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The main goal of the present work is to provide an add-on scheme for the formulation of multibody dynamics, based on
natural coordinates, in regard to ideally balanced rigid bodies with high rotational spin, e.g. gyroscopes. The underlying aim
of this approach is to achieve higher numerical accuracy whenever the preferred axis of rotation coincides with the balanced
main axis of the body. This will be achieved by seperating thespin of the balanced rigid body along the denoted axis as
an additional angular coordinate, whereas the other rotations will be covered by a carried frame, parameterized via natural
coordinates. At the same time the carried frame provides a link to the existing modelling framework in terms of natural
coordinates, enabling a straightforward implementation into existing multibody systems (e.g. rotary crane [2]).
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1 Kinematics

The proposed scheme is strictly coupled with the concept of two interconnected rigid bodies. Namely the balanced rigid body,
denoted asslave, which is attached to amaster rigid body with arbitrary inertial properties. Accordingly we will introduce the
master/slave-notation to distinguish associated variables of the master and slave with the superscript indicesI• andII•.

The spatial positionIx, IIx ∈ Bt of an arbitrary material point of the master and slave body inthe momentary configura-
tion manifoldBt at a timet is given by

Ix = Iϕ+ IRI
X

∣

∣

IIx = Iϕ+ IR+ IRC exp (φ̂)IIX

whereIϕ ∈ R3 denotes the position vector andIR ∈
{

SO(3) | IR = Idi ⊗ ei
}

the rotational transformation tensor of
the master’s conjugated body-fixed frame. The material configurationIIx of the slave body is described along a sequential
displacement and rotation in terms of the master’s configuration space{Iϕ, IR}, a constant relative offset vector ∈ R3, a
constant relative rotational transformation tensorC ∈ SO(3) and a follower rotation tensorexp (φ̂) ∈ SO(3). Furthermore
the angular coordinateφ = vect(φ̂) · e1 can be associated with the admissible relative twist between both bodies.

The rotation of the master body will be described in terms of natural coordinates as the rotation tensorIR provides nine
dependent cartesian coordinates, which can be interpretedas the direction cosines of the rotational transformation.In the
following, we will denote the column vectors of the rotationtensor as directorsIdi, i = 1, 2, 3. The total configuration vector
q ∈ Rn , n = 13 of the exemplary master-slave-system therefore yields

q =
[

IϕT IdT
1

IdT
2

IdT
3 φ

]T
∣

∣

∣
gint
b (q) = 0 1 ≤ b ≤ m

where the internal constraintsgint
b ∈ Rm , m = 6 preserve the orthonormality of the director frame{Idi}. The degrees of

freedom (DOFs) of the exemplary system at hand therefore yields f = n −m = 7, where 6 DOFs can be accounted to the
translational and rotational movement of a rigid body inR3 and the additional DOF reflects the relative twist between the two
bodies in terms of a revolute joint.

2 Dynamics

The configuration and tangent spaceQ andTqQ of the constrained system are defined byQ = {q ∈ R13 | gint
b (q) = 0 , 1 ≤

b ≤ 6} andTqQ = {ν ∈ R13 | ∇gint
b (q) · ν = 0 , 1 ≤ b ≤ 6} , whereν denotes the conjugated velocities toq.

Before we get to the equations of motion (EOM) of the system, we need to impose preconditions onto the inertial properties
of the balanced rigid body (slave) and the orientation of the relative axis of rotation in regard to themaster body. It is known,
that the inertia of a rigid body can be projected onto a representing ellipsoid of inertia, the preconditions can therebybe
formulated as follows:

i. The slave’s representing ellipsoid of inertia is a spheroid, or as stated several times it has to be an ideally balancedbody.
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ii. The relative axis of revolution in regard to the followerrotationexp (φ̂) has to align with the unique principle axis of
inertia of the slave body. For the special case, where the representing ellipsoid of inertia assumes the shape of an ideal
sphere, naturally every principle axis of inertia is an admissable axis of revolution.

These preconditions lead to the elimination of transcendental functions, which would be incorporated into expressionof the
system’s kinetic energy and consequently into the EOMs due to the follower rotationexp (φ̂). Instead, denoting the kinetic
energy of the system withT = 1

2ν ·M(q)ν, the proposed scheme leads to a fairly simple mass matrix, given by

M(q) =

[

M(12,12) B(q)(12,1)
B(q)T(1,12) E(1,1)

]

with M =

[

M̃ϕ S̃
T

(1,3)

S̃(3,1) Ẽ(3,3)

]

⊗ I3

whereM andE contain constant entries and only the last column and rowB(q) show a configuration dependancy.

Discrete setting We employ the proposed scheme within the framework of conserving integration schemes ( see also Betsch
and Steinmann [1]), leading to the following set of nonlinear algebraic equations

qn+1 − qn =
∆t

2
(νn+1 + νn)

Mn+ 1

2

(νn+1 − νn) = ∆t

(

fn,n+1 −Bn+ 1

2

−

m
∑

b=1

λb,n+1∇̄gb(qn, qn+1)

)

g(qn+1) = 0

Heref denotes the sum of non-/conservative forces,B covers coriolis-type expressions andλb denotes the Lagrangian
multiplier associated with the conjugated constraintgb(q).

3 Numerical examples

First we will deal with the example of aspacecraft, whose orientation can be influenced by the actuation of reaction wheels.
Here the reaction wheels are incorporated into the MBS by theproposed formulation. A more sophisticated example is
provided by therotary crane (see also [2]). In this case, the winch as a balanced rigid element has been incorporated by
the proposed scheme. Both MBS within the hybrid coordinate approach (HCA) are compared with their energy-momentum
(EM) counterpart, which is purely based on natural coordinates. For this purpose, we observe the orbit of the spacecraft’s core
bodyCϕ in the x-y-plane and the z-component of the crane’s pointmass trajectoryPMz at coarse timestep sizes∆t in respect
to a reference solution. Furthermore we investigate the relative configuration errorεrel of both schemes at a wider range of
timestep sizes.
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