larger effective Reynolds number than the
physical Reynolds number. The pseudo-spectral method, on the other hand, has a relative effective viscosity which is always
larger than 1.

Fig. 10(b) gives the total enstrophy in the flow compared between the three methods. Up to and including the first recon-
nection (T 6 4.0) the three methods show qualitatively similar behavior. This is confirmed when comparing snapshots of the
flow during the first reconnection (Fig. 11). The flow visualization shows that the M&

6-kernel resolves more scales than the

Fig. 11. Visualization of the flow at time T = 2.65 (a), (c), (e) and at time T = 2.85 (b), (d), (f). Results predicted with rVM-M0
4 (a), (b), with rVM-M&

6 (c), (d) and
with PS (e), (f). The figure is a volume rendering of the k2-field [29].

2802 W.M. van Rees et al. / Journal of Computational Physics 230 (2011) 2794–2805
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Re = 10 000pseudospectral

vortex method
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Figure 22: 3D anguilliform swimmer: (a) Forward velocity Uk, (b) Lateral
velocity U?. Red lines indicate 3D swimmer simulations with the proposed
method. Black lines indicate the reference finite volume solution [22].

[22]. We reproject the vorticity field onto a divergence-free field every 20
timesteps.

Figure 22 shows the forward and lateral swimming velocity of the an-
guilliform swimmer compared with the reference results [22]. The current
method gives a satisfactory agreement with the reference results. A volume
rendering of the vorticity field is given in figure 23, showing the vortex rings
in the swimmer wake.

5. Conclusion

We have presented a vortex particle method for fluid-structure interaction
with unsteady deforming geometries in unbounded domains. The method is
based on the Brinkman penalization model to capture the feedback from the
solid to the fluid and on the projection approach for the interaction from the
fluid to the solid. The proposed algorithm can handle deformations charac-
terized by non divergence-free velocity deformation fields, allowing the treat-
ment of arbitrary deforming geometries. It produces an attractively clean
algorithm and is shown to accurately reproduce reference simulations for
both rigid and deforming solids. In particular, the method is applied to the
simulation of self-propelled anguilliform swimmers immersed in a viscous,
incompressible flow to demonstrate its suitability for the study of biological
locomotion. The simplicity in the treatment of complex unsteady geometries
makes it portable to parallel architecture such as GPUs and multicores. On-

36

    FVM
   rVM

Re = 2860
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20 Days on CRAY YMP 100sec  on GPU20111995

NOTE : ~18,000 speedup BUT ~100 comes out of time alone 

Rossinelli D., et.al., GPU accelerated simulations of bluff body flows using vortex particle methods, Journal of Comp.  Phys., 229, 9, 3316-3333, 2010

Re = 9500 ~ 106 particles

COMPUTERS
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Remeshed Particles: ADAPTIVE

yet inefficient ! 
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Adaptive Mesh Refinement 

Support of unstructured grids

Different mesh orientations

• Low compression rate 

• No explicit control on the 
compression error 

Berger, Colella,J. Comp. Phys., 1989
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A better compression : Wavelets

50:1
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rPM + WAVELET ADPTED GRIDS

qL =
X

k

c0
k ⇣

0
k +

X

l<L

X

k

dl
k  

l
k

“ground” level detail 
coefficients wavelets

1.Remesh 
2.Wavelets- Compress/Adapt
3.Convect
4.Wavelets Reconstruct
5.GOTO 1

M. Bergdorf, P. Koumoutsakos. A Lagrangian Particle-Wavelet Method, Multiscale Modeling and Simulation: A SIAM Interdisciplinary Journal, 5(3), 980-995, 2006

Active Wavelet 
Coefficients

= 
Active Grid Points
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WAVELET ADAPTED  LEVEL  SETS

Present Method
dof = # active gp/particles at t=0.0
dof = # active gp/particles at final time

Enright,  Fedkiw et al, 2002
dof = # grid points  + aux. particles at t=0.0

degrees of freedom

re
la

tiv
e 

er
ro

r 
in

 a
re

a

CFLmax ~ 40

M. Bergdorf, P. Koumoutsakos. A Lagrangian Particle-Wavelet Method, Multiscale Modeling and Simulation:  SIAM Interdisciplinary Journal, 5(3), 980-995, 2006
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Penalization Method:
Immersed Boundary Method: f(x) = ⇥�S(xS � x)

f(x) = �⇥S(uS � u)

�
Du
Dt

= � · �
+f(enforces b.c.)

Boundary Conditions +  SIMPLE GRIDS
Dupuis A., Chatelain P., Koumoutsakos P., An Immersed Boundary-Lattice Boltzmann Method, J. Comput. Physics, 227, 9, 4486-4498, 2008
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Penalization Method:
Immersed Boundary Method: f(x) = ⇥�S(xS � x)

f(x) = �⇥S(uS � u)

�
Du
Dt

= � · �
+f(enforces b.c.)

Boundary Conditions = Coupling
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⇒

⇒

⇒

⇒

Multi-resolution Vortex Methods  + Penalization
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Wavelet Adapted Grids

Spatial Differences = filtering operations:

⇥�
⇥t + u ·⇥� = 0

PDE:

GHOSTS :  easy to compute - (locally) uniform filtering of the grid
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 Block Grid for Multi/Many-core:

Neighbors look-up: less memory indirections
Less #ghosts
Within a block: random access
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Wavelet Blocks on GPUs

Wavelet-Blocks

CPU

OpenCL Output Tokens

GPU 1

GPU 2

GPU 3

OpenCL Input Tokens OpenCL Devices

Rossinelli D., Hejazialhosseini B., Spampinato D., Koumoutsakos P., 
Multicore/Multi-GPU Accelerated Simulations of Multiphase 
Compressible Flows Using Wavelet Adapted Grids, SIAM J. Sci. 
Comput., 33, pp. 512-540, 2011

‣Overall Reduction in time to solution: ~ 1000
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• Algorithms : Local Time Stepping: 24X 

• Ghost Reconstruction : CPU optimization (vectorization): 1.8X 

• Ghost Reconstruction : Task-based parallelism (via TBB): 8X (over 12)

• GPUs as accelerators: 3X

Performance I : Time to Solution 

Compared to a space adaptive, single-threaded (CPU) solver:

‣Overall Reduction in Time to Solution: ~ 1000
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Performance II: The Roofline Model

How to predict performance of a compute kernel?

• Performance versus Operational Intensity (OI)

• OI: FLOP/B (off chip) of the kernel

• Low OI: OI < ridge _> A reason for <5% of peak performance

1
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Pe
rfo

rm
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ce
 [G

FL
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P/
s]

Operational Intensity [FLOP/B]

Sandy Bridge

Magny-Cours

S. Williams, A. Waterman, D. Patterson - 2009 - Comm. ACM

OI for non blocked RHS (right), 
surface tension and diffusion (left)

tendency of moving even 
more to the right the 
ridge point as computing 
grows faster than 
memory (HP2C webpage)

visual tool
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Performance II: The Roofline Model

Update
(1% of code)

RHS
(85-98%)

Surface
Tension
(2-5%)

Diffusion
(5-10%)

CFL check
(<1%)
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CHOMBO – AMR Solver
91 min, 230 MB

single-phase - 2nd order PPM

Performance III : MRAG vs. CHOMBO 

density field

multi-phase - 5th order WENO

MRAG
56 min, 244 MB  + 1 GPU: 7 min

Rossinel l i D., Hejazialhosseini B., Spampinato D., 
Koumoutsakos P., Multicore/Multi-GPU Accelerated Simulations 
of Multiphase Compressible Flows Using Wavelet Adapted 
Grids, SIAM J. Sci. Comput., 33, pp. 512-540, 2011

CHOMBO: Colella et al., software package for AMR applications, 
Technical Report(LBNL), 2000
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‣ Fifth order WENO reconstruction

‣ HLLE fluxes using primitive quantities

‣ 5th-order average interpolating wavelets

‣ LTS based on TVD RK2 time stepper

‣ Levelset approach for the interface

‣ 8 levels of resolution, maximum jump 2

(M=3, At=0.8)

Shock Bubble Interaction

FINEST RESOLUTION EQUIVALENT
8000 x 8000 uniform grid

~40 times smaller adaptive grid
rr

*Hu, Khoo, 

Hejazialhosseini et. al., J. of Comp. Physics, 2010
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Babak Hejazialhosseini - Diego Rossinelli - Christian Conti - Petros Koumoutsakos        - SC’12

NUMERICS
Finite Volume Method:
WENO5/HLLE
Low storage RK3

SIMULATIONS
Shock-bubble interaction at Mach 3
47K cores - 30% of peak
250B elements

CODE : CUBISM@CSE LAB
C++, SSE/AVX intrinsics
Parallel patterns
Roofline based performance analysis

HIGH THROUGHPUT DNS OF COMPRESSIBLE TWO-PHASE FLOWS
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Shock Bubble Interaction
Hejazialhosseini et. al., J. of Comp. Physics, 2010
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C-start is IS OPTIMAL ESCAPE response

EVOLUTIONARY OPTIMIZATION (~3000 simulations)

Gazzola M., van Rees W.M. and Koumoutsakos P., C-start: optimal start of larval fish. Journal of Fluid Mechanics, 698:5–18, 2012.
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Experimental data by Muller, van den Boogaart, van Leeuwen. JEB, 2008.

IN VIVO -IN SILICO
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Multiphysics/Multiscale   

�
Du
Dt

= � · �
+f(enforces b.c.)

f(x) = (result from Molecular Simulations)

Boundary Conditions = Coupling
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SUPERFAST WATER TRANSPORT IN CNTS

PART 2: 

Particles for Discrete Flows 
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Enhanced flow in carbon nanotubes, 

Mainak Majumder*, Nitin Chopra*,Rodney Andrews†, Bruce J. Hinds*
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SuperFast Water Transport in CNTs
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NOTE: Pressure Gradient  = 1 atm
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Reassessing Fast 
Water Transport 
Through Carbon 
Nanotubes
John A. Thomas and Alan J. H. 
McGaughey*
Department of Mechanical 
Engineering, Carnegie Mellon 
UniVersity,
Pittsburgh, PennsylVania 15213
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QUESTIONS 

i. How does water enter/exit the CNTs ?

ii. Are periodic simulations suitable ?                                           
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MD Simulations 
at 1µm CNTs
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Enhanced Flow in Carbon Nanotubes
Mainak Majumder , et al.
Nature, 438, 2005

Measurement of the Rate of Water 
Translocation  through Carbon Nanotubes
Xingcai Qin, et al.
NanoLetters, 11, 2173, 2011

Fast Mass Transport Through Sub-2 Nanometer
Carbon Nanotubes
Jason K. Holt, et al.
Science 312, 1034 (2006)
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Uncertainty Quantification for MD 

Uncertainty quantification (UQ) is the science of quantitative
characterization and reduction of uncertainties in 
applications. It tries to determine how likely certain outcomes 
are if some aspects of the system are not exactly known.

An example would be to predict the acceleration of a human body in a head-on crash with another car: even if we exactly
knew the speed, small differences in the manufacturing of  individual cars, how tightly every bolt has been tightened, etc, 
will lead to different results that can only be predicted in a statistical sense. [...]

...from WikiPedia
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MD of CNT-Water Systems

• The CNT/graphite potential
C – C Lennard-Jones
bond, angle, and torsion terms
(often rigid)

• The water potential
O – O Lennard-Jones 
O – O, O – H Coulomb
SPC/E : Rigid bonds
SPCF   : O – H bond, H – O – H angle 

+-
-

-
-

+

• The carbon-water potential
C – O  Lennard-Jones
(C – H  Lennard-Jones)
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Sources of Uncertainty in MD

• PARAMETRIC Uncertainty- lack of knowledge of the appropriate values of the parameters 
involved in the chosen force-field models and truncation schemes

• COMPUTATIONAL  uncertainty- finite size of the simulation box and the values of the 
computational parameters used to evolve the MD equations (e.g. integrate Newton’s equations 
of motion).

• MODELING Uncertainty- inadequacy of the mathematical models used to represent the 
actual system. They arise in postulating force-field models to represent the inter-molecular 
interactions

• MEASUREMENT uncertainty- variability in the values of the experimental properties due to 
variability in experimental set, errors in the measuring equipment, and inaccuracies in the data 
acquisition system.
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Wetting of  Graphite  Sheets  by Water  Droplets

Microscale Water Micro-droplets condensed over 
graphite  in JPL ESEM (Dr. Flavio Noca)

Nanoscale Water droplets  on graphite 
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Simulations :  wetting depends on potentials

Binding energy of a water 
monomer (kJ/mol)

Co
nt

ac
t a

ng
le

 (º
)
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Binding energy of water (kJ/mol)

Co
nt

ac
t a

ng
le

 (º
)

CALIBRATE water-graphite potentials from experiments

86o from experiments

-6.3 kJ/mol

This value reproduces the reported experimental contact angle*

Lennard-Jones potential 
σCO = 0.319 nm, 

 εCO = 0.392 kJ/mol

T. Werder, J. H. Walther, R. L. Jaffe, T. Halicioglu, and P. Koumoutsakos,  J. Phys. Chem. B, 107:1345-1352, 2003.
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BAYESIAN UQ+P  FRAMEWORK
•Bayesian Computational Methods: MCMC and variants

•HPC & Surrogate Models

APPLICATIONS IN MOLECULAR DYNAMICS
- Argon System
- Water-Carbon Interaction
- Water flow in CNTs

Uncertainty Quantification for MD

Angelikopoulos et al., Uncertainty Quantification and Prediction in MD Simulations: an HPC framework, J. Chem. Phys. (in press)
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UQ	
  (Water	
  Contact	
  Angle)	
  +P	
  (C70	
  Hydra5on)

Angelikopoulos et al., Uncertainty Quantification and Prediction in MD Simulations: an HPC framework, J. Chem. Phys. (in press)

UQ P

DATA
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SUMMARY

Particles
A robust and Accurate Method for Multi-Physics Simulations

Common Computational Modules across Scales 

Multi-resolution, HPC implementation

First steps in Coupling Atomistic-Mesoscale-Continuum

A Particle Programming Language

 UQ+P for Particle Based Solvers
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Walther Chatelain

Chatelain

Bayati

Bergdorf Rossinelli
Gazzola

Hedjazialhosseini van Rees Milde
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SOME THOUGHTS IN CSE

MATH CS APPS

CSE 
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SOME THOUGHTS IN CSE

MATH CS APPS

CSE 
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SOME THOUGHTS IN CSE

MATHEMATICS - COMPUTER SCIENCE - APPLICATIONS
A robust and Accurate Method for Multi-Physics Simulations

 Multi-resolution, HPC implementation

MULTISCALE

•First steps in Coupling Atomistic-Mesoscale-Continuum

APPLICATIONS

•Fluids to Biology and Back

Tuesday, October 2, 12




